PROCEEDING OF THE AINL FRUCT 2016 CONFERENCE

Predicting the Age of Social Network Users from
User-Generated Texts with Word Embeddings

Anton Alekseev
Steklov Mathematical Institute at St. Petersburg
St. Petersburg, Russia
anton.m.alexeyev @gmail.com

Abstract—Many web-based applications such as advertising or
recommender systems often critically depend on the demographic
information, which may be unavailable for new or anonymous
users. We study the problem of predicting demographic informa-
tion based on user-generated texts on a Russian-language dataset
from a large social network. We evaluate the efficiency of age
prediction algorithms based on word2vec word embeddings and
conduct a comprehensive experimental evaluation, comparing
these algorithms with each other and with classical baseline
approaches.

I. INTRODUCTION

The recent development of deep learning techniques for
natural language processing has led to state of the art models
that operate in a basically unsupervised fashion and do not
require much linguistic insight; one such direction of study
deals with word embeddings, vector representations of words
that capture certain semantic relations between the words and
can serve as an intermediate step for subsequent models.

In this work, we concentrate on a novel application of word
embeddings to user profiling, focusing on improving user age
prediction with full-text items. We believe that huge corpora
of user-generated texts stored in forums and social networks
can be used to produce interpretable, semantic user profiles
and improve recommendations for full-text items. In this work,
we develop new age prediction methods and algorithms for
users interacting with full-text items based on distributed word
representations.

User profiling by user behaviour has had a long history in
many different contexts, but text-based user profiling has not
attracted too much attention. Previous attempts at big data user
profiling without deep neural networks have leaned upon ex-
ternal knowledge in the form of ontologies [41] and presented
a general framework for using NLP in profiling [10]. There
is a large classical field of authorship analysis, attribution and
author verification studies [31], [74]; since this is not really
our focus, we refer to surveys [12], [65], [66] for details and
references.

One could, however, find some works that use natural
language processing to perform or augment user profiling.
In particular, there have been several works closer to social
sciences based on available anonymized datasets that do things
similar to user profiling, usually mining demographic informa-
tion from texts generated by a user, and attempts to mine text to
establish new information regarding a user or relations between
users. If it is done from social network data, the field is known

Sergey 1. Nikolenko
Steklov Mathematical Institute at St. Petersburg, Russia
Kazan Federal University, Kazan, Russia
sergey @logic.pdmi.ras.ru

as social media personal analytics. Next, we highlight some of
this research. In [35], anonymized text messaging datasets are
used to investigate the demographics of texting, while in [21],
author profiling for English emails uncovers basic demographic
traits (gender, age, geographic origin, level of education,
and native language) and five psychometric traits based on
email texts. Several Twitter-based studies have focused on
mining demographic features based on tweets [19], [26]; the
work [34], for instance, does it in a weakly supervised fashion,
using Facebook or Google+ profiles as distant supervision. The
work [49] detects personality traits from weblog texts, while
the work [5] explicitly studies lexical predictors of personality
type, [9] determines demographic information by social media
texts, and [55] mines user relations from online discussions;
an interesting extension is [22] which attempts personality
profiling of fictional characters based on the texts about them.
In [58], author profiles in social media are mined to get hidden
user profile information, while in [50] metadata is used to mine
author profiles; the work [70] attempts automatic collection
and summarization of personal profiles from various social
networks and other sources, while [17] proposes linguistic
features that help determine the natural language of a person
writing in English (on a dataset of the First NLI Shared Task)
and [54] determines a user’s occupation by his or her tweets.
In [18], [69], the user’s political preferences are determined
by his or her tweets, and [32] drives it further to get the user’s
actual voting intentions. This kind of profiling even extends to
medical issues: the work [52] attempts to screen Twitter users
for depression based on their tweets. Numerous works on the
topic have been published based on the results of the shared
Author Profiling Tasks at digital text forensics events by PAN
initiative [23], [59]-[62]. Finally, there are quite a few works
for determining the geographical location of a user from his
or her textual activity in social networks [8], [27], [36], [56],
[57], [71].

As for neural NLP models, one recent work that ac-
tually uses modern neural network-based NLP to automat-
ically construct user profiles is [67]. There, convolutional
neural networks are used to construct a joint representation of
users, products, and their reviews, in particular user profiles.
This results in semantic user profiles that are then used to
improve sentiment classification but can probably be used
for other purposes as well. A recent work [48] has used
word embeddings to construct user profiles from the texts
they liked in a social network; the profiles were constructed
as logistic regression weights of word clusters (clustered in
the semantic space of word embeddings), with a special
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mechanism to reduce the weights of clusters with common
words and bring topical clusters to the top. In [1], a deep
semantic similarity model (DSSM) is trained to model the
“interestingness” of documents. The purpose of the model is to
recommend target documents that might interest a user based
on a source document which she is reading at the moment.
This is mostly an information retrieval model, trained on click
transitions between source and target documents; this work is
similar to [68] and also uses convolutional architectures. The
hierarchical neural language model from [20] with a document
level and a token level can also be extended to learning user-
specific vectors to represent individual preferences, which can
be used to give personalized recommendations.

In this work, we propose several relatively simple algo-
rithms that operate on word embeddings of the words in social
network statuses of the users, aiming to predict a user’s age
from his or her writing. The paper is organized as follows. In
Section II, we describe the dataset used in this work. Section III
discusses word embeddings, one of the most important tools
in modern natural language processing. Section IV describes
in detail the age prediction algorithms that we propose and
evaluate in this work. Section V is devoted to a comprehensive
experimental study, where we evaluate and compare not only
the proposed algorithms with each other but also word2vec
models trained with different parameters; our aim here is to
draw practically important conclusions that may be useful for
subsequent studies of the Russian language. Finally, Section VI
concludes the paper.

II. PROBLEM AND DATASET

For this project, we have obtained a large dataset from the
Odnoklassniki social network. The dataset has been created as
follows:

(1) the dataset began with 486 seed users;

(2) for these users, their sets of friends have been extracted;

(3) then the friends of these friends; as a result, the dataset
contains a neighborhood of depth 2 in the social graph for
the original seed users.

As a result, the dataset contains information on 868,126
users of the Odnoklassniki social network. In particular, it
contains the following data:

(1) demographic information on 868,126 users of the network:
gender, age, and region (region info may be imprecise
since there is no such explicit field in the user’s profile,
the region is determined by the IP addresses from which
the user has logged in most often);

(2) the social graph that defines the “friendship” relation and
contains (and indicates) several different type of links:
“friend”, “love”, “spouse”, “parent”, and so on; all users
with known demographic data are also present in the social
graph;

(3) history of logins for individual users;

(4) data on the “likes” (“class” marks) a user has given to
other users’ statuses and posts in various groups;

(5) texts of the posts for individual users and group statuses
that have been liked by these selected users.

The mean age of all users was 31.39 years; the age
distribution is shown on Fig. 1. It is important to note that
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Fig. 2. Number of friends distribution in the Odnoklassniki dataset

there are quite a lot of users with implausible ages (ages 2
and 3, age higher than 100 years); since the user specifies
the age by himself/herself, this probably represents missing,
incorrect, or purposefully distorted data. Note that this is an
important point for the relevance of our research: when a user
has not specified his/her age, or when a user has specified an
obviously incorrect age, we still need to be able to predict his
or her age in order to give age-related recommendations and
enroll the user into age cohorts.

For the experiments, however, we have removed from the
dataset all ages below 10 and above 80 since they are likely
to correspond to faulty/missing information.

Fig. 2 shows the distribution of the number of friends in
the Odnoklassniki dataset; interestingly, while the usual Pareto
distribution (straight line on a log-log plot) picks up after about
100 friends, it actually increases before that point. This is
probably an artifact of the data collection: naturally, the social
circle (neighborhood of depth 2) of a predefined set of seed
users will contain few isolated or nearly isolated users.
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III. WORD EMBEDDINGS
A. Background

Recent advances in distributed word representations have
made it into a method of choice for modern natural language
processing [24]. Distributed word representations are models
that map each word occurring in the dictionary to a Euclidean
space, attempting to capture semantic relationships between
the words as geometric relationships in the Euclidean space.
In a classical word embedding model, one first constructs a
vocabulary with one-hot representations of individual words,
where each word corresponds to its own dimension, and
then trains representations for individual words starting from
there, basically as a dimensionality reduction problem. For this
purpose, researchers have usually employed a model with one
hidden layer that attempts to predict the next word based on
a window of several preceding words. Then representations
learned at the hidden layer are taken to be the word’s features.

The modern field of word embeddings started with the
work [6], subsequently extended in [7]. Extending previous
work on statistical language models that were usually based
on word n-grams [13], [15], [25], [30], Bengio et al. proposed
the idea of distributed word representations that operate as
follows:

(1) for each vocabulary word w € V, associate it with a
feature vector C(w) (word embedding) v,, € R? (typical
values of d lie in the hundreds);

(2) express the probability function of words appearing in
context windows via these vectors as

9(i, C(wi—1, e, Cwr—py1)) = Plwywl™t)

where C'(w;_1, ..., C(wy_n41 are vectors of context words
and g is a parameterized function with parameters w;

(3) train from a large unlabeled text corpus both the vectors
and the parameters of this probability function; the objec-
tive maximized during training is the corpus log-likelihood

1
L= T zt:logf(wt,wtfl, e Wiy 13 ©) + R(O)

where © = (C,w), and R(O) is a regularization term.

There exist two most commonly used models for word
embeddings, both introduced in [42]: Continuous Bag-of-
Words (CBOW) and skip-gram. During its learning, a CBOW
model is trying to reconstruct the words from their contexts. It
is done by a network whose architecture is shown on Fig. 3a;
the training process for this model proceeds as follows:

(1) each of the inputs of this network is a one-hot encoded
vector of size |V|, where V' is the vocabulary;

(2) when computing the output of the hidden layer, we take an
average of all input vectors; the hidden layer is basically
a matrix of vector embeddings of words, so the nth
row represents an embedding of the nth word in the
vocabulary;

(3) the output layer represents a score u; for each word in the
vocabulary; to obtain the posterior, which is a multinomial
distribution, we then use the softmax

exp(u;)

Plwlwi™) = o,
=1 exp(uyr)
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Fig. 3. word2vec network architectures (pictures modeled after [64]): (a)
CBOW; (b) skip-gram

so the loss function is
V]

B = —logp(urful™) = —u; +log 3 expluz).
j'=1

The skip-gram model operates in a somewhat inverse
manner, which can be seen from its network architecture shown
on Fig. 3b. Here the target is an input word, and the output
layer, in turn, now represents C' multinomial disctibutions

AL exp(te;
Pt Hw,) = Z#
ij:1 exp(u;)
with the loss computed as

c 4
E = —logp(w! w) = — Zujc + C'log Z exp(u;r)

c=1 j'=1

The idea of word embeddings has been applied back to lan-
guage modeling, e.g., in [43], [44], [46], and then, starting from
the works of Mikolov et al. [42], [45], word representations
have been applied for numerous natural language processing
problems, including text classification, extraction of sentiment
lexicons, part-of-speech tagging, syntactic parsing and so on.
Basically all models that we review below either make use of
one of the word embedding models or construct character-level
embeddings.

Another important model for word embeddings is Glove
(GLObal VEctors for word representations) [53]. In the Glove
model, the objective function for training word embeddings w;
and w; is

\%
J = Z f(Xi5) (’w;r’[ll] +b; + ?)j — logXij)Q ,
=1

where X € RV*V is the cooccurrence matrix between words,
so X;; is the frequency of word i cooccurring with word j,
Xi=> j X;j is the total number of occurrences for word ¢,
w € R? is the word embedding (in dimension d), and w € R4
is the context word embedding in dimension d, and f is a
function that does not overweigh frequent cooccurrences too
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TABLE I. WORD2VEC MODELS TRAINED ON LARGE RUSSIAN CORPORA. THE
COLUMNS ARE: DIMENSION d, WINDOW SIZE w, NUMBER OF NEGATIVE SAMPLES 7,
VOCABULARY THRESHOLD v, AND THE RESULTING MODEL SIZE.

Type d w n v Size
CBOW 100 11 10 20 1.3G
CBOW 100 11 10 30 0.97G

skip-gram 100 11 10 30 0.97G
skip-gram 200 11 1 20 1.3G
CBOW 200 11 1 30 2.0G
skip-gram 200 11 1 30 2.0G
CBOW 300 11 1 30 2.9G
skip-gram 300 11 1 30 2.9G

much; usually Glove employs the weights
«
L if £ < Tmax
o= { (7)<

1
The idea is to express F;; = %, the probabilities that word
j occurs in the context of word 7, and natural requirements on
the objective function (e.g., the fact that after transposing the
X matrix we should replace w; with w; and vice versa) lead to
this optimization problem. Pennington et al. report improved
results for named entity recognition [53], and since then Glove
vectors have been used for a number of different NLP tasks.

, otherwise.

Efficient and/or more stable algorithms for training word
embeddings have been developed in [39], [40], [42], [47].

B. Word2vec models

As a dataset for word embeddings, we have used a large
Russian-language corpus (the largest we know) with about 14G
tokens in 2.5M documents [4], [51]. This corpus includes:

e  Russian Wikipedia: 1.15M documents, 238M tokens;

e automated Web crawl data: 890K documents, 568M
tokens;

e (main part) the huge lib.rus.ec library corpus: 234K
documents, 12.9G tokens;

e user statuses and group posts from the Odnoklassniki
social network, as described above.

All of this has let us obtain what we believe to be an
unprecedented quality of the resulting representations. We refer
to [4], [51] for more details on the training data.

We have used continuous bag-of-words (CBOW) and skip
n-gram word2vec models trained on a single NVidia Titan
X GPU with the currently fastest word2vec implementation
ported to CUDA((https://github.com/ChenglongChen/
word2vec_cbow). Our previous experiments have suggested
that vector sizes in the low hundreds and window size of 11
words are the best parameters on this dataset. In total, so far in
the experiments we have used eight different word2vec models
whose parameters are shown in Table I; the models differ in
the type (CBOW or skip-gram), dimension of word vectors d,
window size w (later omitted since w = 11 in all models),
number of negative samples n in the training, and vocabulary

threshold v that controls the size of the vocabulary (a lower
threshold means more words get vectors, but words with few
occurrences will not have enough training data and might have
a random-like, meaningless vector). Note also that every model
can come in a “raw” form, as trained, and a normalized form
where all vectors are normalized to Euclidean length 1.

IV. USER PROFILING ALGORITHMS
A. Mean age of friends

In this section, we show the basic user profiling algorithms
that we have used to predict a user’s age based on the texts of
the user’s statuses.

First, folklore among social network researchers says that
to predict a user’s age it is usually sufficient to take the mean
age of his or her friends: it will predict the age with outstanding
accuracy. We have tested this theory on the OK dataset. To
investigate, we have trained the following models:

(1) MEANAGE: predict age with the mean of friends’ ages
and the global mean if no friends ages are known;

(2) LINEARREGR: linear regression with a single feature
(mean friends age);

(3) ELASTICNET: elastic net regressor with a single feature
(mean friends age);

(4) GRADBOOST: gradient boosting with a single feature
(mean friends age).

Results of these simple models are shown in Table II
in two variations: basic, where we substitute zeros instead
of missing features (when there are no friends’ ages) and
“nonzero”, where we train and test only on a subset of data
with nonzero features (at least one friend with known age). It
appears that LINEARREGR performs worse than MEANAGE in
its first variation because linear regression cannot implement
the condition “if the feature is zero (default value in the
absence of neighbors) do something completely different”,
and GRADBOOST is noticeably better because it is powerful
enough to handle such case-by-case conditions.

However, we should note that the errors here are quite
significant: in terms of MAE, we are more than nine years off
on average even if we restrict ourselves to cases with friends
with known ages. Hence, we expect that subsequent work is
not meaningless and can bring substantial improvements.

B. Algorithms based on word embeddings

Note that while the idea to use the sum and/or mean of
word embeddings to represent a sentence/paragraph is, indeed,
the simplest idea for the representation of a larger chunk of
text, due to the geometric properties of the word2vec and
GloVe models this idea is not as naive as it sounds. This
approach has been used as a baseline in [33] but was proposed
as a reasonable method for short phrases in [45] and has been
shown to be effective for document summarization in [29].

Thus, we propose three basic algorithms:

(1) MEANVEC: train on mean vectors of all statuses for a
user;

(2) LARGESTCLUSTER: train on the centroid of the largest
cluster of statuses;
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TABLE II. BASELINE RESULTS: PREDICTIONS BY MEAN AGE OF THE FRIENDS
Model Train Test Train, nonzero Test, nonzero
RMSE MAE RMSE MAE RMSE MAE RMSE MAE
MEANAGE 9.701 6.725 9.661 6.707 8.833 5.865 8.787 5.840
LINEARREGR 11.252 8.659 11.226 8.650 8.794 5.951 8.752 5.930
ELASTICNET 11.251 8.660 11.226 8.651 8.795 5.969 8.752 5.948
GRADBOOST 9.602 6.743 9.569 6.730 8.683 5.879 8.645 5.861
(3) ALLMEANV: train on every status in depen dently, with the TABLE III. BASIC STATISTICS FOR EXTENDED AND BASIC DATASETS
mean vector of a specific status and the mean age of friends Dataset Training set Test sot
as features and the user’s demography as target; at the Users Statuses Users  Statuses
testing stage, we compute predictions for every status and Extended | 661206 10880321 | 165301 2704833
average the predictions. Basic 170856 2014983 | 42713 503150

The MEANVEC algorithm simply computes the mean
vector of all statuses and adds it as features to the classifi-
cation/regression model. Formally speaking, we introduce the
following notation:

e IV is the vocabulary, with words w € W;

e U is the set of users, a user will usually be denoted
as u € U;

o 5, is the set of texts “belonging to” user u (either
written by w or liked by him/her), with a single text
usually denoted as s € S,; the s stands for either
“string” or, more specifically, “status”;

e v is the vector (word embedding) of word w in

model m (we will omit the superscript when it is not
important or clear from context);

o vy = I_ill > wea Vw is the mean vector of a set of
word embeddings A;

e MAF, is the mean age of the friends of a user u € U;
in the algorithms, this is the only feature we use from
the social graph.

In this notation, the MEANVEC algorithm operates as
follows: for a machine learning (regression for age) algorithm
ML,

(1) for every user u € U:
° for every status s € Sus compute its mean vector
Vs = |_i| ZwES Vs
e compute the mean vector of all statuses v,
|S_1u| ZSGSu Vss
(2) train ML with features (MAF,,, v,,) for every u € U.

The LARGESTCLUSTER algorithm operates as follows: for
a machine learning algorithm ML,

(1) for every user u € U:
e for every status s € S, compute its mean vector
- _ 1 .
Vs = m ZwES Vs
e cluster the set of vectors {V; | s € S} into two
clusters with agglomerative clustering; denote by
C C S the larger cluster;
e compute the mean vector of statuses from C' ¢, =
1 S .
1 ZSEC Vss
(2) train ML with features (MAF,,, T,) for every u € U.

The ALLMEANV algorithm operates as follows: for a
machine learning algorithm ML,

(1) for every user u € U and every status s € S, compute
its mean vector v, = ﬁ Y wes Vs
(2) train ML with features (MAF,,, v,) for every u € U and
s € Sy;
(3) on the prediction stage, for a user u € Uegy:
e for every status s € S, compute its mean vector

- 1 )
Vs = 14 Zwe s Vws

e predict the age for this status, as =
ML(MAF,, ¥;);

e return the average predicted age,

a= |s—1\ > scs, ML(MAF,, ).

V. EXPERIMENTAL EVALUATION
A. Setting

We began evaluation with the entire dataset as outlined
above, what is called below the “extended” dataset. However,
in order to perform more experiments, be more flexible, and
not get bogged down in the technicalities of fitting huge
datasets into available hardware, we have also prepared a
smaller “basic” dataset that we performed some experiments
on. The basic dataset preserves most properties of the extended
dataset; the only difference is that we have filtered the users
to have at least 5 and at most 300 statuses. This has let us cut
off a relatively small number of highly prolific writers (or, to
be more precise, prolific reposters), significantly reducing the
total number of statuses, and cut off the long tail of users with
very few statuses, while still preserving important properties
of the data. The basic statistics for the two datasets are shown
on Table III, and Fig. 4 indicates that all basic distributions
such as age and number of friends are very similar for the two
datasets, except, naturally, the distribution of the number of
statuses. Both datasets were splitted into training and test sets
randomly using 80 and 20 percentages, respectively.

B. Comparing word2vec models

In the first experiment, we took the simplest MEANVEC
algorithm and compared how various word2vec models per-
form. The results are shown in Table IV. We can draw the
following conclusions:




PROCEEDING OF THE AINL FRUCT 2016 CONFERENCE

“
A0

B
T

(a) (b)
. v
/\ //
(©)
i . \ \\
(e) ()

Fig. 4. Basic distributions for the extended and basic datasets

e naturally, the MEANAGE algorithm does not care
about word2vec at all, it is only included as a sanity
check;

e  word2vec models do help all models, both linear and
GRADBOOST — compare these results with Table II;

e it appears that CBOW models outperform skip-gram
models in this task (quite significantly);

e Dby increasing the dimension d, we also get some im-
provements, but these improvements are rather small;

e adecrease in v, although it makes the word2vec model
significantly larger and longer to train, has absolutely
no effect on the end result.

Generally speaking, these conclusions mean that for the
purposes of demographic analysis and similar problems we
can concentrate on relatively small word2vec models, with
dimensions 100 or 200, and perhaps further increase v, which
would lead to much smaller models and faster training.

In the second experiment here, we have compared raw
and normalized word2vec models in the same setting; some
of the results are shown in Table V; for convenience, raw
and normalized versions are shown immediately next to each
other. The results are rather interesting: the more expressive is
the classifier, the better normalized versions are. For LINEAR-
REGR, raw vectors slightly outperform normalized ones, for
ELASTICNET there is almost no difference, and GRADBOOST
makes (sometimes significantly) better use of the normalized
versions. This result can probably be attributed to the fact that
while normalized vectors are indeed usually recommended for

use, raw vectors can have larger absolute values, including
rather large outliers, and simple linear models are better at
picking on larger absolute values. Still, the conclusion is to
use mostly normalized models in the future since we are after
the best model rather than the best linear regression.

C. Comparing MEANVEC and LARGESTCLUSTER

The next step was to compare baseline algorithms with
each other. Table VI shows the comparison results between
MEANVEC and LARGESTCLUSTER algorithms (marked MV
and LC) on the original (extended) dataset, shown for a
selection of normalized word2vec models.

Interestingly, the LARGESTCLUSTER algorithm invariably
loses to MEANVEC in all experiments. One possible reason
for this might be that the largest cluster of all statuses turns
out in many cases to be the least meaningful (e.g., consisting
of similar reposts from an online game or of extremely brief
statuses, e.g., consisting of a single smiley); we have verified
this idea with a direct examination of the data but believe that
in the future, variations on the idea of clustering statuses might
yet prove to be useful.
MEANVEC,

D. Comparing LARGESTCLUSTER, and

ALLMEANV

This comparison has been performed on the smaller “basic”
dataset that we have presented above. Results of this compar-
ison are shown in Table VII, which marks the MEANVEC,
LARGESTCLUSTER, and ALLMEANYV algorithms as MV, LC,
and AV respectively.

As for the results, the LARGESTCLUSTER algorithm, again,
loses in almost all cases to both MEANVEC and ALLMEANV.
What is much more interesting, however, is that ALLMEANYV,
while performing roughly on par with MEANVEC in LIN-
EARREGR and ELASTICNET, begins to lose significantly to
MEANVEC and even LARGESTCLUSTER when we use GRAD-
BOOST as the classifier. This result was quite surprising since
we expected that more data and more detailed status vectors
(individual for each status rather than averaged over all statuses
of a user) will actually bring an improvement. One possible
reason for this behaviour is that in passing from MEANVEC to
ALLMEANYV we have, in essence, “moved” the averaging from
the semantic space of word embeddings to averaging prediction
results. Hence, this result can be interpreted as showing that
simple averaging works very well in the semantic space (this
is not surprising given that many semantic relations become
linear in the space of embeddings), even better than building
an ensemble of predictions from individual statuses afterwards.

VI. CONCLUSION

In this work, we have prepared and preprocessed a huge
Russian language free text dataset with a number of different
sources ranging from literature to user statuses in social
networks, trained a number of word2vec models, obtained and
preprocessed a large user profiling dataset from the social
network Odnoklassniki, suggested a number of user profiling
algorithms based on word2vec embeddings, and performed
a large-scale comparison of these algorithms and different
word2vec models, drawing conclusions important for subse-
quent work on user-generated texts.
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TABLE IV. A COMPARISON OF word2vec MODELS ON THE EXTENDED DATASET WITH THE MEANVEC ALGORITHM

Word2vec params Train Test Train, nonzero Test, nonzero
type d n v RMSE MAE RMSE MAE RMSE MAE RMSE MAE
MEANAGE

| 9.672 6.707 9.668 6.711 | 8.778 5.835 8.800 5.848

LINEARREGR
cbow 100 10 20 10.401 7.776 10.397 7.785 8.514 5.792 8.541 5.810
cbow 100 10 30 10.402 7.777 10.396 7.784 8.515 5.791 8.539 5.808
skip 100 10 30 10.818 8.219 10.813 8.232 8.624 5.863 8.645 5.879
skip 200 1 20 10.738 8.146 10.726 8.151 8.593 5.847 8.613 5.859
cbow 200 1 30 10.355 7.737 10.349 7.743 8.497 5.782 8.520 5.798
skip 200 1 30 10.735 8.143 10.724 8.148 8.592 5.846 8.613 5.859
cbow 300 1 30 10.338 7.722 10.329 7.727 8.492 5.779 8.512 5.794
skip 300 1 30 10.689 8.088 10.675 8.096 8.583 5.837 8.601 5.854

ELASTICNET
cbow 100 10 20 10.810 8.208 10.799 8.217 8.694 5.903 8.719 5.921
cbow 100 10 30 10.806 8.203 10.795 8.212 8.702 5.909 8.726 5.926
skip 100 10 30 11.239 8.641 11.229 8.653 8.741 5.938 8.766 5.956
skip 200 1 20 11.239 8.641 11.229 8.653 8.741 5.938 8.766 5.956
cbow 200 1 30 10.949 8.349 10.937 8.359 8.736 5.934 8.760 5.951
skip 200 1 30 11.239 8.641 11.229 8.653 8.741 5.938 8.766 5.956
cbow 300 1 30 11.026 8.433 11.017 8.445 8.741 5.938 8.766 5.956
skip 300 1 30 11.239 8.641 11.229 8.653 8.741 5.938 8.766 5.956

GRADBOOST
cbow 100 10 20 9.089 6.352 9.065 6.344 8.399 5.697 8.394 5.699
cbow 100 10 30 9.093 6.356 9.066 6.345 8.401 5.699 8.395 5.700
skip 100 10 30 9.294 6.527 9.277 6.529 8.495 5.766 8.491 5.770
skip 200 1 20 9.363 6.580 9.342 6.576 8.519 5.785 8.512 5.785
cbow 200 1 30 9.067 6.341 9.043 6.333 8.383 5.682 8.377 5.683
skip 200 1 30 9.365 6.583 9.344 6.580 8.520 5.784 8.512 5.785
cbow 300 1 30 9.048 6.323 9.025 6.316 8.380 5.683 8.371 5.681
skip 300 1 30 9.387 6.596 9.367 6.595 8.536 5.799 8.532 5.804

While the proposed algorithms did bring certain improve-
ments as compared to the “zero baseline” of training with
the mean age of a user’s friends, these improvements were
not huge in absolute terms: we have been able to shave off
about 0.2 years in terms of mean absolute error. Therefore,
we remain optimistic that these results can be much improved
in the future. In further work, we plan to:

(1) develop new features for user profiling algorithms based on
text embeddings (embedding larger portions of text than a
word); here we hope to train a deep text understanding
model for the Russian language and apply it to user
profiling. Second, we plan to

(2) develop and train a character-level word embedding model
for the Russian language; we expect this model to be very
important for studies of user-generated texts since they
abound with typos, intentional misspellings, variations and
SO on.

Also, apart from developing new user profiling algorithms,
we plan to investigate other variations of word embeddings.
For example, one such is given by the Polyglot system [3],
and a completely different direction with a graph-based model
is proposed in [2]. We also note recent efforts in word sense
disambiguation for word embeddings: the same word can have
several very different meanings, and it would be natural to try
to model it with several vectors in the semantic space [11],
[14], [16], [28], [371, [38], [63], [72], [73]. In further work, we

plan to perform an even more extensive comparison between
various word embedding variations; a comparison across these
models might provide valuable insight into the use of word2vec
models for subsequent applications such as user profiling,
sentiment analysis, or full-text recommendations.
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