
Automated Performance Evaluation of
Adaptive HTML5 Player Deployments

Anatoliy Zabrovskiy, Evgeny Petrov,
Evgeny Kuzmin

Petrozavodsk State University

Petrozavodsk, Russia

{z anatoliy, johnp, kuzmin}@petrsu.ru

Christian Timmerer
Alpen-Adria-Universität Klagenfurt

Klagenfurt, Austria

christian.timmerer@itec.aau.at

Abstract—Adaptive video streaming over HTTP is becoming
omnipresent in our daily life. In the past, dozens of research
papers have proposed novel approaches to address different
aspects of adaptive streaming and a decent amount of player
implementations (commercial and open source) are available.
However, state of the art evaluations are sometimes superficial as
many proposals only investigate a certain aspect of the problem
or focus on a specific platform – player implementations used in
actual services are rarely considered. HTML5 is now available
on many platforms and foster the deployment of adaptive
media streaming applications. We propose a common evaluation
framework for adaptive HTML5 players and demonstrate its
applicability by evaluating eight different players which are
actually deployed in real-world services.

I. INTRODUCTION

Using adaptive streaming techniques over HTTP is nowa-
days state of the art and massively deployed on the Internet
adopting the over-the-top (OTT) paradigm, i.e., these services
are deployed on top of existing infrastructures. For example,
Netflix and YouTube alone account for more than 50% of
the traffic at peak periods [13]. Although Internet capacity is
constantly increasing for both fixed and mobile networks, the
adoption of new streaming services will continue as well as
new applications and services will emerge. Major formats in
this domain are MPEG-DASH and Apple’s HLS which both
have the same underlying principles.

However, the current effort in MPEG referred to as Com-
mon Media Application Format (CMAF) [5] aims at harmoniz-
ing at least segment formats and it is expected that soon DASH
and HLS will support ISO base media file format (ISOBMFF)
segments which are compatible with each other. In such a
situation the most interest aspect – at least from a research
perspective – is the rate adaption logic of players, because it
is not defined in the standard and left open for competition.

In the past, many studies for such a rate adaptation logic
were proposed and/or evaluated, e.g., [14], [15]. However,
most of them focus on the development of new adaptation
algorithms and compare it only with a limited subset of
existing approaches [8], [4], [16], [19]. Evaluations of real-
world deployments are very rare [12]. Additionally, it is
also difficult to come up with a comprehensive evaluation
of existing approaches due to the lack of the appropriate
tools. Hence, the main contributions of this paper are as
follows: (i) we developed an adaptive video streaming evalu-
ation framework for the automated testing of different players

and, consequently rate adaptation logics; (ii) we identified
eight well-known adaptive HTML5 players (commercial and
open source) and integrated them in our framework; (iii) we
conducted a series of experiments to prove the suitability and
usefulness of our framework for the comparison of players and
rate adaptation logics. In general, in this paper we present a
novel approach and framework for the automated evaluation of
adaptive HTML5 players. A full-length version of this paper
can be found here [18].

The rest of the paper is organized as follow. Section II
introduces the general architecture of our evaluation frame-
work. The setup for the evaluation is described in Section III.
Results are presented and discussed in Section IV. Section V
concludes the paper and highlights future work.

II. SYSTEM ARCHITECTURE

In this section we describe our system architecture enabling
the automated evaluation of adaptive streaming systems within
a controlled environment. Our proposed system comprises the
following components:

• Web server with standard HTTP hosting.

• Network emulation server.

• Selenium server.

• Web management interface.

• Adaptive HTML5 players.

The system architecture is depicted in Fig. 1 and consists of
the three servers running Ubuntu OS (version 16.04 LTS) and
connected using Gigabit Ethernet switches. It defines a flexible
system that allows adding new adaptive HTML5 players easily.
There is an algorithm which describes the sequence of the steps
of embedding a new player and its API.

The Web server hosts the video content for adaptive stream-
ing over HTTP. For our experiments we adopted the MPEG-
DASH format. Therefore, the video sequence will be provided
in multiple configurations (e.g., bitrates, resolutions) which are
referred to as representations. Each video sequence will be
divided in segments of equal length measured in seconds of
video content. Multiple versions of the same content, each
version segmented in multiple smaller files. This enables the
dynamic adaptation at segment boundaries according to the
given context. It also hosts a MySQL database for collecting

______________________________________________________PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



all the performance measurements and the Web management
interfaces for configuring and conducting the experiments. It is
accessible from outside the controlled environment, everything
else is within a controlled environment in order to avoid any
cross-traffic that may influence the experiments.

The Selenium server [2] is an open source software testing
framework for Web applications which is used to automatically
conduct our experiments with adaptive HTML5 players run-
ning within a Web browser. In our case we adopted the Google
Chrome browser but it is also possible to use other browsers
on various platforms (desktop, mobile, operating systems). The
Selenium server is activated through the Web management in-
terface to run the various experiments automatically according
to a given configuration.

For the Network emulation server we have adopted the
Mininet emulator [1]. Although this emulator is basically used
for emulating Software Defined Network (SDN) environments,
it has been also used for streaming environments [17]. It pro-
vides a straightforward and extensible Python API for network
creation and prototyping. We have utilized that functionality
to create a virtual link with changeable network throughput
characteristics. Our Network emulation server comprises two
network interfaces (eth0, eth1). A python script is used to cre-
ate a virtual network which consists of one switch connected to
the real network using a TCLink [3]. The TCLink is a Mininet
performance-modeling link. We setup our TCLink to change its
characteristics at the specified moments of time. The schedule
is stored within a file using JSON format. Finally, we made this
schedule configurable through our Web management interface.

The Web management interface provides two functions,
(i) one for configuring and conducting the experiments and
(ii) one which includes the player and provides real-time
information about the currently conducted experiment. Thus,
the proposed framework in this paper provides means for
comprehensive end-to-end evaluations of adaptive streaming
services over HTTP including the possibility for subjective
quality testing. The interface allows to define the following
items and parameters:

• configuration of network emulation profiles including
the bandwidth trajectory, packet loss, and packet de-
lay;

• specification of the number of runs of an experiment;
and

• selection of the adaptive HTML5 player (or rate
adaptation logics) and the utilized adaptive streaming
protocol (MPEG-DASH or HLS).

The result page provides a list of conducted experiments
and the analytics section contains various metrics of the
conducted experiments. It is possible to generate graphs of the
results and export the raw values for further offline analysis.
The following quality parameters and metrics are currently
available: download video bitrate; video buffer length; video
startup time; stalls (or buffer underruns); number of quality
switches; average video bitrate; instability and inefficiency [6];
simple QoE models specially designed for the adaptive stream-
ing solutions [9], [10].

Before starting the experiment we need to create a band-
width trajectory profile. For each profile we can define duration

Fig. 1. System architecture

TABLE I. OVERVIEW OF THE ADAPTIVE HTML5 PLAYERS.

Media player Version Web site (last access:
May 27, 2017)

Bitmovin Player 7.0 https://bitmovin.com

dash.js 2.4.0 http://dashif.org

Flow Player 6.0.5 https://flowplayer.org

HAS Player 1.7 https://github.com/Orange-OpenSource/hasplayer.
js

JW Player 7.6.1 https://www.jwplayer.com

Radiant MP 3.10.8 https://www.radiantmediaplayer.com

Shaka Player 2.0.3 https://github.com/google/shaka-player

VideoJS Player 5.9.2 http://videojs.com

of each stage, bandwidth, delay, and packet loss. As soon as
we start an experiment within the Web management interface,
the Google Chrome browser (version 55.0.2883.87 64 bit)
is automatically launched on the Selenium server and the
selected network profile including the link parameters is sent
to Network emulation server. The actual requests for the video
content towards the Web server goes through the Network
emulation server. When running an experiment it is possible
to display the currently selected adaptive HTML5 player
(including the video streaming) and real-time information
about the currently conducted experiment. Details about the
actual evaluation setup including all parameters and metrics are
described in Section III. All of the selected Adaptive HTML5
players (cf. Table I in alphabetic order) have been available at
no or relatively low costs for evaluation purposes.

III. EVALUATION SETUP

In this section, we define the setup for evaluating and
comparing the adaptive HTML5 players. We describe what
content is used and how it has been encoded, details about
the network configuration, and the metrics used for the
comparison. The MPEG-DASH content and a MPD file for
our experiments have been produced using Bitmovin Cloud
Encoding Service by encoding the Big Buck Bunny animation
movie which is also a part of the DASH dataset [7]. Note that
our focus is primarily on the streaming performance, not a
visual quality and, thus, we believe that one test sequence is
sufficient. We have encoded and prepared two different profiles

______________________________________________________PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 533 ----------------------------------------------------------------------------



as it is used in industry deployments. The first comprises a
FullHD profile with five different representations: 426x238
pixels (400kbps), 640x360 (800), 854x480 (1200), 1280x720
(2400), and 1920x1080 (4800). For the second configuration
we reverse-engineered the Amazon Prime video service which
offers 15 different representations: 400x224 (100), 400x224
(150), 512x288 (200), 512x288 (300), 512x288 (500), 640x360
(800), 704x396 (1200), 704x396 (1800), 720x404 (2400),
720x404 (2500), 960x540 (2995), 1280x720 (3000), 1280x720
(4500), 1920x1080 (8000), and 1920x1080 (15000). In both
cases we have adopted a segment length of four seconds as
it provides a good trade-off regarding streaming performance
and coding efficiency [7] which is also used in commercial
deployments like Netflix. The bitrate of audio stream for both
sets was defined as 128 Kbps.

The network configuration comprises a bandwidth trajec-
tory adopted from [11] providing both step-wise and abrupt
adjustments in the available bandwidth to properly test all
adaptive HTML5 players and its adaptation behavior un-
der different conditions. The predefined bandwidth trajectory
scheme adjusts using the following sequence: 750 kbps (65
seconds), 350 kbps (90), 2500 kbps (120), 500 kbps (90),
700 kbps (30), 1500 kbps (30), 2500 kbps (30), 3500 kbps
(30), 2000 kbps (30), 1000kbps (30) and 500 kbps (85). The
network delay parameter was set to 70 milliseconds which
corresponds to what can be observed within long-distance fixed
line connections or reasonable mobile networks and, thus, is
representative for a broad range of application scenarios.

IV. EVALUATION RESULTS

In this section, we present some results of our evaluation
and discuss the key aspects. Each experiment was conducted
five times and the average is presented here. We noted that the
variance is quite low and, thus, we believe that five runs per
experiment is sufficient. In total we conducted 80 experiments,
each with a duration of 630 sec resulting in a total duration of
14 hours. In the figures of this section we present the results for
both content configurations. The red bars refer to the Amazon
content configuration and the blue ones refer to the FullHD.

Figure 3 shows that the Bitmovin player has the highest
download video bitrate for both content configurations. The
results of Flowplayer, Radiant MP, and VideoJS are very
similar to dash.js as those players are based on dash.js and
most likely adopt the same rate adaptation logic.

The video startup time is shown in Fig. 4. The results show
that the HAS Player has the lowest video startup time and
JW Player has the highest. Video startup time of Flowplayer,
Radiant MP, and VideoJS is very similar to dash.js with minor
differences. Interestingly, the number of stalls for the Amazon
profile is much lower than for the FullHD profile as shown
in Fig. 5 due to the fact that the former has a much higher
number of content representations providing a better match
to the bandwidth trajectory. The bandwidth trajectory has a
reduction of the available bandwidth at the very beginning
which does not match the lowest bitrate representation of the
FullHD profile and, thus, results in many stalls, at least for
some players.

The total time of stalls exposes additional findings about
the adaptation behaviour of the different players. As shown

TABLE II. INSTABILITY AND INEFFICIENCY. BLUE INDICATES BEST

AND RED INDICATES WORST.

in Fig. 6 the Bitmovin player has the lowest total time of
stalls for both profiles. Looking at the result for the FullHD
profile with five different content representations, the total
time of stalls is >20 sec for all other players which may
enormously affect the user perception. The results for the
Amazon profile are better due to the availability of more
content representations. Nevertheless, the total time of stalls
is still >20 sec for Radiant MP and VideoJS.

The number of quality switches is an important factor for
the smoothness of the video streaming behaviour. As we can
see in Fig. 7 it is twice as much for the Amazon profile as
more content representations are available. JW Player has a
very low number of quality switches for the Amazon profile
but we also noticed that this player is inefficient with respect
to bandwidth utilization (cf. download video bitrate).

The instability and inefficiency metrics for the FullHD
and the Amazon profiles are shown in Table II. Lower
values of the instability metric reflect smoother video quality
adaptation to the changing network characteristics. Lower
values of the inefficiency metric indicate that the player
rate adaptation algorithm more efficiently utilize the available
network throughput in order to deliver the media content to
the application. All tested players have fairly low values of
instability indicating a smooth adaptation behaviour with a
low number of quality switches. Only Radiant player has a bit
higher instability and the Shaka Player has a higher instability
but only for the Amazon profile. In general, the number of
quality switches using the Amazon profile is twice as much
as with the FullHD profile which can be explained by the
fact that the Amazon profile has much more representations
than the FullHD profile. Inefficiency is comparable for the
FullHD profile except for the HAS Player which has a
slightly higher inefficiency than the rest. Interestingly, JW
Player and Shaka Player has a much higher inefficiency for
the Amazon profile – both have the lowest download video
bitrate – and we again notice that Flowplayer, Radiant MP, and
VideoJS provides a similar result as dash.js.

In general, we observe quite a different behaviour of all
adaptive HTML5 players leading to different performance
results. A summary of the results is provided in Fig. 2.
All players adopt – more or less – a conservative approach
according to the achieved download video bitrate. It seems
that the Bitmovin player shows superior performance but also
has the highest video buffer level (up to 40 sec) compared to

______________________________________________________PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 534 ----------------------------------------------------------------------------



Fig. 2. Average results for Amazon and FullHD. Blue color indicates the best results and yellow indicates they might have the same adaptation logic

Fig. 3. Download video bitrate

Fig. 4. Video startup time

all others (approx. 12-20 sec). Various user studies suggest that
stalls should be avoided at all as they decrease the Quality of
Experience (QoE) significantly. Looking at the results for the
Amazon profile, only the Bitmovin player, the JW Player, and
the Shaka Player (with some outlier) achieve this goal.

The evidence from these results suggests the following:
(i) in networks with bandwidth fluctuations, the playback
quality significantly depends on the selected adaptive HTML5
player; (ii)it is reasonable to use suitable rate adaptation
algorithms for different groups of users depending on the state
of their network connections (e.g., dynamic switching of rate
adaptation algorithms can be applied); (iii) the number of stalls
depends on how many representations are available. The more
bitrates exist, the lower the number of stalls.

Fig. 5. Number of stalls

Fig. 6. Total time of stalls

V. CONCLUSIONS AND FUTURE WORK

In this paper we have evaluated eight adaptive HTML5
players which are actually and – some of them – massively
deployed in the real-world services. In order to conduct
the performance evaluations we developed an adaptive video
streaming evaluation framework. With this framework it is
possible to conduct a high number of experiments in a rel-
atively short amount of time providing reliable results. The
results of the experiments clearly show that the players have
a different behavior depending on the status of the network
characteristics and available content representations. Future
work will include adding new players (as they emerge on the
market), investigating how different adaptive HTML5 players
compete for the available bandwidth in a shared network and

______________________________________________________PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 535 ----------------------------------------------------------------------------



Fig. 7. Number of quality switches

optimizing different adaptation algorithms depending on the
network characteristics/conditions and the client devices.

REFERENCES

[1] Mininet. http://mininet.org/, (Online: accessed May 24, 2017).

[2] Selenium server. http://www.seleniumhq.org/, (Online: accessed May
24, 2017).

[3] Tclink. http://mininet.org/api/classmininet 1 1link 1 1TCLink.html,
(Online: accessed May 24, 2017).

[4] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson.
A Buffer-based Approach to Rate Adaptation: Evidence from a Large
Video Streaming Service. In Proceedings of the 2014 ACM Conference
on SIGCOMM, SIGCOMM ’14, pages 187–198, 2014.

[5] K. Hughes and D. Singer. ISO/IEC DIS 23000-19 Part 19: Common me-
dia application format (CMAF). Draft International Standard, ISO/IEC
JTC 1/SC 29/WG 11, Oct. 2016. Work in Progress.

[6] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency,
and Stability in HTTP-Based Adaptive Video Streaming With Festive.
IEEE/ACM Trans. Netw., 22(1):326–340, Feb. 2014.

[7] S. Lederer, C. Müller, and C. Timmerer. Dynamic Adaptive Streaming
over HTTP Dataset. In Proceedings of the 3rd Multimedia Systems
Conference, MMSys ’12, pages 89–94, 2012.

[8] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran.
Probe and Adapt: Rate Adaptation for HTTP Video Streaming At Scale.
IEEE Journal on Sel. Areas in Comm., 32(4):719–733, April 2014.

[9] T. Mäki, M. Varela, and D. Ammar. A Layered Model for Quality
Estimation of HTTP Video from QoS Measurements. In 2015 11th
International Conference on Signal-Image Technology Internet-Based
Systems (SITIS), pages 591–598, Nov 2015.

[10] R. K. P. Mok, E. W. W. Chan, and R. K. C. Chang. Measuring the
Quality of Experience of HTTP Video Streaming. In 12th IFIP/IEEE In-
ternational Symposium on Integrated Network Management (IM 2011)
and Workshops, pages 485–492, May 2011.

[11] C. Müller, S. Lederer, and C. Timmerer. An Evaluation of Dynamic
Adaptive Streaming over HTTP in Vehicular Environments. In Proceed-
ings of the 4th Workshop on Mobile Video, MoVid ’12, pages 37–42,
2012.

[12] R. Roverso, S. El-Ansary, and M. Högqvist. On HTTP Live Streaming
in Large Enterprises. In Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, SIGCOMM ’13, pages 489–490, New York,
NY, USA, 2013. ACM.

[13] Sandvine. 2016 Global Internet Phenomena Report: Latin America &
North America, 2016. Online: http://sandvine.com/ .

[14] T. C. Thang, H. T. Le, A. T. Pham, and Y. M. Ro. An Evaluation of
Bitrate Adaptation Methods for HTTP Live Streaming. IEEE Journal
on Selected Areas in Comm., 32(4):693–705, April 2014.

[15] C. Timmerer, M. Maiero, and B. Rainer. Which Adaptation Logic? An
Objective and Subjective Performance Evaluation of HTTP-based Adap-
tive Media Streaming Systems. arXiv.org [cs.MM], abs/1606.00341:11,
Jun 2016.

[16] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A Control-Theoretic
Approach for Dynamic Adaptive Video Streaming over HTTP. In
Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication, SIGCOMM ’15, pages 325–338, 2015.

[17] A. Zabrovskiy, E. Kuzmin, E. Petrov, and M. Fomichev. Emulation
of dynamic adaptive streaming over http with mininet. In 2016 18th
Conference of Open Innovations Association and Seminar on Informa-
tion Security and Protection of Information Technology (FRUCT-ISPIT),
pages 391–396, April 2016.

[18] A. Zabrovskiy, E. Petrov, E. Kuzmin, and C. Timmerer. Evaluation of
the Performance of Adaptive HTTP Streaming Systems. ArXiv e-prints,
Oct. 2017.

[19] S. Zhao, Z. Li, D. Medhi, P. Lai, and S. Liu. Study of user QoE
improvement for dynamic adaptive streaming over HTTP (MPEG-
DASH). In 2017 International Conference on Computing, Networking 
and Communications (ICNC), pages 566–570, Jan 2017.

______________________________________________________PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 536 ----------------------------------------------------------------------------




