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Abstract—In this work, we address the hard clustering prob-
lem. We study how well clustering algorithm efficacy measures
(clustering validity indices) can reflect the clustering quality. We
use assessors’ estimations for cluster partition adequacy as the
ground truth and explain, why this is the only measure that
can be used in this quality. We compare different clustering
validity indices and show that none of them can be the universal,
reflecting quality for each cluster partition. To do so, we introduce
four quality measures for CVI evaluation. Also, we suggest an
approach for the best CVI prediction for a given dataset based
on meta-learning.

I. INTRODUCTION

Cluster analysis is the art of finding groups in data, these
groups are called clusters. Cluster analysis is used in many
domains, such as geography, medicine, chemistry and many
others [1]. In this paper, we address the problem of hard
clustering, in which it is assumed that each point belongs to
a single cluster [2].

Clustering problem is initially formulated in general terms.
Many mathematical formalizations were suggested to describe
it. It was recognized quite a long time ago that the selection
of a certain formalism to estimate the clustering quality will
strongly effect both the algorithm that should be chosen and
result claimed to be the best [3], and that it is hard to compare
different formalisms [4]. Kleinberg formulated three essential
properties of clustering algorithm and proved that there is
no way to build an algorithm that fits all these properties
simultaneously [5].

The problem of algorithm performance evaluation is fun-
damental in any computer science domains. But this problem
becomes really sharp when one tries to solve clustering algo-
rithm selection problem, which is to predict the best clustering
algorithms (or their ordering) for a never seen dataset. It can be
solved with meta-learning [6], [7] that reduces this problem to
a supervised learning problem. One of the key elements in this
reduction is a quality performance measure that is essential for
crafting labels for the dataset.

There have been several suggestions made on how to mea-
sure a similarity between two cluster partitions. This measure
can be used to compare how well a clustering algorithm
performs on a dataset. These measures usually depend on the
type of criterion that is considered in assessing the quality
of a clustering algorithm. Nowadays, there are two classes of
clustering metrics: external and internal [8].

Evaluation with external metrics is based on data that
was not used for clustering, such as known class labels and

external benchmarks. We must point out that this approach
has theoretical restrictions. These restrictions include not only
the additional data required, but also the fact that a clustering
problem usually allows to obtain different adequate partitions
into clusters, but this approach is blind for all of them except
the partition formed by the labels. This practice may be
considered as at least questionable; for detailed discussion
see [9], [10]. Evaluation with internal metrics is based only on
data partition. These metrics usually assign the best score to
an algorithm that returns partition with high similarity within a
cluster and low similarity between clusters. There are plenty of
different internal metrics nowadays, and they appear at a very
high rate. We will refer to these metrics as cluster validity
indices (CVI). There are several works that are devoted to the
comparison of different CVIs behaviour [11], [12], but all of
them state different CVI to be the best on certain types datasets
that have structure of well-separated hyper spheres. Thus we
can conclude that there is no perfect CVI to this moment.

This paper addresses the problem of cluster validity in-
dex evaluation. The contribution of this paper includes: a) a
framework for evaluation CVIs based on human evaluations;
b) four quality measures for CVI evaluation; ¢) comparison of
19 well-known CVIs with respect to the proposed measures;
d) approach for the best CVI prediction for a given dataset
based on meta-learning.

The structure of this paper is following. In Section II,
we provide a theoretical foundation for understanding how
to choose an algorithm performance measure and how to
evaluate quality of choice, explaining why it can be done
only on the basis of human estimations. This is basement for
the framework for clustering algorithm performance measures
comparison, described in III. Then we compare 19 CVIs, the
results of that are presented in Section IV. In Section V, we
discuss if meta-learning can be applied to the problem of
algorithm performance measure selection. Section V concludes
the paper with a summary of the work done and propositions
on future work.

II. FUNDAMENTAL ASSUMPTIONS FOR CVIS EVALUATION
A. Clustering validity indices validation

First of all, we describe validation techniques that are used
to justify a novel CVI. We have found four main strategies to
validate a CVI quality and applicability:

1)  Visual-based comparison. As an example, see pa-
per [13].

ISBN 978-952-68397-8-3 (PDF)



PROCEEDING OF THE AINL FRUCT 2016 CONFERENCE

2)  Comparison with known labels. This validation tech-
nique is very popular. Examples of papers which
utilize it are [14], [15], [16], [17], [18], [19].

3)  Purely theoretical comparison that is based on study-
ing CVI properties. Examples of papers that utilize
this methodology are [20], [21], [22].

4)  Comparison based on stability, robustness of struc-
ture, or other desired properties, estimation of which
requires a transformation (usually, subsampling) of
initial dataset. As examples see [23], [24].

It is worth to note that datasets, which are used within the
first technique, usually have a single obvious partition. As a
result, application of this technique to these datasets cannot
be distinguished from the application of the second technique.
They share the same idea with external metrics: comparison
with a single and a priori known “ideal” partition. Despite
being cheap to implement, this technique is a subject of
criticism similar to the one of external metrics. As we pointed
out in the Introduction, the key problem is that this ideal
partition is expected to be single. Also class labels may not
create a good partition in any term. This is why such intention
to use a clustering algorithm as classifiers is methodologically
inconsistent.

Comparison of stability is based on an assumption that
clusters should be insensitive to any data change. However, this
is another restriction to application of clustering algorithms. It
cannot be considered as a universal criterion.

As it is stated in the classical book [25], ”Understanding
our world requires conceptualizing the similarities and differ-
ences between the entities that compose it”. Thus, clustering
is a very natural task that is being performed all the time
in our brain during cognition. Therefore, we can assume that
a human can properly estimate the quality of a clustering
partition. Moreover, as we have shown, it is the only way of
obtaining ground truth for partition quality estimation.

Now we get to the point that human estimation is the only
credible point to estimate clustering adequacy. All the existing
techniques either can be reduced to the human evaluation,
or are methodologically unjustified. In [26], authors showed
that there is no difference in partition evaluations made by
clustering experts and non-experts. This is another justification
for the assumption we make about human-based ground truth.
In the next subsection we formalize this assumption.

It is clear that humans cannot estimate partitions in a
high-dimensional spaces, in which objects are represented as
points. In these cases, hoverer, no appropriate solutions can
be found. Applicability of CVIs in high-dimensional case can
be only evaluated either as predicting known labels, or with
usage of external quality measure. As we described above,
these approaches are methodologically inconsistent. To handle
non-2D datasets, we use multidimensional scaling, that results
in serious restrictions on the method applicability. However,
multidimensional data visualization for human estimation is a
hot topic and several studies are being conducted on how to
make human estimations applicable for higher dimensions (as
an example, see [27], where techniques for visual assessment
of subspace clusters are presented).
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B. Ground truth for partitions

The space of clustering problems is simply the universal
set of point sets; we will denote it as %’. Note that we do not
specify the space, in which the points are located. It can be
a vector or a metric space, or even a latent space specified
by a distance or another similarity measure. From this point
of view, each clustering problem is a set of points with no
other assumptions. This understanding is important, due to the
contemporary trend is making the assumption that different
clusters are generated by different processes. This assumption
restricts the area of clustering algorithms application.

For each clustering problem (set of points) ¢ € €,
Partition(c) denotes the set of possible partitions of ¢, and
Partition denotes all partitions of all ¢ € ¥. CVI is a
function defined on Partition. Without loss of generality,
we assume that codomain of all CVIs is [0;1], where 1
corresponds to the best partition.

We proclaim the existence of the human-generated ground
truth representing quality of each cluster partition. However,
one can suggest several ways of how this ground truth can
be formalized. The natural way to do so is to assume that a
strict weak ordering exists of each Partition(c). This means
that any two elements of Partition(c) either can be compared
(’which is better?”) or are incomparable, and incomparability
is transitive relationship. With this assumption, a CVI can be
understood as a ranker predicting the ordering of partitions.

We additionally assume that there is a clear mapping from
Partition(c) to a binary scale to which we will refer as
”adequate” and “inadequate”. In other word, each partition can
be related to one of these categories describing its quality. With
this assumption, a CVI can be understood as a binary classifier
predicting a partition quality. These two assumptions are
independent in general. However, we expect that “adequate”
partitions are never worse than “inadequate”.

We formulate the assumptions above more precisely.
Choose and fix a clustering problem ¢ € ¥. Let H, be a
function that represents weak strict ordering:

H,(c) : € — Partition(c) x Partition(c)
and H, be a function that represents a binary estimation scale:

H, : Partition(c) — {0;1}.

Each CVI can be understood as an approximation of H,
or Hy. In the first case the quality of CVI can be measured as

. sk Partiti 1%
ESlm(P({%/nI artition(rw), Hy(m)),

where E is expectation, 7 is a random variable representing
a point set from % and Sim is a similarity measure between
two weak strict orderings. In the second case the quality of
CVI can be measured as

E L(CVI(y), Ho(7)),

where 7 is a random variable representing obtaining a partition
from Partition and L is a loss function (as for binary
classification).
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III. FRAMEWORK FOR CVIS EVALUATION
A. Procedure for one assessor

Assume that we have selected several clustering problems.
First, we describe a procedure for evaluating both the strict
weak order of partitions and their adequacy with a single
respondent (assessor) for each selected clustering problem.

The perfect way to elicit this information from the assessor
is to ask her/him to evaluate each possible partition for a given
c. However, the number of possible partitions growth unman-
ageably fast with the increase of the number of points in the
dataset (see Hardy—Ramanujan—Rademacher formula [28])
thus making it practically impossible. This is why we need to
consider only a subset of partitions. Another important thing
is that elements of these subsets should be better than average,
because only a few of partitions for given set have high scores.

A strict way to evaluate the partitions by assessors is to
make a partial order by comparing pairs of partitions with
each other. However, this approach is very time-consuming
and nearly impossible to perform. To overcome this, we use
the fact that there is a score function (sometimes called utility
function) that can be put into correspondence to any weak
strict order. Exploiting this fact, we can ask the assessor to
mark each partition from the selected subset with a number. If
the assessor found that this partition is adequate, the assigned
value should positive, otherwise it should be negative. The
higher the value that the assessor assigns, the more adequate
is the partition. Assessors should be able to assign the same
values to different partitions, it means that the assessor cannot
find the difference between the partitions quality. As a result,
for each dataset all the partitions receive marks from each
assessor. These values are used to recover strict weak ordering,
corresponding to assessors consideration.

B. Procedure for several assessors

Assume that we have selected several clustering problems,
and for each clustering problem we selected a subset of
partitions. Now we describe a procedure for working with sev-
eral assessors. Using the procedure described in the previous
subsection, we can recover evaluation for each of the assessors
for each of the clustering problems.

We suggest four criteria to estimate a CVI quality: bina-
rized adequacy (BA), weighted adequacy (WA), adequacy of
the best (AB), and aggregated ranking (AR).

1) Binarized adequacy: To estimate the binarized adequacy
of CVI for a given clustering problem ¢, we performed the
following steps. Each partition received assessors estimations,
positive or negative. If more than a half of assessors found
this partition adequate, then it was marked as adequate (+).
If less than a half of assessors found this partition adequate,
then it was marked as inadequate (-). Then for each CVI, we
ordered assigned marks with respect to the CVIs estimations
of these partitions, thus, each CVI was characterized by a
permutation on marks r¢v 7. In this context, the ideal ordering
rfeft is the one, in which adequate partitions have the high-
est values and inadequate partitions have the lowest values:
(+...4—...—). The worst permutation 52 _, is the opposite
one: (—...—+...+4). To estimate CVI average adequacy, we
estimated distance between the corresponding permutation and
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the ideal one. To normalize this value, we divided it to the
distance between the ideal and the worst orderings.

Formally, BA is calculated in the following way:

BA
RBA _ pKT(Tbest’TCVI)
- A _BA \’
PKT (Tbesﬁ Tworst)
where function py, denotes modified Kendall tau dis-
tance [29].

2) Weighed adequacy: In order to obtain weighed ade-
quacy, we simply follow the previous approach with the only
exception: instead of assigning adequate (+) or inadequate (-
) mark to each partition, we assign to it the exact number
of assessors, who thought it be adequate. Then a value w in
range 0..n, is assigned each partition, where n is the number of
assessors. The best ranking 7}V 4 is now (w1, ...,ws), such
that wy > ... > wy,, and the worst ranking r}"4_ is now
(w1, ..., wm), such that wy < ... < wp,.

Formally, WA is calculated in the same way as BA:

R WA .
pwa _ PEr(Thests Tovi)
- WA WA
PKT (7 best» Nworst

3) Adequacy of the best: In order to obtain adequacy of
the best, we simply chose the adequacy mark, which was
assigned to the partition having the highest value of CVI being
estimated. We chose both BA and WA mark.

4) Aggregated ranking: The last measure represents how
many orderings produced by the assessors and by each CVI
differ. Since a lot of these orders are weak, we apply weak
order aggregation algorithm and distance measure [30]. As
in the first case, we normalize the distance between ordering
by dividing it to the distance between assessors order and an
opposite order.(An opposite order is a strong order, which is
produced by inverting the original weak order and randomly
choosing a consistent strong order.)

IV. EXPERIMENTAL EVALUATION
A. List of CVIs in comparison

We examine 19 of the most popular CVIs to find out if
any of them matches the real quality of resulting clusters.
Most of the indices estimate the cluster cohesion (within- or
intra-variance) and the cluster separation (between- or inter-
variance) and combine them to compute a quality measure.
The combination is performed by division (ratio-type indices)
or summarization (summation-type indices). More detailed
description of each metric can be found in [31]

1) Dunn index (D) is a ratio-type index where the
cohesion is estimated by the nearest neighbor distance
and the separation by the maximum cluster diameter.

2) Davies-Bouldin index (DB) is an index which esti-
mates the cohesion based on the distance from the
points in a cluster to its centroid and the separation
based on the distance between centroids.

3)  Silhouette index (Sil) is a normalized summation-
type index. The cohesion is measured based on the
distance between all the points in the same cluster
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and the separation is based on the nearest neighbor
distance.

Calinski—-Harabasz (CH) is a ratio-type index where
the cohesion is estimated based on the distances from
the points in a cluster to its centroid. The separation
is based on the distance from the cluster centroids
to the global centroid, which is denoted as the mean
vector of the whole dataset.

CS index (CS) was proposed in the image compres-
sion community, but can be extended to any other
environment. It is a ratio-type index that estimates the
cohesion by the cluster diameters and the separation
by the nearest neighbor distance.

C-Index (CI) is a type of normalized cohesion esti-
mator.

Davies-Bouldin* index (DB*) is a variation of the
classical Davies-Bouldin index. Separation between
clusters is minimal throughout all the clusters com-
paring to original DB index.

Sym-index (Symm) is an adaptation of the I index
based on the Point Symmetry-Distance.

S_Dbw index (SDbw) is a ratio-type index that has
a complex formulation based on the Euclidean norm,
the standard deviation of a set of objects, and the
standard deviation of a partition.

Score function (SF) is a summation-type index in
which the separation is measured based on the dis-
tance from the cluster centroids to the global centroid,
and the cohesion is based on the distance from the
points in a cluster to its centroid.

COP-index (COP) is a ratio-type index in which the
cohesion is estimated from the distance from the
points in a cluster to its centroid and the separation
is based on the furthest neighbor distance.

SV-Index (SV) is a ratio-type index, which is one
of the most recent CVIs compared in this work.
It estimates the separation by the nearest neighbor
distance and the cohesion is based on the distance
from the border points in a cluster to its centroid.
OS-Index (OS) is another ratio-type index very simi-
lar to the SV-Index, where a more complex separation
estimator is used.

Generalized Dunn indices gD31, gD41, gD51, gD33,
gD43, gD53. All the variations are different combi-
nations of three variants of the separation estimator
and two variations of the cohesion estimator.

4)

5)

0)

7

8)

9)

10)

11)

12)

13)

14)

B. Experiment setup

Real datasets can have very different topologies of clusters,
but usually it is very problematic to find pure examples of
a topology of a certain type. This is why we preferred to
use not the real-world datasets, but synthetic ones that were
generated manually. The practice of using synthetic dataset is
common is cluster analysis, see [32] for discussion. We used
41 different datasets of different forms. In order to simplify the
work of assessors, only two-dimensional datasets were taken
into account.

In order to get a subset of partitions, we applied standard
clustering algorithms. We could also synthesize artificial par-
titions, but it seems that random partitions are very unlikely to
achieve high results, thus we decided to use tools, which were
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designed to achieve this goal — existing clustering algorithms.
We used six clustering algorithms implemented in WEKA
library [33]. These algorithms are:

e  k-Means [34];

e X-Means [35];

e EM [36];

e DBSCAN [37];

o  FarthestFirst [38];

e  Hierarchical [39].

k-Means, EM, X-Means and FarthestFirst were exploited
several times with different seeds, because of their probabilistic
nature. Euclidean distance was taken dissimilarity measure
between instances in the dataset. k-Means was run with
maximum number of iterations equal to 500 and preset number
of clusters is 2. EM algorithm was exploited with parameters:
the number of clusters equal 2, the maximum number of
iterations equal to 100, and minimum standard deviation 1076,
DBSCAN was run with parameters: epsilon equal to 0.1 and
the minimum number of elements in cluster equal to 6. In
FarthestFirst algorithm, the number of clusters equaled 2.
Hierarchical algorithm was single-linkage and was run with
the number of clusters equal to 2. X-means had the following
parameters: the maximum number of iterations to perform was
equal to 1, the maximum number of iterations to perform in k-
Means was equal to 1000, the maximum number of iterations
k-Means that were performed on the child centers was equal
to 1000, the maximum number of clusters was equal to 2.

Thus, for each dataset we obtain six partitions. All the
results were structured into a table. After that 5 independent
assessors’ evaluations were made. Assessors were given pic-
tures, one for each dataset, and each picture contained initial
dataset, and all the cluster partitions produced by the described
algorithms. Examples of such pictures and datasets mentioned
above are presented in Fig. 1 and Fig. 2 (only 3 of 6 used
partitions are presented). The full set of images can be
found online https://www.dropbox.com/sh/1qn6ydqtd452y0Oh/
AAATr6wE7BdVPb_qqJp2K9W_a?dl=0. The datasets can be
found online https://www.dropbox.com/sh/7ybw2s31jskdxbl/
AADIJ5luBcYpltAJ-rwylv_vNa?dl=0.

C. Comparison results

The results are summarized into three tables. Table I shows
BA, Table II shows AR, Table III shows WA and Table IV
shows AB. For average adequacy and average rank we used
the following strategy: for each cluster partition we took three
the best weight values among all the indices and marked them.
After that we counted the relation of the marked values to the
total number of cluster partition results. These relations are
presented in Table I and Table II. In this table partition is
called the best, if more than a half of the assessors think the
result is adequate, and good, if only a half of the assessors
think the result is adequate)
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a) Initial dataset

ag
tay,
ot

¢) EM

Fig. 1. Depicted dataset that looks like curved stripes and different partitions
generated by different clustering algorithms: a) initial dataset; b) k-Means
partition; ¢) EM partition; d) hierarchical algorithm partition.

d) Hierarchical algorithm

a) Initial dataset b) k-Means

¢) EM

Fig. 2. Depicted dataset that contains five clusters with noise and different
partitions generated by different clustering algorithms: a) initial dataset; b)
k-Means partition; ¢) EM partition; d) hierarchical algorithm partition.

d) Hierarchical algorithm

After that we run each of the 19 CVIs and evaluated
corresponding rankings. Then for each CVI and each dataset
we evaluated each of the four measures, described in the
previous Section.
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TABLE L SUMMARIZATION OF BINARIZED ADEQUACY OF CVISs.
INDEX ADEQUACY | INDEX ADEQUACY
DB 0.151 SYmMm 0.333
D 0.515 CI 0.121
SIL 0.393 DB* 0.121
CH 0.242 GD31 0.333
SDBW 0.454 GD41 0.424
SF 0.393 GD51 0.393
CS 0.303 GD33 0.242
COP 0.575 GD43 0.272
SV 0.272 GD53 0.333
(0N 0.575 threshold 0.7

TABLE II. SUMMARIZATION FOR AGGREGATED RANK FOR EVERY

CVI

INDEX RANK | INDEX RANK
DB 0.390 | Symm 0.292
D 0.243 | CI 0.243
SIL 0.170 | DB* 0.317
CH 0.073 | ¢D31 0.073
SDBw  0.243 | gD41 0.146
SF 0.146 | GD51 0.195
CS 0.146 | cD33 0.024
COP 0.414 | D43 0.024
SV 0.414 | ¢D53 0.073
(0N 0.073 | threshold 0.7

We assume that an index is adequate and applicable when
the value of the index presented in Table I, Table II and
Table III is not less than 0.7 and the number of adequate good
results in Table IV is more than 70% from the number of
clustering result.

None of the metrics fits the requirement, described above.
Thus, we have shown that there is no perfectly applicable,
universal metric. However, if we look at the results more
precisely, we can figure out that there is an index metric,
standing out of all others, it is COP. This index can be used
under some conditions for some tasks.

V. META-LEARNING FOR GROUND TRUTH PREDICTION

The suggested approach has an obvious disadvantage, it
is expensive due to the each new dataset has to be evaluated
by assessors. This is a typical problem in clustering validation
domain, which gave popularity to the label-based evaluation.

In this subsection we describe a way how the suggested
approach can be improved in a way to relax or even eliminate
this problem based on meta-learning. Meta-learning is a field
of machine learning which is focusing on predicting algorithm
performance for a given problem. This prediction is based on
known algorithm performance on similar problems, thus, meta-
learning is closely related to transfer learning.

Let & denote the problem space (domain), .o/ denote
the algorithm space related to this domain, and @) denote a
performance measure for algorithms from .7 (more precisely,
o = 5 and QQ = Q »), becausce they are domain-specific).
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TABLE IIL. SUMMARIZATION FOR WEIGHTED ADEQUACY FOR EVERY
CVI
INDEX ADEQUACY | INDEX ADEQUACY
DB 0.121 SYMM 0.243
D 0.317 CI 0.073
SIL 0.121 DB* 0.000
CH 0.097 GD31 0.097
SDBW 0.195 GD41 0.097
SF 0.170 GD51 0.121
CS 0.146 GD33 0.073
COP 0.414 GD43 0.024
Sv 0.195 GD53 0.024
OS 0.317 threshold 0.7
TABLE IV. ADEQUACY OF THE CLUSTER PARTITIONS, CLAIMED TO BE
THE BEST AND GOOD BY CVISs.

INDEX # OF GOOD  # OF THE BEST

DB 6 (14.6%) 4(9.7%)

D 13 (31.7%) 4(9.7%)

SIL 7 (17.0%) 4(9.7%)

CH 5(12.1%) 4(9.7%)

SDBW 9 (21.9%) 6 (14.6%)

SF 7(17.0%) 4(9.7%)

CS 5(12.1%) 6 (14.6%)

COP 14 (34.1%) 6 (14.6%)

SV 7(17.0%) 6 (14.6%)

OS 14 (34.1%) 5(12.1%)

SYMM 8 (19.5%) 5(12.1%)

CI 6 (14.6%) 4(9.7%)

DB* 6 (14.6%) 4(9.7%)

GD31 6 (14.6%) 5(12.1%)

GD41 6 (14.6%) 5(12.1%)

GDS51 5(12.1%) 6 (14.6%)

GD33 5(12.1%) 4(9.7%)

GD43 6 (14.6%) 4(9.7%)

GD53 4(9.7%) 5(12.1%)

threshold 70.0 %

2)  In case of predicting algorithms ordering (learning to
rank, which is considered as the most reliable and
useful statement, see [40]),

y(pj) = Rank A,.

Q(Ai(py))
3) In case of predicting algorithm performance (regres-
sion),
y(p;) = max QA (p;)),
or

y(pj) = (Q(Ai(Pi))) 4, er -

Finallyy, we have a training set, which is
{(F(p1),y(p1)),---,(F(pip),y(pip)))}, where F(p) stands
for vector (fi(p),...,fiF|(p)). This training set is used
to learn a supervised model corresponding to the selected
problem statement. Say, M is this model, trained M is an
algorithm, which for any p € & returns an answer (best
algorithm, algorithm ordering or algorithm(s) performance
measure value(s)), which can be used to choose the best
expected algorithm. Thus, this model with the proper best
algorithm selection rule can be considered as a mapping S
which is the solution for the algorithm selection problem.
Application of the meta-learning approach to answer Rice’s
question resulted in the detailed modified f ramework, which
is a working scheme of an algorithm recommendation system,
presented in Fig. 3.

PER"

Performance

measure

We need to assume that .7 is finite (This may seem strange.
Despite the fact that the number of known algorithm schemes in finite, most of
them have real-valued hyperparameters. This can be solved by understanding
that hyperparameters are tuned with other algorithms, the number of which is
finite. Thus, an algorithm instance may be understood as the last wrapping
algorithm which has no hyperparameters, e.g. non-parametric SMA tuning step
size for grid search tuning number of neighbors for kKNN. However, in practice
a finite subset of non-parametric algorithms is chosen as .#7)

First, every problem in & should be characterized by fea-
tures, which are called meta-features. Let F' = {f1,..., fir|}
be a set of meta-features: f; : & — codomain(f;). Next, we
need to select a problem subset Pirain = {p1,...,pp} C &,
which will be used for training a model representing algorithm
performance. The next step is evaluation of performance
of all the algorithms from .27 for all the problems from P,
obtaining matrix Q = (Q(A;(p;)))], A; € «,p; € P. This
matrix is used to produce labels y for problems in P :

1)  In case of predicting a single best algorithm (classi-
fication),

y(p;) = arg max Q(A;(p;))-
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Training data

Feedback

Fig. 3. Rice framework rethought in the meta-learning approach [41]

For a more detailed survey of meta-learning and its appli-
cation to different domains we encourage the readers to pay
their attention to the well-known book [7], and the most recent
PhD thesis by Sun [42].

A. Meta-learning for CVI selection

Three steps should be performed to create a meta-learning
system: choice of meta-features, choice of training set and
choice of performance measure. The last two steps are closely
connected in our case, due to assessors’ labor is required to
work with each dataset.

Selection of meta-feature description seems to be a problem
itself. However, as well as data mining algorithms, each
CVI is designed under certain assumptions and implements
a certain intuition. The transformation of this intuition to
numeric features is challenging, but potentially solvable task.
We have to notice that this intuition is usually visual. This is
why we expect different image characteristics to be fruitful for
CVI selection. Also, landmarks can be used that are values of
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different CVI on a dataset may be a good predictor for their
adequacy.

Talking about selection of training dataset, we must point
several questions which must be answered. The first one if we
should use only real-world datasets or artificial ones also? On
the one hand, meta-learning works under the weak assumption
of machine learning [43], which states what learning problems
are generated by a process with non-uniform probability over
the problem space. On the other hand, clustering is a very
popular approach to object space reduction and it is often used
as a preprocessing step (which cannot be said about supervised
learning algorithms). We suggest that artificial data should be
used together with real-world datasets, because doing this,
we will gather only additional information about algorithm
performance in different cases, some of which can be never
met, but we cannot predict in advance, which ones.

Another restriction, which is met for training datasets, is
that we need to spend much assessors’ labor, and the more
datasets we have, the more time should be spent by assessors.
To relax these requirements, we can approximate assessors’
estimations within a metric space that can be introduced on
partitions of a dataset. This space can be introduced in many
ways, for instance, by utilizing Rand’s index [44]. Then we
can approximate H, on this space with known values of some
of its elements.

Another question we need to answer is what to do with
datasets which has more than two dimensions. The naive
answer to this question is just to assume that we can expect the
same performance on CVI regardless of dataset dimensionality.
Thus, the system trained on two-dimensional datasets can be
used to predict CVI for other dimensions. A more complicated
answer is to use projections of a dataset to several two-
dimensional spaces. Despite this approach brings randomness
to the estimation process, we expect it to produce more reliable
results than the previous one.

VI. CONCLUSION

In this paper, we have shown that there is no universal
clustering validity index existing at the moment. We also state
that cluster validity indices should be chosen for problems
specifically, and we suggest to apply the meta-learning ap-
proach to solve this problem. As the ground truth (and measure
of CVI quality), assessors’ estimates should be used. After the
system is learnt, no more assessors’ labor is required, due to
the system will be able to predict proper CVI for a given
dataset.

This research brings more questions than answers. Ques-
tions on how to build a meta-learning system for predicting
assessors’ evaluation are listed in the previous section. One
of the most important questions is the justification of the
assumptions we have made about human assessing ability.
Another interesting question is how to choose a proper subset
of partitions that are representative enough for the entire
partition set.

Several questions exist on how to merge assessors’ eval-
uations. Sometimes these evaluations are more consistent,
sometimes they are less. This is also related to the fact that
some datasets are well-clusterable, and some are not [45].
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These considerations should be taken into account during
creating a more sensitive evaluation framework.

Besides answering these questions, our future work will
be devoted to creating a meta-learning system for predicting
human evaluations based on meta-learning. The main problem
is feature engineering, however, a lot of other questions arise
connected both to theoretical and engineering aspects.
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