PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

One Remote Control to Command Them
all! Building a Hypermedia API for
ESP&8266-Based Devices

Alexey Andreev, Daniil Garayzuev, Maxim Kolchin, Nikita Chursin, Ivan Shilin
ITMO University
Saint Petersburg, Russia
{a_andreev, garayzuev}@corp.ifmo.ru, kolchinmax @niuitmo.ru, {chursin.nikita, shilinivan} @corp.ifmo.ru

Abstract—Lack of commonly accepted standards for the
connected devices’ APIs caused the situation when each manufac-
turer creates its own mobile application to control their devices.
We propose an approach to the design of a self-descriptive CoAP-
based API using Hydra Core Vocabulary (http://hydra-cg.com)
which allows to create an adaptive mobile application to control
any device. In this paper we describe the approach, evaluate it
on two exemplified devices build using ESP8266 Wi-Fi module
and describe the architecture of a mobile application controlling
these devices.

I. INTRODUCTION

ESP8266 is a Wi-Fi module which become very popular
because of its price that even more lowered the barrier to start
building Internet of Things devices. Such module is a good
way for hobbyists to create a useful device for their homes.
But since humans still can’t talk to devices in its language
they need to use a more human-friendly interface. Therefore
hobbyists also have to spend sometime to create a mobile (or
web) interface for each device. We show in this work how to
even more lower the barrier using simple guidelines to design
the device API so any device could be commanded by a single
mobile application.

To achieve the desired goal to control any connected device
through a single user interface, two requirements should be
met:

e First of all, a device and a commander should be able to
communicate through a commonly supported way. That
is to use the same communication protocol, e.g. HTTP,
MQTT, CoAP, etc.

e Secondly, they should be able interpret each others’
messages. It means that they need to use a common
message model and vocabulary.

In this work we show how both requirements could be
met by using a standard communication protocol, a standard
messaging model and a commonly shared vocabulary. Once
the requirements are met by a connected device, we’re able to
command it through a single user interface.

A. Related work

Heterogeneous devices are devices which use different net-
work, communication and application protocols. The existence
of such devices is mainly caused by the lack of commonly

agreed standards. To command them, a commander should
support all the protocols used by the devices at home. It can
be achieved by using a middleware layer which implements
all the protocols and provides a unified API to the devices.
Such approach is employed in works [1], [2], where for each
protocol a separate adapter is created.

In this paper instead of creating an adapter for each device
in the commander, we assume that the devices use the same
protocol, message model and vocabulary. This allows to get
rid of a middleware between devices and the commander, but
still use the same interface to command functionally different
devices.

Our work is inspired by the approach proposed in [3] which
describes a way for implementing a Web API following all
REST principles [4]. This approach was already employed in
the project called SmallHydra [9]. SmallHydra is a C++ library
for the ESP8266 Wi-Fi module using Arduino libraries and an
asynchronous HTTP server to provide a Hypermedia APL

B. Structure

Section II describes the requirements which our approach
should met for building devices and a mobile application.
Overview of the approach is presented in Section III. Sec-
tion IV presents the architecture of a mobile application
which is able to control any devices following the described
requirements. Case study described in Section V presents
examples ESP8266-based devices and a mobile application im-
plementing the suggested approach. And Section VI concludes
our work.

II. REQUIREMENTS

The requirements we are providing for the device server
and the client are needed for implementing dynamically gen-
erated user interface. This interface could visualise and interact
with the device without additional changes in the client and
the device based on reasoning of the semantically annotated
description of the data.

Below are the requirements we impose on the API for
connected devices:

R1 Device discovery mechanism is needed to provide a way
to automatically discover available connected devices. It
should be possible to find a new device at the local network

ISSN 2305-7254

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

by request or such device should notify the commander
about itself.

R2 Model-Instance representation. Since devices has limited
resources there should be a way to refer a commander
to additional information on Internet or local network.
This information should describe a device model, common
characteristics, supported functionality, etc.

R3 Authentication support is required to authenticate access to
device’s data and controls. Request packet should contain
hashed concatenated login and password strings. Basic
authentication is needed to regulate access in secured
network for administration and working with private re-
sources.

R4 Publish/Subscribe pattern should be implemented to sup-
port the mechanism when a commander is notified about
new data, such as new observation or state of the device’s
control. The pattern allows to subscribe for a resource and
get updates once their appear.

R5 On-demand configuration mode. A possibility to configure
a device through a public API is not always a good idea,
because in that case it’s vulnerable to different attacks.
Therefore it’d be better to allow it be configured only if a
user has a physical access to the device.

R6 Sleeping nodes support: is a requirement to support de-
vices that could not be directly discovered at any time due
to their sleep modes. This requirement makes possible to
provide permanent access to impermanent resources via
registration and updating device’s data at the additional
permanent proxy Server.

III. OVERVIEW OF THE APPROACH

Our approach is a set of guidelines that the developer of
an ESP8266-based device should follow, so he or she could
use the mobile application to command it.

A. Device software guidelines

To satisfy defined requirements The Constrained Applica-
tion Protocol (CoAP) was selected [5]. CoAP is a specialised
web transfer protocol working upon UDP (but could support
TCP, SMS or any other channels and packets standards).
CoAP is binary protocol and designed for use with constrained
nodes and constrained networks in the Internet of Things.
Observe option is standardised too and discovery and resource
directory are in progress of standardisation, so draft version is
used. CoAP is also using the RFC 6690 Constrained RESTful
Environments (CoRE) Link format to describe the access to
the resources.

To provide access to devices which are sleeping most of
the time, several methods are provided. First of all, there is
a configurable system parameter for every device, that could
contain predefined system URI that could gather the data
from the updating resources constantly and could be changed
during initialisation or wake-up cycles. Secondly, support of
the Resource Directory CoRE standard draft[10] is provided
where Resource Directory resource could be registered at
permanent client. Such resource directory is recognisable au-
tomatically in local network by any device and could register
and update information about inpermanent devices to provide
unified access to them.

288

Every device is executing CoAP server logic. CoAP server
is building correct answers for the requests for some resources
and also support subscribing to them and is recognisable
in local network via GET-requests to *“/.well-known/core*-
resource.

Private resources requires basic authorisation option in
normal mode. Fig. 1 represents interaction between device with

the CoAP server and clients.
oR :Private
Resource

‘ :MobileClient

:Device CoAP Public
Server Resource

Request for a resource

Found the resource

Building answer packet]

Found the resource

H Basic Auth
Building answer packet -

Answer for confirmable message

Answéring to subsribers |: ﬁiChecking for cbservation updates
[P e ;

Fig. 1. Device’s interaction diagram

This logic could also be represented upon the HTTP
or some other protocol similar to SmallHydra project. But,
according to Senior IT Architect at IBM India [11], HTTP
for Internet of Things embedded devices is a lot slower,
less reliable and uses more battery. CoAP fits the defined
requirements best at the moment.

We have selected Arduino libraries for the ESP8266 plat-
form, because they’re compiling directly to binary firmware for
the device with the native C++ SDK [13]. Prepared Arduino-
based solution could be simply ported to other Arduino-
compatible devices with enough resources, such as ESP32
or Arduino Nano and the communication modem could be
changed too without changing other parts of the solution.
Fig. 2 describes firmware model. CoAP Arduino server is
implemented from scratch due to lack of functionality in other
C-based implementations.

— —
import Arduino Espressif
; ESP8266 [—import-—-- ESP8266
T SDK
import :
import Arduino Arduino
Device Firmware| | DHT rduin
sensor library
] library
MiniCoAP Hyper-Media
library R(lesou_rces
libraries
Fig. 2. Device’s model diagram

Every resource of the device is independent and handled
by the server. Server’s implementation class diagram is rep-
resented at Fig. 3. MiniCoAP server is our CoAP server
for Arduino-based devices with observe option and basic
authentication support.

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

MiniCoAP Arduino

| CoAPResource || ESP8266WiFi |

T

‘ SemloTResource }< ----- { ArduinoJSON ‘

‘ TemperatureDevice ‘ ‘ LampDevice ‘

Fig. 3. Server’s class diagram

According to the defined requirements, resources should be
annotated and provide model-instance representation. Transfer
protocol is not enough, so semantics is defined at the next
chapter.

B. Device design guidelines

To met the requirement RS the device should implement
a way to physically switch to the configuration mode. Since
ESP8266 module can work as a Wi-Fi node as well as a Wi-Fi
access point, we suggest to use the access point mode as the
configuration mode. The mode should be switched by pressing
a hardware button on a device.

When a user presses the button, the device should switch
to the Wi-Fi access point mode (in the documentation for
ESP8266 it’s called “SoftAP mode®) and create it’s own
local network. Then a user should be able to connect to the
network with a smart phone or computer and interact with
the configuration API. The guidelines for the API is listed in
Section III-D.

Algorithm 1 presents a code snippet that shows how to
switch to the configuration mode.

Algorithm 1 Switching to the configuration mode

isButtonPressed = digitalRead(BUTTON PIN);
if (isButtonPressed) {
if (WiFi.getMode() != WIFI AP) {
WiFi.mode(WIFI_AP);
WiFi.softAP(SOFT_AP_SSID, SOFT_AP_PASS);

Others should have access only to the public API of a de-
vice. The public API provides access to device’s measurements
and controls. The guidelines are listed in Section III-C.

C. Device Public API Guidelines

Mobile application will be able to communicate with a de-
vice only if it describes itself. Such descriptions should include
characteristics of a device (e.g. location, label, identifier, etc.)
and operations it supports. Our approach is based on using
JSON-LD [17] as the messaging model and Hydra Core [7],

289

Schema [15] and partially Semantic Sensor Networks [8] as
vocabularies for describing the APIs of ESP8266-devices.

The description of a device should consist of several parts:

e The Well-Known Core - it's the main resource
(/.well-known/core) described in RFC5785 [16]
specification. It lists all the resources supported by the
APIL. The Device Resource should have property rt
set to http://schema.org/EntryPoint which means that the
resource is the entry point of the APL

o API Documentation - contains the definition of the device
model, its supported properties and operations, types of
supported links to other resources. To simplify the devel-
opment of the API Documentation an external context
were prepared, it available on https://w3id.org/semiot/
device/commoncontext#. Examples of the documentation
are in Algorithm 2 and 3.

e Device Resource - describes the device itself as an in-
stance of the device model defined in the API Documen-
tation. It may have links to actions and values. Examples
are in Algorithm 4 and 5.

o Value Resource - describes the latest value provided by
the device. It may be an observation, measurement, etc.
It should be an observable resource.

e Action Resource - describes the result of an action per-
formed by the device. E.g. switched on/off a lamp. It may
support the POST requests to activate the action. It should
be an observable resource.

API Documentation can be stored on the device or available
on Internet, so the mobile application could download it. To
define the API Documentation, Hydra Core and Schema.org
vocabularies are used.

D. Device configuration API guidelines

The configuration API is similar to the public one, it reuses
the API Documentation and has a single resource /config
which should support GET and PUT operations. In Algorithm 6
the configuration of the Temperature Sensor is presented.

IV. ARCHITECTURE OF THE MOBILE APPLICATION

Architecture of the mobile application is based on Hydra
API. The mobile application communicates with devices using
CoAP protocol and gets a description of the devices from
an external documents. This approach allows to change the
information about device without interfering in his work, it is
useful, for example, for extending of the supported languages
in the description of the device or edit the available properties.
Also this approach allows to create adaptive application that
will change the displayed information depending on each de-
vice properties. It also simplifies configuring available device,
for example, impose a the string length limit of the field or
accepted characters range and so on without being attached to
any particular field or type of the actual device.

The architecture of application was built by using this
approach and is presented on Fig. 4. As can be seen from
this figure, when new device is being added and configured,
the device configuration module is refereed and this module
invokes the configuration subsystem. This subsystem requests
the configuration data from the device and builds page which

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Algorithm 2 API Documentation of the Temperature Sensor
API

”@context”: [
“https://w3id.org/semiot/device/commoncontext#”,
{ ”doc”: http://external/doc#” }

1
”@id”: doc: ApiDocumentation”, 0
”@type’”: ”ApiDocumentation”, 0:
”supportedClass™: [

{ ”@id”: ”doc:TempDevice”,
”’subClassOf”’: ”Device”,
”supportedProperty”: {

“property”: “location”,
“writable”: “true”,

“label”’: ”Location”

2
”supportedProperty”: {
“property”: ’label”,
“writable”: “false”,

”label”: ~Label”

”supportedOperation”™: {
”method”: "PUT”,
“expects”: “doc:TempDevice”,
“returns”’: ”’doc:TempDevice”

}

{ ”@id”: "doc:temperature”,
”@type”: “Link”,
“range”: { ”@id”: "doc:TemperatureValue”,
”subClassOf”: ”QuantitativeValue”,
“label”: "Temperature (C)”

}
¥

is displaying to the user. Displayed ficlds have a certain type,
such as text or numeric, and the description of them. But it
depends on the received configuration data. If any limiting data
such as the maximum number of input characters or numeric
range are specified, it is also taken into account in constructing
these fields.

The data display subsystem is used to show the information
from the device. It consists of a data acquisition module and
building forms module for the final displaying to the user.
Building forms module requests the description of the device
that is located in the external document and pre-determines the
type of data (observations or operations). Depending on the
type invokes a special module for constructing the necessary
forms. The required information for such a construction is
also taken from the description of the device, on the basis
of received information an application determines what data
is used and the display format. For example, the possible
ways to work with them (for example, where to send requests
for changing the status of the device and which settings
are necessary for the transmission) are determined for the
operations. At the same time the data acquisition module
determines the type of the device (active or sleeping) and

Algorithm 3 API Documentation of the Lamp API

290

{
@context™: [
https://w3id.org/semiot/device/commoncontext#”,
{ ”doc”: “http://external/doc#” }

]9

i)

@id”: ”doc: ApiDocumentation”,
@type”: ”ApiDocumentation”, 0:
”supportedClass™: [
{”@id”: ”doc:LampDevice”,
”subClassOf”: ”Deyvice”,
”supportedProperty”: {
“property”: location”,
”writable”: "true”,
“label”: {”@value”: "Location”, ”@language”: “en”}

}?
’supportedProperty”: {
“property”: “’label”,
“writable”: false”,
“label”: {”@value”: "Label”, ”@language”: “en”}

”supportedOperation”: {
“method”: "PUT”,
“expects”: “doc:LampDevice”,
“returns”: “doc:LampDevice”

}

{”@id”: ”doc:shineAction”,
”@type”: “Link”,
“range”: "ControlAction”,
”supportedOperation”: {
”method”: "GET”, "returns”: ”ControlAction”

”supportedOperation”: {
“method”: "POST”, "expects”: “doc:TurnOnAction”

supportedOperation”: {
“method”: "POST”, expects”: ”doc:TurnOffAction”

}

{”@id”: ”doc:TurnOnAction”,
”’subClassOf”: ”ControlAction”,
“label”: {”@value”: "Turn on”, ”@language”: “en”},
supportedProperty”: {
”@type”: “Property ValueSpecification”,
“property”: “doc:brightness”,
“label”: {”@value”: “Brightness”, ”@language™:
“en”},
“valueRequired”: “false”,
”defaultValue”: 7507,
“minValue”: 707,
“maxValue”: ”100”

¥

{”@id”: ”doc:TurnOffAction”,
”’subClassOf”’: ”ControlAction”,
“label”: {”@value”: Turn off”, ”@language™: “en”}

}

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Algorithm 4 Device Resource of the Temperature Sensor

{

”@context”: "http://external/doc#”,

”@id”: coap://1.1.1.1/7,

”@type”: "TempDevice”,

“identifier”: ’e9704”,

“label”: "Temperature Device”,

“location”: {”@type”: “Place”, “label”: 710107},
“temperature”: “/temperatureValue”

}

WiFi Network with Devices <

A 4

Mobile Application

Showing info from device

Device configuration

Algorithm 5 Device Resource of the Lamp

Module for

”@context”: “http://external/doc#”,
?@id”: ’coap://1.1.1.1/7,
”@type”: "LampDevice”,

“label”: {”@value”: “Lamp #1010”, ”@language™: “en”},

“identifier”: ”e9704”,
“location”: {”@type”: “Place”, “label”: 10107},
”’shineAction’: ”’/shine”

}

Data acquisition module |« | |building fields and
constraints based

on the description

Maodule for building forms
based on device
descriptions

i3 i3

Data acquisition
module

depending on these data requests information from the local

store or send the request directly to the device.

The module for receiving data from the sleeping device
is a service job and it’s run in the background. When the
device wakes up, it transmits data with the state to the mobile
application and this module, when the module has received it

and saves it in the local store for future access.

For building a mobile application is based on the ar-
chitecture that was described above, need to provide user

interaction with the above modules, as well as to implement

these modules. Processes were analysed for the design of

subsystems and we compiled data flow diagrams.

The diagram which is presented on Fig. 5, shows the
display of all available devices which are connected to current
Wi-Fi network. Sleeping devices had transmitted data on this
network are also displayed. For displaying all devices run a
query to a local data store to get out the received data from

Forms for Forms for N Local storage
operations | pbservations
—_—
Background module for
» retrieving data from —|
sleeping devices
Fig. 4. Architecture of the mobile application
Local store Local Network

. . Device's info

List of List of devices

devices Request
devices

User Request

Send
broadcast
request

List of devices

the sleeping devices. Also broadcast CoAP request was sent
to the network. All devices that are received this query return

their id and label. Then a list of available devices are created

and returned to the user.

Fig. 6 shows a diagram of adding a new device. To do
this, the user connects to a device’s Wi-Fi network. Once

Fig. 5. Data Flow Diagram. Show list of devices

Algorithm 6 The configuration of the Temperature sensor

”@context”: "http://external/doc#”,
”@id”: /config”,
”@type”: ”Configuration”,

”wifiName”: wifi-network”,
“wifiPassword”: “password”,
“username”: “’superuser”’,
“password”: ’strongpass”,

”deviceName”: "My Device”

Connect
Changed __ User —Networkf with device
configuration credential WiFi
Configuration
Devi CoAP)
crec?;ﬁ?al PUT Request Get device
id ' Jconfig configuration
CoAP GET Request
Local store Device Network Iconfig
I
Fig. 6. Data Flow Diagram. Configuration

291

CoAP Broadcast

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

connected, the GET request was sent to the CoAP for obtaining
configuration data from the device. The response to this query
contains available for configuration data, such as network name
and password which the device should be connected after it
had been configured, the label of the device, and so on., as well
as limiting the field data, for example, the maximum length
of the string, and so on. Once the user page is generated with
the configuration data, and the user can edit them. When the
user saves them, then a part of the data from the device is
saved locally (data such as the username and password for
future access to a private device resources, its id) and sent
PUT request with the data on the device.

User

T

Device's
sensors/operations

Request

description
Description of

Device's id obs/operat

Auth info
Device's settings

Request data
Local store Device's
description
Entrypoint

Sensors/ Obs/Oper. URI
Opzr;:lcms resuts gensors/Cmds ?uf?

s

URIs External
store
Request
observations/
operations Entrypoint
URI
GET Request (
Find Entrypoint
Observations/ 1o entrypoint URI
Operations Sensors URIs
results
Entrypoint URI——
GET Requests _
to sensors/ GET Request
Local Network. well-known/core

operations URIs

1

Data Flow Diagram. Show device information

Fig. 7.

On Fig 7 presented a model that using for viewing an infor-
mation from device. Page with such data, are generated based
on the description of the device. The description is a response
for request which is sent to an external document containing
this description. Authentication data is requested from local
storage for this device to be able to request information from
private resources. After that device’s entrypoint URI is re-
quested by making a GET request to /.well-known/core.
URI, having http://schema.org/EntryPoint type is
a sought-for entrypoint. Next, the GET request is done to
entrypoint URI, there are obtained data on the external URL
of the document describing the relative address and device
resources. The document with describing the device stores a
description for all operations are possible with this device,
and measured them evidence (if present). Further, the GET
request is performed to CoAP resource. Response to this
request contains information on the latest operation and/or
the last observation. Since this resource is associated with the
description of the device, the data associated with the mapping.

To perform operation on the device fields with property are
generated based on description (if they are presented). After
user starts a operation execution then the appropriate CoAP-
method are sent.

292

V. CASE STUDY

Here we are describing specific devices and mobile ap-
plication, corresponding provided approach and characterises
details of the implementation.

We have implemented two independent separated devices:
temperature sensor and bulb lamp actuator. Both of them are
based on Espressif ESP8266 system on chip controller, which
have a Wi-Fi modem.

Temperature device is based on ESP8266 Wi-Fi module
and DHT?22 digital temperature and humidity sensor. Bulb
lamp actuator is based on ESP8266 Wi-Fi module and digital
voltage relay. Temperature device is represented in Fig. 8.

Fig. 8. Temperature ESP8266-based device

Every device is recognisable at the local network by
the standard /.well-known/core resource. All available
devices could be found and controlled by the client via mul-
ticast request or via recognisable server containing Resource
Directory resource.

The GET multicast request with the
/.well-known/core?rt=core.rd request URI
message will not be ignored only by resource directory
because it is qualified by the query string.

The resource type of the / root URI is marked
as http://schema.org/EntryPoint at the
/.well-known/core answer to provide Entry Point
link for the client. Root resource contains main information
about the device as a system. The example of the answer
description is provided at Algorithms 5 and 4. PUT-request
is also supported for configuration according to the defined
requirements.

Root resource description directs us to the external doc-
umentation resource that could be shared between different
devices. Examples of the answer for the GET request for the
temperature and lamp devices are provided in Algorithms 2
and 3.

All sensitive resources’ methods could be private. Config-
uration resource /config is private too. It only available for
GET and PUT requests in configuration mode or in normal
mode with the correct basic authentication credentials.

Additional CoAP option with number 40 is provided
during the research. The option payload should contain SHA-1
hash from concatenated login and password strings to provide
authorisation. Config resource request provided on Fig. 6.
Software Wi-Fi Access point’s SSID for initial configuration
is based on the chip identifier and the password is standard

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

and the same for the devices. CoAP headers is minimal and
JSON payload could be compressed with the MessagePack
solution [12] for about 50% to maximise the transfer rate.

Mobile application is based on the Android SDK. The
solution is available at public project repository [14].

VI. CONCLUSION

In this paper we showed how to build a mobile application
which dynamically generates its user interface based on the
self-descriptive API of connected devices. The guidelines
for building connected devices with self-descriptive API are
presented.

In case study we applied the guidelines in two devices and
found them useful and appropriate for these types of devices.
If believe that the similar approach can be applied for MQTT
and similar protocols.

ACKNOWLEDGMENT

This work has been supported by the Ministry of
Education and Science of the Russian Federation (Grant
#RFMEFI57514X0101).

REFERENCES

[1] J.E. Kim, G. Boulos, J. Yackovich “Seamless Integration of Heteroge-
neous Devices and Access Control in Smart Homes* in Proc. of 8th
International Conference on Intelligent Environments (IE), 2012, pp.
206-213

[2] P. Desai, A. Sheth, P. Anantharam “Semantic Gateway as a Service
Architecture for IoT Interoperability” in Proc of IEEE International
Conference on Mobile Services, 2015, pp. 313-319

293

[3]

[4]

[51

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

M. Lanthaler, and C. Giitl, “Hydra: A Vocabulary for Hypermedia-
Driven Web APIs“, LDOW, vo0l.996, 2013

R.T. Fielding “Architectural Styles and the Design of Network-based
Software Architectures®, PhD thesis, University of California, 2000
Bormann, C., Castellani, A. P., Shelby, Z. “CoAP: An application
protocol for billions of tiny internet nodes®, IEEE Internet Computing,
vol.16(2), 62, 2012.

Ankolekar, Anupriya, et al. “DAML-S: Web service description for
the semantic web.” International Semantic Web Conference. Springer
Berlin Heidelberg, 2002.

Lanthaler M. “Creating 3rd Generation Web APIs with Hydra“ Pro-
ceedings of the 22nd International Conference on World Wide Web,
2013, pp. 3538.

M. Compton, P. Barnaghi, L. Bermudez, R. Garca-Castro, O. Corcho,
S. Cox, et al., “The SSN ontology of the W3C semantic sensor network
incubator group®, Web Semantics: Science, Services and Agents on the
World Wide Web, vol. 17, December 2012, pp. 25-32.

GitHub, A small Hydra library for the ESP8266 using the ES-
PAsyncWebServer, Web: https://github.com/bergos/smallhydra.

IETF Tools, CoRE Resource Directory Draft 8, Web: https://tools.ietf.
org/html/draft-ietf-core-resource-directory-08.

IBM developerWorks, Why HTTP is not enough for the Internet of
Things, Web: https://www.ibm.com/developerworks/community/blogs/
mobileblog/entry/why_http_is_not_enough_for_the_internet_of_things.
MessagePack, It’s like JSON. But fast and small. Arduino C implemen-
tation, Web: http://msgpack.org/.

GitHub, ESP8266 core for Arduino, Web: https://github.com/esp8266/
Arduino.

GitHub, SemIoT project, Web:https://github.com/semiotproject
Schema.org, Web: http://schema.org

RFC 5785 - Defining Well-Known Uniform Resource Identifiers (URISs),
Web: https://tools.ietf.org/html/rfc5785
JSON-LD 1.1 - A JSON-based Serialization for Linked Data, Web:

http://json-1d.org/spec/latest/json-1d/

