
UEFI BIOS and Intel Management Engine Attack
Vectors and Vulnerabilities

Alexander Ogolyuk, Andrey Sheglov, Konstantin Sheglov
Saint Petersburg National Research University of Information Technologies, Mechanics and Optics

St. Petersburg, Russia
xms2007, npp-itb@yandex.ru

Abstract—we describe principles and implementation details
of UEFI BIOS attacks and vulnerabilities, suggesting the possible
security enhancement approaches. We describe the hidden Intel
Management Engine implementation details and possible
consequences of its security possible discredit. Described
breaches in UEFI and Intel Management Engine could possibly
lead to the invention of "invulnerable" malicious applications.
We highlight the base principles and actual state of Management
Engine (which is a part of UEFI BIOS firmware) and its attack
vectors using reverse engineering techniques.

I. INTRODUCTION
The Intel Management Engine is the key part of x86

platform architecture and the big part of the modern computers
UEFI BIOS subsystem. This system is mostly hidden from
user or administrator access. It includes secured and privileged
executable code which can be accessed or controlled from
normal operating system environment. Even many security
experts don't know (or don't know much) of its existence. In
the year 2006 Intel introduced the basic AMT (Active
Management Technology) subsystem which was the remote
management solution for Intel based computers (and servers).
It included:

inventory services,

update service,

management,

diagnostics

remote access services.

This subsystem was implemented not only in Intel based
server firmware like in previous generations of remote access
technologies (including IPMI – Intel platform management
Interface) but in all desktop computers. To implement this
subsystem all AMT compatible computers have additional
microcontroller integrated into Intel chipsets. AMT subsystem
introduced many new features (which are "outstanding" from
security point of view). They were:

embedded HTTP(S) server,

out of band access to integrated network adapter
including the control of all network incoming and
outgoing packets,

access to all input and output devices,

access to NVRAM and many more.

This microcontroller (and the whole AMT subsystem)
starts to work even without user pressing the computer power
button, just the power adaptor needs to be on, i.e. it works
even in computer switched off mode. Later AMT became a
part of Intel Management Engine subsystem. In 2007 Intel
introduced newer subsystem features:

full RAM DMA access

direct access to the integrated video adaptor memory
(which makes full screen grabbing in real time
possible)

 KVM standard remote access, etc.

During next years many standard BIOS features like:

Integrated Clock Control,

ACPI (power interface),

TPM (trusted platform module)

migrated from main BIOS firmware into Management Engine
subsystem (which is also placed inside firmware SPI cheap).
Originally this subsystem was supported only on high-end
Intel motherboards which were not too popular because of
high prices. But after years 2010-2011 this subsystem was
introduced in all Intel chipsets both in server, desktop and
mobile segments (notebooks, tablets and smart phones).
Originally Intel used SPARC and ARC32 based
microcontrollers. In modern systems Intel replaced this
hardware with x86 based controllers. This makes reverse
engineering of Management Engine subsystem code easier for
average attacker. Current implementation of Intel Management
Engine includes the following components:

Host microcontroller (includes integrated ROM)

Firmware SPI cheap, which is partially co-used by
main UEFI BIOS firmware

Dedicated RAM (about 32 Mb)

UEFI BIOS DXE/SME modules

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

Management Engine Interface (main CPU hosted code
interface to controller)

Dedicated network controller for direct Ethernet
adaptor access

Resuming all above we can say that Intel Management Engine
introduces the new level of x86 code execution (additionally to
well known ring 0-3 of basic i386 architecture and SMM or
Hypervisor levels). Code executed on this level (ME) is fully
hidden and can't be controlled from all other execution levels
(including OS code or BIOS code). Management Engine
controller architecture is very complex and goes beyond our
scope.

We will describe mostly software implementation. As
we said above Management Engine subsystem resides in SPI
firmware cheap. Standard Intel Firmware includes following
regions:

Descriptor, which describes all SPI memory regions
and their access attributes

UEFI BIOS firmware

Management Engine firmware

GbE (Ethernet network adaptor firmware)

PDR (Vendor specific extra modules)

Fig. 1. Firmware regions

The code segment of Management Engine subsystem
is protected with digital signing. It includes Intel RSA public
key. Intel protects the code with own private key and anyone
can verify the signature with included public key. The attacker
can’t replace the included public key with he’s own because
the signature and integrity are verified by boot code (situated
in microcontroller ROM). The Management Engine code is
additionally protected by read only memory region attribute

which prevents its overwriting. Management Engine
subsystem works in two modes: privileged and user mode. In
privileged mode the subsystem code can access all hardware
devices and memory (feature described above). All subsystem
code is divided into modules. The main modules are controller
Operating System kernel and drivers. Also there are services
modules (like AMT and others) and non privileged modules.

Fig. 2. Intel Management Engine subsystem modules architecture

Looking on this Intel Management Engine subsystem
architecture we can definitely say that any compromise of its
security could lead to huge consequences. If attacker could
rewrite or insert own code into Management Engine
subsystem code segment he can get many benefits like:

Fully invisible to Operating system and BIOS
malicious application
Permanent malicious code residence
No detection feature of the base malicious application
Full restore of end dropper code (executed inside
Operating System) by the base malicious application
resided in firmware
Full access to all RAM, devices, video adaptor and
Ethernet adaptor (to log all computer activity)
Privileged real time execution
Software SPI rewrite protection

There is no known attacks implementation on Intel
Management Engine subsystem so far, but it doesn’t mean it is
fully safe. Also there is a basic vulnerability which is Intel
private key leakage. If such key will be available to the
attacker there will be no protection against overwriting or
inserting malicious code into Management Engine subsystem
code segment. The basic way of the write protection of
Management Engine memory region bypassing could be
hardware SPI programming (with chip hardware flasher like
CH341A) or even using software methods described below.

The other problem and attack vector which will be
discussed more detail below is Management Engine subsystem
integration with the main UEFI BIOS and related
vulnerabilities which are already more actual and practically
approved.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 658 --

II. INTEL MANAGEMENT ENGINE SUBSYSTEM ATTACK

VECTORS

As we said there are no known successful attack
implementations for Management engine subsystem, but we
can list the following theoretical approaches:

ME dedicated memory dump by disabling memory lock
bits and memory region attributes (needs initialization
routines reverse engineering)
“Cold boot” attack – RAM modules swap to read or
replace the contents (need slow speed memory)
Change ME dedicated memory size while initialization
phase enlarging it which will make ME use the top part
and remove enlarging on the following boot to allow
access to the previously written top region.
Use self written Java applets asking ME subsystem to
execute them (one of the AMT features)
Reverse engineering Intel Windows applications (C#,
C++, Java) which can communicate to ME subsystem

The read RAM/ROM like attacks (Cold boot, etc.) are
needed to read the dedicated memory (chip based) which is
not accessible by other means and contains portions of ME
code needed to fully reverse engineering of ME subsystem
algorithms)

These approaches are not approved yet. But we plan to try
and research them, which can bring potential vulnerabilities
discovering in the Intel Management Engine subsystem.

The other reason to worry about Intel Management
Engine subsystem is its wide usage in modern computers. Intel
declares all remote access (AMT) features are switched off on
most of computers (except high-end and server platforms). But
the reversing of firmware (all Intel based platforms use Intel
code) shows that the code itself is present on all computers. It
is just not activated.

But there is no any guarantee that some “magic” password
or network packet can’t make this code active (even if this
request is authorized by some US federal service officer)
making your system to start spy for you or to work under
remote management. And the most dangerous thing is that it is
near impossible to change this situation. Intel code is fully
closed and never will be available for review (to prove
security mechanisms and to prove unauthorized “bookmark”
absence). The only alternate x86 compatible platform is AMD,
but it is much less widespread and has own similar
subsystems. Incompatible platforms (like ARM, SPARC, etc)
do exist but they don’t have any visible percent of usage in
desktop and laptop markets (only tablet and smart phone
markets widely use ARM architecture). The end firmware
modification (by the owner) to remove unnecessary AMT
(remote access and hardware control) code blocks is also not
possible because of integrity checks and RSA signing
described above.

III. UEFI BIOS ATTACK VECTORS

More known part of the Intel based computers is UEFI
BIOS firmware. EFI (Extensible Firmware Interface) standard

came to replace old BIOS (Basic Input Output System) in 2004
– 2006.

First EFI was introduced for IA64 platform then became
the standard for all x86 based platforms and many others too
(ARM based). EFI is widely used on x86 computers since
2008-2009, on Apple computers since 2007. One of the
benefits of EFI code is that is mostly written on C (unlike
assembler for BIOS) and has many features and uses known
formats. All its code is stored in non-volatile memory (SPI
flash chip) and it is the first code which runs after system turns
on.

Unlike BIOS code, EFI (UEFI) code runs in 32bit
protected mode.

UEFI BIOS boot phases are:

SEC (security)
PEI (Pre EFI)
DXE (Driver Execution Environment)
BDS (Boot Device Select)
TSL (Transient System Load)
RT (Run Time, i.e. OS code execution)
AL (After Life, i.e. shutdown)

Fig. 3. UEFI boot phases [7]

Fig. 4. UEFI Boot Phases interaction scheme [7]

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 659 --

The system boot runs through SEC (security phase).
During this phase temporary memory initialization is
performed and firmware integrity can be checked, plus PEI
phase initialization is prepared.

Then PEI (Pre EFI Initialization) phase starts which serves
similar purposes as old BIOS initialization phase (RAM init,
ROM to RAM copy, PEI modules execution, interfaces
initialization, preparing to go into DXE phase if system is not
in Sleep Resume state, else executing S3 boot script, etc.).

After this phase UEFI builds the structured DXE space
(Driver Execution Environment) to run UEFI drivers and
services. Both DXE drivers and services can have
dependencies (DXE executables) which also need to be
loaded. DXE phase also performs hardware initialization and
building hardware access abstract interface (for services).
Unlike MBR used in BIOS times it uses EFI System Partition
(FAT32). UEFI tries to find boot code on EFI partitions and
give execution to this boot code. If nothing found the error
message is displayed els the Operating system is loaded.
System bootloader, operating system drivers and services can
contact the firmware via specially designed protocols. After
full loading operating system can access some of this
interfaces via the EFI runtime services. DXE phase includes
SMM sub phase (System Management Mode) which is
described in more detail in next chapter and [5].

As we can see UEFI BIOS firmware code is also a base
key of computer security system (including Secure Boot
mechanism which prevents unauthorized bootloaders to be
executed). The attackers which will insert own code into UEFI
BIOS code segments will receive such benefits:

Persistent malicious code living

Surviving OS uninstall, reinstall, disk formatting

Getting access to hardware, RAM, CPU, Ethernet and
video adaptors

Hard software (and even hardware) detection by
antivirus tools

The main attack vector is firmware SPI flash chip. If there
is no integrity check for UEFI BIOS executable modules then
inserting own code is easy with hardware chip programming
(which is not very useful for attackers but still useful for
government services). If such integrity checks are present
attacker can disable them (by patching integrity check code
block). In the following sections we will describe all modern
available attack vectors including fully software
implementations (which need no any hardware SPI
programming but just a small piece of code executing).

The secondary attack vectors could be BIOS Setup which
controls:

BIOS region attributes (SPI Lock Bit)

Secure Boot mechanism

NVRAM settings

BIOS password protection

The practically implemented approaches to attack BIOS Setup
is changing NVRAM “SETUP” variable. This can be done
through UEFI shell (build from Tiano-Core open sources or
obtained from platform vendor or available in recovery boot
images for target platform). After booting into UEFI shell
application attacker can change SETUP variable (with special
self written EFI application or shell commands like “set var”).
The SETUP variable contains many critical system variables
inside (it uses large memory region) including SPI lock bit
(which denies firmware software overwriting). Lock bit
variable address (which is needed to change it) is specific for
end platform (and computer model) but can be reverse
engineered from the BIOS image (available at the vendor web
site).

 Inside the main attack vector (firmware overwrites or code
insert) there are several cases:

No UEFI BIOS region protection at all - many system
vendors don’t use read only attribute of BIOS region
allowing writing into it (which makes BIOS code
modification easy just with ordinary software flasher
application). This case is especially probable on older
systems (before 2013-2014)

Protected UEFI BIOS region. In this case some specific
vendor utilities (applications) can be used to disable
protection or other methods used (described below).

BIOS region protection depends from BIOS vendor
(manufacturer). All UEFI BIOS vendors use Intel code
examples but other implementation details can differ. The
most known UEFI BIOS manufacturers are:

Intel

AMI (desktop and laptop)

Phoenix (desktop)

Insyde hydrogen (laptop)

Most of computer vendors like HP, DELL, Lenovo, ASUS,
GIGABYTE, ASROCK, MSI, Samsung, Sony, ACER, etc. do
use their code (with small injections of vendor specific code).

The easiest way to rewrite UEFI BIOS region is the use of
vendor flash utilities or rescue disks. Such software is
officially “unavailable” but can be downloaded from unofficial
BIOS web forums like:

www.bios-mods.com

www.insanelymac.com

www.win-raid.com

forums.mydigitallife.info

Also UEFI BIOS software is available even on official
vendor websites (Lenovo, Hewlett Packard, ACER, Samsung,
etc) inside so called rescue disks which are designed to repair
computers after BIOS failure (during firmware upgrade or
other reason).

The Intel Management Environment System Tools and
Intel Flasher utility are the most known tools because they

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 660 --

mostly bypass firmware image integrity checks and just write
the image into firmware region (ME or UEFI BIOS region).
The disadvantage of this tool is the platform specific
versioning. Each Intel chipset needs corresponding flasher
utility executable. Modern existing versions (all available for
download) are:

Intel ME System Tools v11.6 r5 - (Updated:
08/02/2017)
For 100/200-series systems which come with ME
firmware v11.0-11.6

 Intel ME System Tools v11.0 r2 - (Updated:
29/01/2017)
For 100-series systems which come with ME firmware
v11.0

 Intel ME System Tools v10 r1 - (Updated: 13/10/2016)
For Broadwell mobile systems which come with ME
firmware v10.0

 Intel ME System Tools v9.5 r1 - (Updated:
13/10/2016)
For 8-series systems which come with ME firmware
v9.5

Intel ME System Tools v9.1 r1 - (Updated: 13/10/2016)
For 8/9-series systems which come with ME firmware
v9.1

Intel ME System Tools v9.0 r1 - (Updated: 13/10/2016)
For 8-series systems which come with ME firmware
v9.0

Intel ME System Tools v8 r1 - (Updated: 13/10/2016)
For 7-Series systems which come with ME firmware v8

Intel ME System Tools v7 r1 - (Updated: 13/10/2016)
For 6-series systems which come with ME firmware
v7� Intel ME System Tools v6 1.5MB/5MB r1 -
(Updated: 13/10/2016)
For 5-series (Ibex Peak) systems which come with ME

 Intel ME System Tools v6 Ignition r1 - (Updated:
13/10/2016)
For 5-series (Ibex Peak) or 89xx-series (Cave/Coleto
Creek) systems which come with ME Ignition firmware
v6

 Intel ME System Tools v5 r1 - (Updated: 13/10/2016)
For ICH10 systems which come with ME firmware v5

Intel ME System Tools v4 r1 - (Updated: 13/10/2016)
For ICH9M systems which come with ME firmware v4

 Intel ME System Tools v3 r1 - (Updated: 13/10/2016)
For ICH9 systems which come with ME firmware v3

 Intel ME System Tools v2 r1 - (Updated: 13/10/2016)
For ICH8 & ICH8M systems which come with ME
firmware v2

To recognize the needed Tools version the open source
"ME Analyzer” application could be used. So using Intel ME
tools there are less problems to write modified firmware to the
SPI flash (most other vendors like Insyde Hydrogen do verify

image CRC checksum and signatures inside image regions).
And if no UEFI write protection lock is enabled (such case
exists in many configurations as we described above) the
modified firmware (with malicious code injected) can be
flashed to the SPI chip by software method (using Itntel ME
Tools). This image “upgrade” could be automated. More to
say this “upgrade” can be performed not just from DOS or
UEFI Shell, but from Windows itself (Intel has executable for
all operating systems environments, including Linux).

If the UEFI BIOS region is write protected (BIOS Lock
Enable Bit set) “set var” NVRAM variable and BIOS STUP
attack vectors can be used (described above).

If there is no ME Tools available for Windows Operating
system then UEFI Shell (from vendor rescue disk) or DOS
bootable media can be used to run Intel ME Tools EFI or MS-
DOS executables. In this case the automation of software
attack is more complicated (needs multiply reboots) but is still
possible.

IV. OTHER FIRMWARE ATTACK VECTORS

There are several other firmware attack vectors
(additionally to Intel Management Engine and UEFI BIOS
targeted attacks). They could be:

SMM (System Management Mode) code injection

PCI device firmware (Ethernet, Video, Thunderbolt,
etc.) code injection

Secure Boot mechanism disabling

Vendor specific

SMM is another one privileged mode of code execution on
x86 platform (starts from i486). SMM mode is activated by
triggering SMI interrupt (can be hardware or software
activated). Software SMI is generated by:

USB controller (in USN legacy mode)

Intel Management Engine subsystem

GPIO registers

SMI Timer

Chipset SMI (on IO port access)

ACPI SMI (Sleep modes, etc.)

After going into SMM mode CPU saves all context
(including registers). By default SMM code can access all
RAM (read and write access) and access to all connected
devices. In the same moment SMM code is not accessible
from OS (OS can only see SMM mode was called and nothing
more).

So SMM mode (code execution) is a good target for
attacker. The main attack vector for SMI is to try to generate
software SMI interrupt from user code (this needs privileges to
execute IO port communication commands like in, out) and try
to find vulnerabilities in executed SMM code exploiting it to
get some benefits. One of first known SMM attacks was SMM
poisoning which consists in writing own malware code into

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 661 --

cache and triggering its execution by SMI interrupt (now this
vulnerability is closed). Modern SMM attacks are based on
changing SMM support code situated in RAM (i.e. not in
secured SMM dedicated SRAM). Inserting code there and
triggering SMO interrupt theoretically allows to execute own
malicious code in SMM mode (with all SMM mode benefits).
Most of systems designed before 2015 (when Intel introduced
recommendations for attack prevention) are theoretically
vulnerable to such approach.

Other SMM mode based technique can be DMA copy to
SMM region. This attack vector more detailed description is
very complex and goes beyond this article and will be
described in other works together with PCI firmware attacks
(basically consisted in firmware code injections) and ACPI
attacks.

Secure Boot and Vendor specific are the last attack modes
to describe in this article. UEFI BIOS Secure Boot mode
prevents unauthorized boot code execution (OS bootloader).
The boot code integrity and signing is checked using public
keys stored in NVRAM (by default only Microsoft keys are
present , allowing to load only Microsoft Windows bootloader
code).

Fig. 5. Secure Boot Mode comparing to ordinary OS loading scheme

Theoretically the malicious boot code can be signed by
Microsoft private key (Official certificate with generated keys
can be purchased from Microsoft partners like Digicert,
verisign, etc.) to bypass the secure Boot verification. The
known non Microsoft boot loader which works with Secure
Boot enabled on all computers is Canonical Ubuntu Linux
boot loader.

The other option to disable Secure Boot mode is erasing
NVRAM variables (from UEFI shell or even from Microsoft
Windows) which store this keys. If UEFI BIOS code found no
public keys it disables the Secure Boot Mode. This erasing
operation also can be automated (i.e. performed by malicious
software).

Vendor specific theoretical attack vectors are:

SMM embedded flasher support code
Hardcoded factory passwords (BIOS)

Hidden write enable bits or variables
Vendor specific code vulnerabilities

This last attack vectors are hard to research because of major
difference in vendor codes and code versions inside one
vendor platform. Also it needs deep reverse engineering to
find them. But anyway this approach still can be used and
researched in specific cases (targeting specific platform) and
practically implemented.

V. CONCLUSION: PROTECTION IDEAS AND ROADMAP FOR

FUTURE RESEARCHES

We must to admit that there is no easy and practically
implemented universal solution for vulnerabilities and attack
vectors described above. This is due to that Intel Platform and
all firmware codes are not open sourced so can’t be fully
researched even using reverse engineering techniques. This
can’t be changed in near future (there are no alternatives to
Intel and AMD x86 platforms). But we can list the possible
directions in which community could go to solve this situation
(and even implement some protection solutions without Intel
support which one is very low possible). This directions could
be:

Disable all SMM code (if possible by patching or
other methods)
Disable any external firmware components (PCI
boot)
Disable S3 Bootscript (after sleep mode)
SMI transaction Monitor extensive usage (to find
malicious SMI calls)
Enable Secure Boot mode
Enable BIOS password
Extensive reverse engineering of vendor’s
firmware samples to find and report
vulnerabilities
Code reviews (of open sourced UEFI based
systems like Tiano-Core)

We plan to research more on these approaches in future
works.

REFERENCES
[1] A.U. Sheglov, K.A. Sheglov, Informational systems security analysis

and design. St.Petersburg: Professionalnaya literatura, 2017.
[2] A. Kumar, Active Platform Management Demystified: Unleashing

the Power of Intel VPro Technology, New York: Intel Press, 2009
[3] X. Ruan, Platform Embedded Security Technology Revealed:

Safeguarding the Future of Computing with Intel Embedded Security
and Management Engine, New York: APress, 2014.

[4] M. Rothman, G. Xing, Y. Wang, J. Gong “Reducing platform boot
Time”, Intel white papers, 2011, pp 1-42,

[5] Intel official site, AMT-SDK, Web: https://software.intel.com/en-
us/amt-sdk

[6] Winraid official site, Firmware Drivers, Web: http://www.win-
raid.com/t596f39-Intel-Management-Engine-Drivers-Firmware-amp-
System-Tools.html

[7] Phoenix official site, UEFI specification, Web:
http://blogs.phoenix.com/phoenix_technologies_bios/uefi/

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 662 --

