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Abstract—Recent advances in deep learning for natural lan-
guage processing achieve and improve over state of the art
results in many natural language processing tasks. One problem
with neural network models, however, is that they require large
datasets, including large labeled datasets for the corresponding
problems. In this work, we suggest a data augmentation method
based on extending a given dataset with synonyms for the words
appearing there. We apply this approach to the morphologically
rich Russian language and show improvements for modern
neural network NLP models on standard tasks such as sentiment
analysis.

I. INTRODUCTION

Deep learning for natural language processing is a burgeon-
ing field that brings new advances every month, perhaps even
every week. Although it started with more or less standard
architectures (recurrent and convolutional neural networks), it
is beginning to branch out into several quite different directions
(from recursive networks for syntactic parsing to attention-
based models for machine translation and memory networks
for question answering). Moreover, by now deep learning
has become very much an engineering field: thanks to the
automatic differentiation libraries such as Theano [7] or Ten-
sorFlow [1] and libraries such as Keras [11] or Lasagne [14]
that implement various neural network components, layers,
and optimization algorithms, experimenting with new neural
architectures in practice has transformed from a tedious error-
prone affair into a relatively easy and exciting process.

However, large-scale neural network models require very
large datasets to be trained cfficiently. While it is usually casy
to collect large unlabeled text datasets, it may be hard to collect
large datasets for a specific problem such sentiment analysis,
syntactic parsing, machine translation, and so on.

In computer vision, it is common practice to augment the
input datasets by slight changes in the input images. Computer
vision yields itself very easily to such modifications: if we
slightly crop, shift, or contract an image, change lighting
conditions or downsample to reduce resolution, the objects on
the image will remain the same, and the recognition target
can be reused. This is not even denoising as in denoising
autoencoders, it is simply new training data for free. These
augmentation procedures are used in most modern computer
vision models; see, e.g., [24], [34] and references therein.

In a way, computer vision is lucky to have an almost
unlimited source of new training samples but in natural lan-
guage processing one cannot simply change a word at random
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and assume that the “big picture” will remain exactly the
same. Ideally, we might use human paraphrases but they are
impossible to obtain in the necessary quantities. Zhang et
al. [36] propose a straightforward idea for such data aug-
mentation: use a human-generated standard thesaurus (from
WordNet in their case) and replace some words at random
with their direct synonyms. They report improved results with
this augmentation, but it appears that there might be other
transformations helpful for NLP data augmentation, and this
problem may warrant further study.

In this work, we modify and apply this scheme to the
Russian language; besides, we propose and evaluate another
data augmentation scheme based on extending user reviews (in
a sentiment analysis task) with additional adjectives. The paper
is organized as follows. In Section II, we discuss an important
idea for natural language processing based on deep learning,
namely moving from word-level embeddings such as word2vec
to character-level models. Section III discusses in detail the
data augmentation procedures we evaluated. Section IV shows
experimental results that validate that augmentation based
on synonyms does improve sentiment analysis results, and
Section V concludes the paper.

II. CHARACTER-LEVEL MODELS

Recent advances in distributed word representations have
made it into a method of choice for modern natural language
processing [15]. Distributed word representations are models
that map each word occurring in the dictionary to a Euclidean
space, attempting to capture semantic relationships between
the words as geometric relationships in the Euclidean space.
In a classical word embedding model, one first constructs a
vocabulary with one-hot representations of individual words,
where each word corresponds to its own dimension, and
then trains representations for individual words starting from
there, basically as a dimensionality reduction problem. For this
purpose, researchers have usually employed a model with one
hidden layer that attempts to predict the next word based on
a window of several preceding words. Then representations
learned at the hidden layer are taken to be the word’s fea-
tures. The modern field of word embeddings started with the
work [5], subsequently extended in [6]. Extending previous
work on statistical language models that were usually based
on word n-grams [9], [10], [16], [21], Bengio et al. proposed
the idea of distributed word representations, the idea of word
embeddings was applied back to language modeling, e.g.,
in [28], [29], [31], and then, starting from the works of
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Mikolov et al. [27], [30], word representations have been
applied for numerous natural language processing problems,
including text classification, extraction of sentiment lexicons,
part-of-speech tagging, syntactic parsing and so on.

To train distributed word representations, one first con-
structs a vocabulary with one-hot representations of individual
words (where each word is represented with a vector of size
equal to vocabulary size with a single 1) and then trains
representations for individual words starting from there, basi-
cally as a dimensionality reduction problem. For this purpose,
researchers have usually employed a model with one hidden
layer that attempts to predict the next word based on a window
of several preceding words. There exist two most commonly
used models for word embeddings, both introduced in [27]
and based on previous work on neural probabilistic language
models [5]: Continuous Bag-of-Words (CBOW), which tries to
reconstruct words from their contexts, and skip-gram, which
operates inversely, reconstructing word contexts from the
words themselves. Then representations learned at the hidden
layer are taken to be the word’s features; this approach has
been applied, for instance in the Polyglot system developed
in 2013 [3] and in other methods of learning distributed
word representations [33]. A recent study on the performance
of various vector space models for word semantic similarity
evaluation [32] demostrates that compositions of models such
as GloVe and Word2Vec as well as unsupervised one-model
approaches show reasonable results for the Russian language.

However, word embeddings as introduced in [27] and other
works suffer from some conceptual flaws:

(1) first, the vectors trained for every word are completely
independent; this means that we cannot really reuse our
knowledge about one word to get an understanding for
another, like people do; in particular, in morphology-rich
languages like Russian, each word comes with a plethora
of different morphological forms, various derivative words
in other parts of speech, derivative words formed by
prefixes and suffixes and so on; a human being understands
all these derivative words immediately after he or she
understands the basic word but a word embedding model
would have to either cluster all of them together in
the same vector or obtain a sufficient quantity of usage
examples for every form, which probably will not happen;
second, the same applies to out-of-vocabulary words: a
word embedding cannot be extended to new words without
a reasonably sized set of usage examples while a human
being can extrapolate the meaning from the form of a
word; e.g., you may never have encountered the word
polydistributional (it had been getting only 48 results on
Google before we started using it as an example) but you
already have a pretty good idea of what it means;

third, as a practical consideration word embedding models
may grow large for large vocabularies; although applying
a trained model is very fast (it is just lookup to the table of
word vectors), either the model has to be stored in memory
or access will still be slow.

(©))
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These problems lead to the idea of character-level rep-
resentations: what if we descend down to the most basic
level of written speech and train word embeddings that take
into account the actual characters that comprise a word. This
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set of approaches is highly relevant for the proposed project
as Russian, being a very morphology-rich language, would
probably benefit greatly from such approaches.

First attempts at this problem involved decomposing a
word into morphemes, the smallest units of meaning in written
language [8], [26], [35]. If morphemes were available explicitly
they would indeed be a perfect building block for a low-
level word representation model since they are precisely what
carries the meaning. However, in practice morphemes are not
immediately evident from a word, and one has to rely on
morphological analyzers that work imperfectly and basically
introduce the need to train a separate morphology model, so
the problem only shifts to that model.

In [25], Ling et al. present a character to word (C2W)
model for learning word embeddings based on bidirectional
LSTMs [17], [18]. A bidirectional LSTM basically consists of
two LSTMs, forward and backward, and the final representa-
tion is a linear combination of their states (again with weights
to be trained as part of the model). Ling et al. report state of
the art results in language modeling (in terms of perplexity)
and part-of-speech tagging, especially for morphology-rich
languages.

Note that applying a character model is relatively expen-
sive, and it would slow down applications significantly if one
had to run a bidirectional LSTM for every word. Fortunately,
since the C2W model depends only on the characters it is easy
to just store the representations of common words in memory,
recalculating them only for rare words; this way, one can strike
a proper balance between memory and computational time.

New developments have also begun to appear in character-
level models. For instance, a very recent work by Chung et
al. [12] explore the possibilities of constructing a machine
translation model which is not based exclusively on word
embeddings but augments it with a character-level model,
producing a unified character-level model with machine trans-
lation, achieving state-of-the-art results. Although these re-
sults do not significantly outperform word-based approaches,
the work [12] clearly shows that it is possible to construct
character-level models for machine translation, and they do not
break down as they might because translations in characters are
much longer than translations in words. Finally, recent work
on character-level models for morphologically rich languages
has introduced morphological smoothing that could model the
morphological variation in the word embedding space [13]
and explicit representations of morphological features for
reinflection [19].

Character-level models are especially important for devel-
oping NLP models for the Russian language for two main
reasons. First, they are very well suited for languages with
rich morphology, such as Russian; Russian contains plenty
of words that are tightly linked with each other (have the
same root), and shades of meaning are distinguished with
morphemes. It would be obviously very wasteful to treat all of
them as separate words. One can use available morphological
analyzers to connect different forms of the same word (we do
so in auxiliary steps of this work too), but then one has to
either disregard morphological data, which loses meaningful
information, or again treat different forms of a word as differ-
ent words. Second, character-level models are also well suited
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for studies of user-generated texts such as user reviews, social
network statuses, blog posts, and the like; user-generated texts
abound with typos, intentional misspellings, word spelling
variations, and so on, which are immediately recognized by
human readers but are impossible to pick up for a word-based
model. This work is one of the first steps towards a general-
purpose character-level model for the Russian language.

In our experiments, we used a character-level model similar
to the one presented in [36], where Zhang et al. develop a
natural approach to constructing character-level representations
based on convolutional neural networks. They report signifi-
cant improvements for standard text classification problems.
They also suggest a straightforward way for data augmenta-
tion: replacing a word with its direct synonym. However, for
Russian and other morphologically rich languages this scheme
is harder to apply as the new word has to match the syntax as
well as the semantics of the old word. We are not aware of
previous work on such data augmentation for Russian; other
data augmentation approaches have included, e.g., anaphora
resolution as a preprocessing technique to improve the word
embeddings [23].

III. DATA AUGMENTATION APPROACHES
A. Replacing words with their synonyms

To achieve data augmentation with synonyms, we begin
with collecting and filtering a set of pairs of synonymous
words. We begin with publicly available dictionaries of syn-
onyms (thesauri) for the Russian language, collected from
online versions of dictionaries of synonyms [2], [4]. We also
used a general frequency vocabulary of the Russian language,
running a preliminary filter to exclude archaic or very rare
words.

At the data augmentation stage, we use an explicit mor-
phological analyzer pymorphy [22]; naturally, the use of an
automated analyzer introduces a certain share of errors but the
errors are rare enough to still lead to overall improvement.
First, we use pymorphy to find the part of speech and other
morphological data for all words and leave only nouns and
adjectives. Then we take the synonyms to have the same
gender: masculine noun with masculine noun and so on.

In thesauri, it often happens that some words are more
general, and others are their special cases; in this case, it may
be incorrect to replace the general word with a more specific,
less abstract word. For example, it is almost always correct to
replace car with automobile but not with minivan, although
a thesaurus may mark car as a synonym for minivan. In real
world thesauri, we will not be able to automatically find which
one in an asymmetrical pair of synonyms is more general, so
as the next filter we checked reflexivity: we only use w; as a
synonym for ws if both w; is marked as a synonym for ws
in the thesaurus and w- is marked as a synonym of w; in the
thesaurus.

At this point, we have a set S of unordered pairs of
synonyms that we assume to be safe to use for replacement.

Next, we go through the input text and feed it through
pymorphy. The analyzer outputs morphological features for
each word. For every word w, we:
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e remember its morphological features and take its base
form wq as suggested by pymorphy;

e look for the synonyms of the base form wy in the set
of synonyms S, getting the set of synonyms S,, =
{w' | (wo,w") € W};

e sample a synonym wj, from S,, according to a multi-
nomial distribution with probabilities proportional to
the word frequencies (overall frequencies in the Rus-
sian language).

Note that at the sampling stage, we can either include the
word wy itself in S, regarding it as its own synonym, or leave
it out. Our experiments show that it is beneficial to include the
word wy itself in .S,,, sometimes leaving the word in place even
if it does have synonyms in S. This turns out to be important
in cases when the word is very frequent, and synonyms are
rare and unlikely to appear so it is better to leave it in place.

Then we use pymorphy to map the word w(, back to the
form used in the review and replace the original word w with
the resulting form w’.

B. Reshuffling the words

Another straightforward technique for data augmentation is
to reshuffle the words. The correct way to shuffle words would
be to automatically construct parse trees from the sentences
and then randomly change places of certain subtrees; the less
rigid word order in Russian makes this approach attractive.
However, in this work we only use a very simple and obviously
incorrect approach of word reshuffling, basically turning it
into a bag of words. Somewhat surprisingly, we will see in
Section IV that even if we shuffle all words randomly, the
resulting sentiment recognition quality does not change all that
much.

C. Adding new adjectives

Experiments with reshuffling words in a review (we did not
get significant reduction in quality from basically converting
the review into a bag of words) suggest that we could try
to generate “simulated reviews” by simply sampling suitable
words. We tested this idea with an experiment on adding new
adjectives and/or verbs since adjectives and verbs are usually
the most characteristic words for sentiment evaluation (as our
counting experiments shown below suggest).

For the new augmentation procedure, we have chosen
to add new adjectives. For preprocessing, we collected the
following statistics, again using pymorphy for part of speech
tagging and lemmatization:

e  count how many times a given (lemmatized) adjective
occurs in the dataset both in positive and negative
reviews (some of these results are discussed below
and shown in Table II);

e count how many times a given adjective appears be-
fore or after a noun (we did not perform full syntactic
parsing here, simply counted occurrences of noun-
adjective and adjective-noun bigrams);

e count how many times a given adjective occurs next
to a given noun.
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TABLE I. DATASET STATISTICS

Reviews
Positive | Negative Total
Basic: torg.mail.ru + Restoclub 63088 35046 98134

Dataset

Augmented with adjectives 126176 70092 196268
Augmented with synonyms 125523 69849 195372
Test dataset: TripAdvisor 26807 11075 37882

After these statistics have been connected, for the augmen-
tation we go over the text of a given review, looking for nouns.
If a noun w does not have an associated adjective (i.e., an
adjective either before or after it), we perform the following
procedure:

o sample whether to add an adjective to this noun based
on statistics on how often w appears with and without
adjectives;

e if an adjective should be added, sample which one
to add from the multinomial distribution with proba-
bilities proportional to the numbers of times different
adjectives occur in positive and negative reviews next
to this noun;

e then sample whether it should be added before or after
the noun based on the corresponding statistic;

e then add the resulting adjective to the text.

After this augmentation procedure, we get reviews with
additional adjectives that adhere to the dataset statistics and do
indeed most often “make sense” for the corresponding words.

IV. EVALUATION
A. Datasets and basic statistics

For experimental evaluation, we have chosen the sentiment
analysis problem since it is relatively easy to mine large train
and test datasets for this classical NLP problem. To try to
train for general sentiment rather than for a specific subject
domain, we have collected our basic dataset from two very
different sources: marketplace reviews from forg.mail.ru and
restaurant reviews from www.restoclub.ru. The basic statistics
are shown in Table L.

Next, we have applied the augmentation procedures de-
scribed in detail in Section III to obtain two extended datasets:
one augmented with additional adjectives as shown in Sec-
tion III-C and another augmented with direct synonyms as
shown in Section III-A. In each case, we have extended the
basic dataset by approximately a factor of two, adding one
modified review for each original one.

Besides, to test how well the resulting sentiment models
transfer to a different domain, we have collected another,
smaller dataset from a completely different source: hotel
reviews from the TripAdvisor Web site. This dataset was never
used in training, but we evaluated the quality of our models on
it. Note, however, that results on the TripAdvisor dataset are
expected to be significantly worse not only because the domain
is different but also due to the properties of the TripAdvisor
dataset itself: it has a different distribution of review scores,
with about 90% of the reviews scoring five stars.

Another interesting piece of data is the number of oc-
currences of words in positive and negative reviews; in our
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TABLE II. IMBALANCED WORDS IN VARIOUS PARTS OF SPEECH

Word Counts
Russian [ English | Pos. % pos. Neg. % neg. Diff.
Adjectives
3aMevIaTebHBII wonderful | 5537 0.088 1153 0.033  0.055
OrPOMHBI huge 7251  0.115 2052 0.059 0.056
BEXKJIMBBIT polite 6853 0.109 1759 0.050 0.058
KPaCHUBBIit pretty 7921  0.126 2331 0.067 0.059
IIPEKPaCHBIH beautiful 6713  0.106 1620 0.046  0.060
JIOJIKHBIH must 3171 0.050 5249 0.150 -0.100
OTBPATHUTEJILHBII disgusting 332 0.005 2716 0.077 -0.072
Y2KaCHBII terrible 453 0.007 2746 0.078 -0.071
HUKAKOH bad 4060  0.064 4616 0.132  -0.067
JIAHHBII this 3229 0.051 4111 0.117  -0.066
Nouns
cBabba wedding 4718  0.075 1244 0.035 0.039
aTmocdepa atmosphere | 6734  0.107 2317  0.066  0.041
TLJIOIIA/b area 4937 0.078 1153 0.033  0.045
Xpam temple 4271 0.068 363  0.010 0.057
co6op cathedral 5045 0.080 599  0.017 0.063
nror total 3710 0.059 6349 0.181 -0.122
cuér bill 3374 0.053 6063 0.173  -0.120
oTBET response 1846 0.029 5047 0.144 -0.115
TOM volume 6017 0.095 7109 0203 -0.107
buibm movie 5461  0.087 6773 0.193  -0.107
Verbs
1IOMO'Ib help 3561  0.056 1245 0.036 0.021
orMedaTh note 3133 0.050 975 0.028  0.022
IIOCETUTH visit 5801 0.092 2165 0.062 0.030
110Pa/I0BaTh gladden 5406  0.086 1546 0.044  0.042
JOCTABUTH deliver 5939  0.094 1804 0.051 0.043
3BOHUTH call 2111 0.033 5017 0.143  -0.110
BEPHYTb return 1345 0.021 4562 0.130 -0.109
crarb become 5450  0.086 6725 0.192 -0.106
IO3BOHUTH call 5148 0.082 6223 0.178 -0.096
rOBOPUTH speak 3078 0.049 4791 0.137 -0.088
Adverbs

BOBpEMst timely 2966 0.047 550 0.016 0.031
Y/106HO conveniently | 3787  0.060 977  0.028  0.032
OTJIMIHO excellently | 4599  0.073 1065 0.030  0.043
LIPUSITHO pleasantly | 7743  0.123 1834 0.052 0.070
065138 TEJIBHO certainly 6939  0.110 1172 0.033  0.077
BOOOIIIE generally 5386  0.085 7373  0.210 -0.125
IOTOM after 4395 0.070 5830 0.166  -0.097
noyemy why 3022 0.048 5058 0.144  -0.096
Goutee more 5848 0.093 5982 0.171 -0.078
BUJIIMO seemingly | 1836  0.029 3725 0.106 -0.077

experiments, it plays a role for data augmentation with adjec-
tives and verbs as discussed in Section III-C. Table II shows
the most imbalanced positive and negative words for various
parts of speech; some entries represent lemmatization errors
or confusion between different words but mostly they paint a
reasonable picture. It is also clear that the most imbalanced
(colored) words are adjectives and nouns.

B. Training the model

Our model was based on the keras [11] implementation
of the model presented in [36] (https://github.com/johnb30/
py_crepe). We have used the same topology: starting from
character quantization with a simple l-of-m encoding, the
unprocessed text data is fed to a convolutional net with 6
convolutional layers, 3 fully connected layers, and 2 dropout
modules between fully connected layers for regularization; we
used 1024 units on the fully connected top layers. We have
used the Adam optimizer [20] for training. All experiments
were conducted on a single NVIDIA Titan X GPU. The
training and test set errors for the basic dataset are shown
on Fig. la.
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Fig. 2. A comparison of test set accuracies of all models in the study
TABLE III. EXPERIMENTAL RESULTS
Dataset Best accuracy
Test set  TripAdvisor set
Basic dataset 0.8457 0.7163
Basic with reshuffled words 0.8445 0.7160
Augmented with adjectives 0.7241 0.5430
Augmented with synonyms 0.8700 0.7020

C. Word reshuffling

In this experiment, we have trained and applied the model
to the basic dataset with all words in each review randomly
reshuffled. Somewhat surprisingly, test set accuracy of the
resulting model is virtually indistinguishable from the original,
and the score on a separate TripAdvisor dataset from a com-
pletely different domain (see Table III) is also approximately
the same as the original model. This indicates that, first, it
might make sense to add new words to reviews even if they
slightly violate grammatical rules because the grammar does
not seem to matter much; and second, that the models still have
a long way to go before they can achieve real understanding
of sentiment since it does obviously depend on word order.

D. Augmented datasets

We have also trained and tested the model on augmented
datasets, with synonyms and with additional adjectives. Fig.
1c shows training and test errors for the dataset augmented
with synonyms, Fig. 1d, for the dataset augmented with
adjectives, Fig. 2 compares the test set errors across all four
experiments, and Table III summarizes the results.

The results on augmentation with synonyms were positive:
we have seen significant improvements in both training and test
set accuracy in our experiments. However, data augmentation
with additional adjectives did not work, producing worse
results than even the original dataset. This can be explained
by overfitting: adding sentiment-heavy adjectives has resulted
in a training set full with specific words that mark sentiment,
so the model had trained to recognize these words and could
not process the test set without this abundance qiute as well.

E. TripAdvisor experiment

We have also performed an additional experiment, eval-
uating the quality of the resulting models on a problem
domain where they had not been trained, namely on hotel
reviews from TripAdvisor. The accuracy of different models
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on this additional dataset is also shown in Table III. The
results indicate that so far, the resulting sentiment models do
not transfer easily from one domain to another: across all
datasets, results on the test set are significantly worse, and the
improvements from synonym-based data augmentation have
disappeared. This indicates that general-purpose sentiment
models are still subject for further work.

V. CONCLUSION

In this work, we have introduced and evaluated several
different approaches to data augmentation for natural language
processing in the context of character-level models. Our results
show promise: it appears that even simple data augmenta-
tion with synonyms taken from common thesauri can yield
significant improvements for common NLP problems such
as sentiment analysis. We propose to use augmentation with
synonyms as a tool to extend insufficiently large datasets;
note that this tool is based on additional information from the
thesauri of synonyms.

On the other hand, we have seen that not every augmen-
tation is beneficial: an extension with extra adjectives turned
out to produce worse results, probably due to overfitting. In
further work, we plan to improve upon these augmentation
approaches and produce state of the art character-level models
for the Russian language.
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