PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Event-Driven Design Approach
to the QML Wrapper for SmartSlog Tool

Nikolai Lebedev
Petrozavodsk State University
Petrozavosk, Russia
lebedev @cs.karelia.ru

Abstract—SmartSlog Double API library is a tool for a
knowledge processors (KP) and KP programming interfaces
development. QML is declarative language based on JavaScript
and suitable for cross-platrofm mobile application development.
With the use of these two instruments it may be possible to
implement QML wrapper for SmartSlog library to develop KP
for different platforms. Moreover, such wrapper may be extended
with some features providing implicit subscription control and
therefore data-binding between different SIBs and KP. In this way
such architecture will be based on different kinds of events. This
event-driven approach may simplify the developer’s work saving
him from controlling different kinds of subscriptions, queries and
connections. The purpose is to provide KPI wrapper for QML
developers. The design of wrapper proposed in this paper may
be used for cross-platform mobile and web development written
in QML and JavaScript because these tools are common for a
lot of platforms.

I. INTRODUCTION

Nowadays, the most popular application platforms are mo-
bile and web ones. Both can use JavaScript and its extensions
for development. For example, JavaScript application may be
compiled for mobile platforms using some specific frameworks
such as PhoneGap or Cordova [1]. QML is declarative lan-
guage based on JavaScript. Now it may be successfully applied
for fast cross-platform mobile development with a preferable
application performance. Moreover it’s common developer’s
tool for some mobile operation systems, e.g. Sailfish OS,
Android OS and others.

Internet of Things concept and SmartSpaces technology
can be used in a lot of cases [2], [3]. According to SmartSpace
approach, applications are represented with different dis-
tributed modules called knowledge processors (KP) and shared
storage or semantic information broker (SIB). Single applica-
tion can contain either one or several KPs. In Petrozavodsk
State University the SmartSlog Double API library was devel-
oped [6]. It allows to create both KPs and KP programming
interface using high-level and low level APIs.

SmartSlog library is written in ANSI C. It’s suitable for
most of platforms. However, often it is supposed to run KP
on some kind of mobile devices. In this way there is an
issue of integrating native ANSI C code into specific target
environment. Sometimes such integration may cause a lot of
difficulties related to data transfering from one programming
language to another, complicated structure of applications or
hard compilation process for different environements. The ap-
plication updating process is complicated because a developer
needs to keep all SmartSlog dependecies within his application.

As QML and Qt Quick is used for cross-platform applica-
tion development it is possible to use them to create KP for
several mobile devices using the same codebase. In this case
QML and SmartSlog may be combined in a single module.
The proposed module can be extended with some features that
allows use some KP functions like subscriptions [8], SPARQL
queries and others implicitely. In this way the event-driven [7]
framework for SmartSpace can be introduced. Actually the
simpliest implementation of QML wrapper may be integrated
into any application from scratch. However the goal of this
work is to implement event-driven QML wrapper to free
developers from routine work with data transfering, ontology
converting and subsctiptions control tasks.

In this paper the detailed design approach and some sug-
gested issues of QML SmartSlog API implementation will be
described. The data exchange formats and ontologies usage is
examined too. The proposed component has modular structure,
so all modules are described severally. In section II the high-
level design of the proposed QML wrapper is presented.
Section III exposes the managers layer that is responsible
for connection and subscription control. Section IV contains
description of the objects layer that represented by ontology
parser, entity interfaces and QML models definitions.

II. WRAPPER DESIGN

The proposed wrapper has a layer and modular design as
it is shown on the Fig. 1. The first and higher level is API
for QML developers. It’s represented with object types, their
properties and methods. The second layer is a core of proposed
component. This layer consists of different mamgers that
responsible for subscription, connection and ontology parsing
control. The third layer is SmartSlog library that provides a
back-end of proposed component. The wrapper uses low-level
SmartSlog API that allows working with triples and triple
queries.

The proposed wrapper is designed according to event-
driven architecture. The main concept is to provide application
work with different semantic information brokers (SIB). For
example, when the triple or the individual is created, it is
bound to SIB end-point automatically. The same situation
appears when we fetch some data from SmartSpace. If triple
updates either in SIB or in application, both sides get changes
implicitly for a developer. This approach gives an opportunity
to push triples to different SmartSpaces and support their actual
state.

ISSN 2305-7254

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Objects
Ontology || Entities || Models
/X A
registers| validates publishe
dat
Managers vy peaes
Ontology | |Connection | [Subscription
Parser Manager Manager
uses
O
Fig. 1. High-level design of QML Wrapper for SmatSlog Tool

III. MANAGERS LAYER

A. Connection Manager

SmartSlog Double API library provides an oportunity to
create several nodes or end-points for SmartSpace connections.
It’s a flexible solution and it’s supposed to be implemented in
the QML wrapper, however with some extensions. Every node
is presented by independent object in QML file that sets a
connection configuration.

Connection Manager gives an opportunity to define
SmarSpace Nodes and Sessions at high-level. Every node has
methods to join or leave it on demand but in most cases this
functions are called implicitely with the manager. It helps to
organize optimal connections structure and handle all possible
issues more carefully.

The example of the “Node” declaration is shown in the
listing 1

Listing 1. Node Declaration Example

Node {

id: "nodeId"

address: "smartSpaceAddress",
name: "smartSpaceName"

port: "smartSpacePort"
session: "sessionId" (optional)

B. Subscription Manager

One of the general features of SmartSlog Tool is a sub-
scription for entity changes watching. Using ANSI C developer
should define subscrition query and handlers to initialize the

subscription process. The typical problem is to pass data from
one module to another using such kind of handlers. QML
application is suggested to be modular, therefore the difficulties
with standart subscription definititions take place.

340

There is the subscription manager that is responsible for
all subscribing processes during the application work. When a
developer defines new individual or triple, it’s bound to chosen
node automatically. It’s needed for notification process pro-
viding and to incapsulate subscription creating from QML. In
point of fact, this manager is the main module of the proposed
wrapper. It implements design pattern “Mediator” to keep map
of all “entity-node” bindings. When entity is declared and
checked with Ontology Parser Subscription Manager publish
it to SmartSpace followed by a subscription creating. Further,
when triples in SIB are changed, Subscription Manager finds
corresponding entity and changes their property directly. If
triple is bound to several nodes, in other words - to several
SmartSpaces, Subscription Manager does all the same for
different SIBs.

There is an issue of subscription intersection when we
create several copies of the same individual. It may trigger
intensive memory usage when a lot of suscriptions will be
run in a background. So these issues may affect to a target
mobile device energy saving and an application performance.
The manager analyses subscriptions to similar entities and
combines them into one saving memory and increasing per-
formance.

IV. OBIJECTS LAYER

This layer is an API for developers. It consists of set of
objects and their methods to provide working with SmartSpace
using QML. The objects layer is represented by different types
of entities:

e Individual
e Triple
e Subscription Model

Individuals may be represented like a nested structure of
objects linked with properties. The main structure of data
representation is SmartSpace is triple that consists of a subject,
a predicate and an object. This is a common way of data
exchange in SmartSlog low API. Triples may be combined
into more complex structures, e.g. individuals with properties,
using ontologies.

It’s not convinient for QML Developer work with triples
directly and more suitable representation model of entities
should be introduced. As the most general data format in
JavaScript is JSON, it will be used for Ontology Represen-
tation in QML API. Ontology is a set of classes, individuals
and properties, in other workds it’s more high-level way for
data view than triples. Ontology may be presented in JSON-
LD format [4]. The proposed wrapper is followed by JSON
Ontology Generator Tool that allows to create JSON ontology
from regular RDF format [5].

The purpose of JSON Ontology Generator is to introduce
a map of ontology entities to JSON fields. The design of such
map is shown in the listing 2.

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Wrapper Application
(— pp Subscription Manager
SIB \ : pub.lishes initialize Validates |]
/_K_/Onnects \ Connection Manager triples subscription
~—— \ Node Subscription Ontology
SIB \ Node Subscription pre.pares Parser
R, triples
vee ’,I Nc{e | I Subscription |
< \/ senHN_/ updates
changes
SIB notifications
N ——”’
Fig. 2. The Wrapper Workflow
Listing 2. JSON Ontology Structure e getProperty(property) — to get concrete property
Individual{ value;
"id": "objectId" o P (lue) to ch ¢
"@type": "entityType", sio Z)f]:ertzlpg)perty, value) — to change concrete
"name": "entityName" property value;
"objectProperties": [All objects have “onUpdate™ callbacks to provide specific

"propertyOne": {

"name": "propertyName",
"relatedClass": "className"
}

] 14

"dataProperties": [

"propertyOne",
"propertyTwo",
"propertyN"
]
}

This object structure will be used as a prototype for strict
SmartSpace entities declaration in QML. During implementing
KP, developer has an opportunity to create both complex
individuals and simple triples. Then all these objects will
be transformed to clearable for SmartSpace format based on
triples in Ontology Parser Model. Otherwise, this parser is
supposed to convert data from triples to individuals according
to given ontology.

The primitive triple declaration doesn’t require any ontol-
ogy, so it is defined as it is shown in the listing 3

Listing 3. Triple Declaration Example

Triple {

id: "objectId"
subject: "subjectString",
predicate: "predicateString",
object: "objectString"

}

Both individuals and triples support following set of meth-
ods:

e bindToNode(node) — to set data binding with concrete
SmartSpace endpoint;

e unbindFromNode(node) — to unset data binding with
concrete SmartSpace endpoint;

341

actions running on object updating in SmartSpace or in Ap-
plication (e.g. by another module).

The default node and property values may be set in entity
properties during the initialization. Entities may be combined
into collections and subscription may be called on all elen-
ements of collection. When entity is beeing unbind from all
nodes, it becomes “detached”. Detached entities are supposed
to be stored locally and no their changes are sent to SmartSpace
in this way.

Sometimes it may be convenient to bind entities to nodes
from “Node” side. So the “Node” objects support following
set of methods:

e bindEntity — to set data binding with concrete entity
or collection of entities;

e unbindEntity — to unset data binding with concrete
entity or collection of entities;

The workflow of the wrapper during object creation is
shown on the Fig. 2.

A. Data models

In QML there are some data models for providing datasets
for different structures such as lists, tables, grids, etc. The
views and delegates are responsible for visualizaion and
preparing data, but it’s necessary to implement models for data
fetching from SmartSpace. The proposed wrapper introduces
subscription model for representing of such data. The example
of the subscription model declaration is shown on the Fig. 4

Listing 4. Subscription Model
SubscriptionModel{
id: "objectId"
node: "nodeId",
query: "queryId"
}

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Such model is based on specific parameter that represent
the query for data loading from SmartSpace. The Query may
be passed with the use of a specific QML Query Object
introduced with the describing wrapper. The Query Object
contains several fields that define a type of query, a query body,
“onUpdate” callback. The supported types are the same like in
SmartSlog: triple template, ontology class or property (entity
template) or SPARQL. Examples of query objects declaration
are shown on the Fig. 5.

Listing 5. Query Object Examples
SPARQLQuery{
id: "objectId"
text: "queryRow"

}

TripleQuery({
id: "objectId"
subject: "subject"
predicate: "predicate"
object: "object"

OntologyQuery({
id: "objectId"
EntityTemplate: {
class: "Class Name" (optional)
uri: "Uri" (optional)
properties: [
OntologyProperty {
name: "value"
}
] (optional)

V. CONCLUSION

In this paper the design aproach and possible imple-
mentation issues of QML wrapper for SmartSlog library
were described. This wrapper is supposed to be full-fledged
event-driven framework for development SmartSpace KPs for
mobile platforms. The major features of proposed wrapper
are an automatic data-binding between QML application and
SmartSpace, an intelligent subscription control and JSON as
data representation format.

342

The described techniques may be implemented not only
for QML, but for JavaScript application either. In this way, it
may have to drop SmartSlog and implement SSAP protocol
support, because browsers cannot run ANCI C code. But on
the other hand server-side JavaScript tools like Node.js allow
to integrate C/C++ code into custom modules. So the event-
driven wrapper for SmartSlog may be used in different KPs
for mobile and web platforms that written with usual for these
environments tools.

ACKNOWLEDGMENT

This research is financially supported by the Ministry of
Education and Science of the Russian Federation within project
14.574.21.0060 (RFMEFI57414X0060) of Federal Target
Program “Research and development on priority directions of
scientific-technological complex of Russia for 2014-2020".

The study is financially supported by Russian Foundation
for Basic Research 16-07-01289.

REFERENCES

[1] A. Charland, B. LeRouxMobile “Application Development: Web vs.
Native”, in Communications of the ACM No. 5, Vol. 54, May 2011 pp.
49-53

[2] D.G. Korzun, S. I. Balandin, A. V. Gurtov “Deployment of Smart Spaces
in Internet of Things: Overview of the design challenges”, in Internet of
Things, Smart Spaces, and Next Generation Networking, Springer Berlin
Heidelberg, 2013. pp. 4859.

[3] D. G. Korzun, S. 1. Balandin, V. Luukkala, P. Liuha, A. V. Gurtov.
“Overview of Smart-M3 principles for application development.” Proc.
Congress on Information Systems and Technologies (IS&IT11), Conf.
Artificial Intelligence and Systems (AIS11), Vol. 4, 2011.

[4] “JSON-LD 1.0 A JSON-based Serialization for Linked Data” W3C
Recommendation, 16 January 2014

[5] O. Lassila, R. R. Swick. Resource Description Framework (RDF) Model
and Syntax Specification. W3C Recommendation, February 1999.

[6] D. G. Korzun, A. A. Lomov, P. I. Vanag, S. 1. Balandin, J. Honkola
“Multilingual Ontology Library Generator for Smart-M3 Information
Sharing Platform”, in International Journal on Advances in Intelligent
Systems No. 3 & 4, Vol. 4, 2011 pp. 68-81.

[71 Brenda M. Michelson “Event-Driven Architecture Overview”, Patricia
Seybold Group Boston, 2 February 2006

[81 A. A. Lomov, D. G. Korzun, “Subscription operation in Smart-M3”.
Proc. 10th Conf. of Open Innovations Association FRUCT and 2nd
FinnishRussian Mobile Linux Summit, 2011, pp. 83-94.

