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Abstract—Human physical activity monitoring with wearable
devices imposes significant restrictions on the processing power
and the amount of memory available to the algorithm. Proposed
to move from discrete time series representation to its analytical
description and analyze them using mathematical models for
satisfying these constraints. The work deals with physical activity
classification. It uses metric classification algorithm, where the
object’s class determined by the distance from this object to
the nearest centroid. Paper proposed to approximate all time
series with splines and find the distance to the nearest centroid
using continuous alignment path. The calculation of distance is
performed using analytical transformations.

I. INTRODUCTION

Representing discrete time series with continuous objects
is a useful technique in the multiscale time series analysis.
Multiscale time series are common, for example, in the med-
ical, industry or even financial applications: human health
indications [1], [2], EEG signals [3], human activity [4] or
financial data[5] are collected with different frequencies that
differ by tens of times [6]. Therefore, such measurements are
difficult to analyze using only their discrete representation.

In this paper we present the metric method of time series
analysis in continuous space, based on DTW (Dynamic Time
Warping) distance measure which performs the dynamic align-
ment between two time series. This approach lets to simplify
the restrictions on the amount of memory by representing the
digit objects with their models and on computing time by
analytical evaluations.

The DTW distance between two time series has several
benefits [7]. It finds the best alignment between two time series
if they are nonlinearly deformed relative to each other — they
can be stretched, compressed or shifted along the time axis [8].

The DTW defines the distance between discrete time series.
Dynamic programming helps to find warping path in discrete
case [9]. It is impossible to use the standard DTW method
for the continuous space. We introduce the concept of DTW
distance function between continuous time series, warping
path between them and its cost. We solve the path search-
ing problem by approximating the real path with parametric
functions. B-splines or cubic splines [11], for example, can be
applied for this approximation. Searching the warping path is
equal to searching the best approximation, or the most suitable
parameters. The versatility of this approach gives the ability
to use any type to approximate the warping path.
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This paper introduces a novel approach for analyzing
continuous time series. The properties of warping path and its
cost are investigated in the experimental part. This part uses
discrete time series from accelerometer of mobile phone [12].
Continuous objects are their parametric interpolation. We use
cubic spline interpolation. Metric classification task is solved
for describing the merging and splitting ability of new distance
function in the space of the continuous functions. Centroids of
classes are build [13] and classification is made according to
the nearest centroid method.

Nowadays DTW distance is the most common distance
function and it has many varieties: DTW distance with Sakoe-
Chiba [14] band allows to build bounds on the warping
path and speed up the computational time, a large number
of different upper and lower bounds [15] help to bring the
computational complexity of DTW to the Euclidean distance.
These techniques make results better but can not be used in
the continuous space.

The rest of this paper is organized as follows. Section 2
briefly discusses conversion from discrete objects to contin-
uous. Standard DTW method is described in the 3 section.
Section 4 introduces our novel approach, and discusses its
properties. The method for searching the warping path is
introduced in section 5. Section 6 contains the experimental
evaluation of new approach.

II. FROM DISCRETE OBJECT TO CONTINUOUS

Discrete time series s is an ordered in time sequence.
Introduce its definition for continuous time:

Definition 1 Continuous time series on time plot T = [0; T
is a continuous function s°(t) : T — R.

Let the S be a space of all discrete time series. And S,
is a space of all continuous time series. Each discrete object
s € S associates with continuous analogue s¢(t) € S°.

The discrete time series interpolation or approximation
with the parametric functions defines the mapping f : S — S°.
The algorithm consists of three main parts: choosing the
parametric function type, solving the optimization problem to
search the optimal parameters. We use cubic spline interpola-
tion in this work [10].

A. Cubic spline interpolation

A set of nodes {(x;,y;)}?*_; in R? is generated by a contin-
uous and smooth function f(x). In our study z is a time and y
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is a measurement. Cubic polynomial interpolates the function
between two adjacent dots: (z;,y;) and (x;4+1, yi+1). Adjacent
polynomial values, their derivatives and second derivatives are
coincided. The given set of points {(z;,y;)}" , are spline
nodes.

III. DTW DISTANCE

The DTW defines the distance between discrete objects.
Define the wapring path, its cost and DTW distance for
continuous case.

Suppose, there are two discrete time series s; and so, and
also their continuous analogues, two functions:  s§(¢1),
and Sg(tg), t1,12 € [0, T]

Definition 2 (discrete case): path ®  between two
discrete time series §1 and ss is an ordered set of index pairs:

= {m}={(ir,jr)}, r=1,...,R, i,5€{l,...,n},

and it satisfies the continuity, monotony and the boundary
conditions.

Definition 2 (continuous case): path ¢  between
two continuous time series s§(t1) s5(t2) is a monotonically
increasing, continuous function w° : t; — to  and it
satisfies the boundary conditions:

¢ e C[O;T]a WC(O) =0, 7TC(T1) =T5.

ty >t = 7°(t1) > (1)),
Definition 3 (discrete case): the cost  Cost(s1,82, )

of path  w  with length R between two discrete time series
s1 and sy is:

Cost(sy, 82, ) = Il{ Z Is1(2) — s2(5)]-

(i,§) €™
Definition 3 (continuous case): the  cost
Cost(s§(t1), s§(t2), 7€) of path  =w° between two
continuous time series  s§(t1) and  s§(te)  is:
1 .
Cost(s§(t1), s3(t2), 7°) = & [ [s5(t2) — s3(n"(t1))|dt1,
t1

where L is length of the curve that is given by the graph of
the function w¢(t), ¢ € [0,T].

Definition 4 (discrete case): warping path 7T  between
two discrete time series §1 and so is a path that has
the smallest cost among all possible paths:

7 = argmin Cost(sy, S2, 7).
™

Definition 4 (continuous case): warping path 7€
between two continuous time series  s5(t1) and  s5(t2)
is a function 7° that has the smallest value of cost from the
3rd definition:

¢ = argmin Cost(s{ (t1), s5(t2), 7°).
g

Definition 5 (discrete case): the cost of warping path or
DTW distance between two discrete time series is:

DTW(s1,s2) = Cost(sy, 82, 7).
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Definition 5 (continuous case): the cost of warping path
or DTW distance between two continuous time series is:

DTW(s¢(t1), s5(t2)) = Cost(sS (t1), s5(t2), 7°).

IV.  WARPING PATH AND ITS PROPERTIES

This section contains two lemmas. They demonstrate prop-
erties of the defined distance function and warping path that
can’t be observed in the discrete case.

Lemma 1. s1(t) and so(t) are two time series with
Lipschitz constant L, 7° : t1 — to is the warping path between
them. Its cost does not vary greatly while there are small
changes in this path:

|7 - llo<e =
|Cost(s1, s2,7¢) — Cost(s1, $2.7°)| < €T'L,
where 'I" determines the time boundary for time series, € > Q.

Proof. Write down the chain of inequalities that proves our
assumption:

|Cost(s1, $2,7°) — Cost(s1, s2,m°)| =

| /. (|81(t1)—52(%c(t1))|)dt1—./t (|s1(t1)=s2(m“(t1))])dts |<

t ls2(T(t1)) = sa(m®(t1))|dtr <

/ L|%c(t1) — 7Tc(t1)|dt1 <
Jty

L T(t) — (1)) dt <
[ £ (0 =m0 <

/L||ﬁcf7rc||cdt1 < TLe. 0O

ty

Lemma 2. s1(t) and so(t) are two time series with
Lipschitz constant L, T : t1 — to is the warping path between
them. Its cost does not vary greatly while there are small
changes in one of time series:

|52 —s2lle<e =
|Cost(s1,82,7) — Cost(sy, s2,7°)| < eT'L,
where T' determines the time boundary for time series, € > 0.
Proof. Following inequalities demonstrate this statement:

|Cost(s1,82,7¢) — Cost(sy, $2,7°)| =

| / (Is1 ()32 (R<(0))] )t — / (Is1(t)—s2 (R (0))dts | <

t [$2(7°(t1)) — s2(7°(t1))|dts <

HFE () — sa(@F(E))dt <
2 (@) = @ E))dh - <

|| §2 — 82 ||C dtl S Te. O

t1
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These two lemmas demonstrate the robust property for the
warping paths cost in the case of small changes in the initial
data or in warping path. This paper also puts forward the
hypothesis of robust property for the warping path in the case
of small changes in the initial data.

Assumption 1. s1(t) and sa(t) are two time series with
Lipschitz constant L; 55(t) is a small variation of s1(t). Then:

for all e€; >0 holds for all

[ 52(t) = s2(t) [lo < €2

where ¢ and ¢ are the warping paths between s1(t), sa(t)
and s1(t), 52(t) respectively.

gg(t) :

= =7l <

ea(e1),

€1,

V. CALCULATING THE WARPING PATH

Function 7°¢ t1 — to is a solution of optimization
task from the paths definition. The algorithm of building this
function in the discrete case uses the dynamic programming.
Consider two time series S, C: S = [s;]7; with length n
and C = [¢;]™, with length m. The following constructs the
alignment path.

The first stage is building a dissimilarity matrix
de Rnxm,wheredi’j = |52 — Cj|.

The second stage is building a transformation matrix D €
R™ ™ using dynamic programming:

D;j = d;j + min(Di—1,5, Di—1,j-1, Di j—1),

where D,, ,, is a DTW distance and warping path is a reverse
path from D,, ,,, to Dy according to the summation direction
for each element in path.

This technique can not be applied to the continuous objects
since it is impossible to solve the optimization problem in the
continuous space. We limit the searching space for 7¢ with
the space of parametric functions. In such spaces each set of
parameters defines a single object. Define the function 7 as
an warping path 7¢ approximation. If this approximation is
good:

|7 —7° lc<e
=4

then cost of this path will not differ greatly from the of
real warping path according to the lemma 1. Accept this
approximation as a warping path. The searching problem
in initial space is reduced to the optimization problem of
parameters 6:

0= argmin Cost(s1, $2,60) =
9

argmin
] t1

s1(t1) — s2(F(0)(t1))|dt1,

where F'(6) maps the parameters into the parametric functions.

This paper suggests the cubic spline approximation for
warping path approximation. The nodes number and coordi-
nates (z,y) can vary. Let the number of nodes N be given.
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Their coordinates along the axis ¢; are also given. Assume
their coordinates along the axis to, or @ = {t2;} , are the
optimizing parameters.

The continuity property is satisfied for the path approxima-
tion. Introduce boundaries for the optimizing parameters for
keeping the monotony and the boundary conditions. Define

to1r =t11 ton = tin,

with
tay < tagir1), i€{l,...,N —1}.
Formulate the following lemma in the case of this type of
approximation.

Lemma 3 The cost of warping path does not vary greatly in
the case of small changes in the parameter vector that defines
the path approximation:

| 60 [|l2< € = |Cost(s1, 5, F(8))—Cost(sy, 55, F(0))| < 6.

Proof: if the coordinate y; of the spline’s node ¢ does not
vary greatly, the warping path between two time series will
not change a lot according to the norm || . ||¢. Further proof
follows from Lemma 1. [

VI. EXPERIMENTAL PART

This part investigates properties of the new distance func-
tion. The data is collected the set of time series describing
human activity [12].

The computation experiment runs as follows. Split the
whole set into six sets according to the human activity type and
build a centroid for each set. Demonstrate continuous object
creation from discrete one for all objects and centroids. Choose
the best number of nodes for warping path approximation
and reveal the dependencies between number of nodes, DTW
distance and calculation time.

The initial data is a set of discrete time series, which is the
ordered list of measurements {s; }?- ;. It is necessary to present
them in the {(z;,y;)}", form for their future interpolation.
Letz; =14, y;=s; t=1,...,n.

Cubic splines interpolate time series. The example of this
interpolation is on the Fig. 1. The point line is a real time series
and the continuous line is its smooth cubic interpolation. One
can apply any interpolation or approximation type for getting
the continuous object if more accurate method exists.

This type of interpolation was chosen because of it’s
applicability to theoretical calculations of the integral from the
Def. 3.

The same type of parametric functions approximates the
warping path. Nodes number N is a structure parameter and
their coordinates along the first time axis are fixed. Their
coordinates along the second time axis are model parameters.
If N is small then approximation can’t fit the real path and
we will overstate the cost of this path. The computation
complexity will rise with increasing /N. Fig. 2 demonstrates
these statements with the experimental evaluations. Distance
and computation complexity were measured for one data class
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o ©- Real time series
Time series approximation

580

Acceleration
°

8 3 ° 09 8

Fig. 1. The example of the cubic spline interpolation

and results were averaged. Fig. 2 includes mean and standard
deviation for these measurements. The nodes number was
chosen according these results.
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We build and average the distance matrix between all time
series and centroids for each separate class for investigating
distance properties using leave-one-out technique: for each TS
we left it out from the sample for building centroids. Mean
distance values for each class are shown in the Table I. Each
row demonstrates the average distances between one class and
all centroids. The smallest value in the row defines the closest
centroid’s class. The closest centroid for each class has the
same label.

TABLE 1. THE MEAN INTRACLASS VALUES
Walk  Run Up Down Sit Lie
Walk 693 803 811 733 1165 1143
Run 676 498 696 610 946 927
Up 714 739 696 701 1038 1021
Down 591 601 653 464 836 804
Sit 516 465 434 400 6 42
Lic 508 441 454 366 105 79

Paper uses the nearest centroid method for object classi-
fication. The accuracy measuring was simple: one object was
dropen from the sample, and centroids for all classes were built
without using this object. Then the distance matrix between
this dropen time series and all centroids were built. After that
this object was given the class of the nearest centroid.

Discrete DTW and continuous DTW gave following re-
sults: 85% and 83% accuracy relatively. These results don’t
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vary greatly. The number of keeping data were halved but the
time complexity increased in compare to the effecient DTW
realisations. Some of standard for this task techniques beat
proposed approach (90 % for neural networks and 89% for
using approximation parameters for future classification). But
the number of results obtained in the experiment is not enough
for its statistical significance.

VII. CONCLUSION

A novel approach in continuous objects analysis was
introduced in this paper. It is based on the DTW distance
measure between time series and has same properties. It has
few additional robust properties. It is universal for applying
different approximation types. Bezier splines will be used in
future work. Many optimization methods can be used to accel-
erate the computation time and the quality of path searching.
Now this research is in progress. The experiment will be hold
on different datasets. This approach will be improved and
compared with other techniques for some statistical results.
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