
Software System in Hyperloop Pod

Ruslan Nikolaev
Waterloo University
Waterloo, Canada

Dinara Nikolaeva
National Research University
Higher School of Economics,

Moscow, Russia

Rinat Idiyatullin
Kazan State Power

Engineering University,
Kazan, Russia

Abstract—The Hyperloop is high-speed ground-based trans-
portation system concept; a supersonic train line stretching across
the country in airless tubes, which stands as competition for air,
train, and car transportation for distances of travel from 200 to
1100 km. This paper concentrates on software - applied in the
Hyperloop pod called Goose 3 [1], which was developed by the
team from University of Waterloo [2] - Waterloop [3]. This paper
is concentrated on roadblocks, that were faced during the design
and development process; to be more specific - building a reliable
and scalable infrastructure that allows for complete control of
the pod throughout the launch. In the pod, electronics and
software play a crucial role, as traveling at high velocities requires
immediate response to real-time vehicle conditions obtained from
sensors on-board, which raises it’s own unique challenges. This
paper looks at the work completed by team Waterloop in areas
of design of the electrical and software system.

I. INTRODUCTION

A. SpaceX competition

In this paper we look upon software problems, as well as,
we introduce problems, which were faced by team Waterloop
and theorize about our worries and possible solutions for future
work. In 2015-2018 SpaceX has been holding annual student
competition in order to advance research of the proposed idea,
as well as test it in different complications. Testing tube is 1.6
km long. Participating teams are not allowed to modify the
tube in any way [4].

The competition is judged based on two main criteria: the
highest speed achieved by team’s pod and completion of the
entire test track; i.e. the pod has traveled the length of the
entire tube. During the competition, the first week is spent
directly with SpaceX engineers verifying the pod design and
testing every pod sub-system. The weekend is used for the
competition race.

The competition is open for any applications of propulsion,
from friction wheels to linear induction motor, to get up to
speed. Our academic research into the Hyperloop concept has
focused mostly on system integration of electrical and software
engineering. The tools, sketches and code is available under
MIT license [5].

As part of the SpaceX competition, team Waterloop had
developed a complete solution for the pod as well as the
entire infrastructure build around the vehicle, excluding the
competition test track, which is in the SpaceX headquarters in

Fig. 1. Software system breakdown. Divide and conquer approach to break
down software system into submodules that are later merged into a complete
system

California. The entire pod is based on six major subsystems:
Electrical, Software, Shell, Propulsion, and Brakes. Goal of
Team Waterloop from the day of the team initiation is to design
a complete and cost-efficient Hyperloop pod.

B. Problem statement

Working with a vehicle that is designed to operate at
extreme speeds there is a variety of challenges that must
be solved in order to provide complete control over the pod
during the launch in the vacuum tube. Safety, being the main
priority for any human method of transportation is subject
to extremely high standards. The recipe to a successful pod
launch during the competition, is built upon team’s ability
to precisely locate the pod inside the tube, and allow for a
continuous control of the pod at all times during the launch. An
additional challenge is introduced by the SpaceX competition
rules, where participating teams are not allowed to alter the test
tube to ensure the fairness of race. These are the challenges
that team Waterloop was able to overcome in their system
design.

C. Proposed solution

A divide and conquer approach was used to build the com-
plex software system. The task was broken down into smaller
problems: (1) Embedded, (2) Communication, (3) Control,
that later were merged together into a single system. Fig. 1
on page 1 demonstrates the software system implementation
breakdown.

Embedded system is directly responsible for collection and
aggregation of data from all the on-board sensors and execution
of control commands on various pod’s control components.

Communication system is responsible for transmission of
all the data between the control-panel and embedded system.
Fig. 2 on page 2 provides a general overview of the system

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

Fig. 2. System overview showing communication methods

that has been developed with all of the communication methods
and main components displayed.

II. DETAILED SYSTEM OVERVIEW

A. Embedded system

In abstract, embedded system is built to carry out two
main tasks: (1) Collection of sensor data and (2) Execution
of commands from control-panel. Since electronic components
are spread out across many locations on the pod, use of a local
network is required to allow for communication between all
on-board sensors. The concept that is currently being used in
cars with CAN-BUS networks will be used in the Hyperloop
pod as well. Detailed overview of the entire pod’s embedded-
systems is given in Fig. 3 on page 3.

To develop a scalable system, a Master-Slave design will
be used to create an abstraction of communication and data
collection. In this case, two types of computing units will be
used Master Units (MUs) (Master Units will be discussed in
more details in Control system section) and Hub Units (HUs).
With such design in place, the number of sensors on-board
of the pod can be expanded easily by adding additional Hub
Units to the main CAN-BUS network. Arduino Mega was the
selected boards for Hub Units, due to it’s low cost, off-the-shelf
availability, expansion capability due to it’s large community
of enthusiasts around the world.

A CAN-BUS network will be built between Master Units
and Hub Units, where Hub Units will have minimal logic and
a single purpose of packaging low-level sensor output into
binary packets and unpacking high-level control commands to
low-level control components; and Master units will be used
for data transmission to and from the control-panel.

1) Collection of sensor data with Hub Units: Embedded
system will collect data from sensors through Hub Units. Fig.
5 on page 4 outlines the pod’s sensor map. Hub Units are

TABLE I. BINARY PACKET STRUCTURE BREAKDOWN

[0:2] [3:9] [10:27] [28:45] [46:63]

3 bits 7 bits 18 bits 18 bits 18 bits
Packet
Type

Packet
Name

Data value 1 Data value 2 Data value 3

responsible for wrapping data into packets and transmitting
the packets through CAN-BUS network. For efficient use of
transmission channels, it is best to define a custom data struc-
ture. Table I on page 2 demonstrates a binary data structure
that will be used to transmit data from Hub Units to Master
Units. In order to develop a safe controlled pod, Waterloop has
put together a list of sensors that must be installed on-board,
which can be found in Table 4 on page 4.

2) Execution of control-panel commands: In cases when
a manual control is required over the pod, like initiating the
pod launch script or engaging brakes in case of emergency
conditions caused outside the tube. The control-panel will
act as a client, responsible for sending commands to the
Master Unit which will be the server in in communication
channel. All control commands received by Master Unit will
be forwarded to Hub Units (Control Hub specifically), through
CAN-BUS which in place will be sent to pod control elements.
Components such as Liquid Cooling, Friction-Drive Brakes,
EC-Brakes, Rear-friction solenoids, Front-friction solenoids
will be controlled through a series of relays that use Digital
input to toggle elements’ state On or Off.

B. Control system

Control system is responsible for three primary tasks:
(1) Transmission of data to control-panel, (2) Execution of
pod launch script, and (3) Execution of emergency braking
procedures. The main computing device of control system
is Raspberry Pi 3B used for all Master Units. The device
was selected based on it’s low cost, off-the-shelf availability,
expansion capability due to it’s large community of enthusiasts
around the world and Linux operating system.

1) Transmission of data to control-panel with MUs: Master
Units (MUs) will collect data from Hub Units, and use the
collected information to adjust pod state during the launch.
For efficient use of transmission channels, it is best to define
a custom data structure. Listing 1 on page 2 demonstrates a
JSON structure that will be used to transmit data from Master
Units to control-Panel (Similar to binary data structure, but
serialized into JSON object).

t y p e CommPacketJson s t r u c t {
Time i n t 6 4 ‘ j s o n : ” t i me ” ‘
Type s t r i n g ‘ j s o n : ” t y p e ” ‘
Name s t r i n g ‘ j s o n : ” name ” ‘
Data [] f l o a t 3 2 ‘ j s o n : ” d a t a ” ‘

}
Listing 1. Serialized JSON data structure written in Golang

To create a fast communication channel with minimal
delay, multiple network protocols such as TCP, UDP and
QUIC have been considered. While TCP loses to UDP in data
transfer speed due to its need for a handshake process, UDP

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 367 --

Fig. 3. CAN-BUS network as created in Waterloop’s Goose 3 pod

also introduces a problem of unordered data streams in the
communication channel [7]. Note, UDP has been recognized as
the industry standard for all of the wirelessly controlled devices
and vehicles due to its high data transfer speed, however
the issue of unordered streams still persists. To solve this
problem, Waterloop used QUIC protocol developed by Google
and released to public in 2013 [8]. QUIC is built on top of
UDP, but solves the problem of ordering data by introducing
multiplexing of streams. Based on the results of series of tests
described in Fig. 6 on page 4, the efficiency of multiplexing
in QUIC protocol has been proved. Hence, a decision has
been reached that each individual on-board sensor and control
element will receive its own data stream.

2) Execution of launch script with Master Units: Master
units will also be responsible for execution of pod launch
script. Since, in its original design, the pod is developed to
move at sonic speeds, it is unsafe to let a human pilot handle
the task of controlling the pod. In addition, since the pod
can only be communicated with through an in-tube wireless
network, the entire pod control system has to account for the
network interruptions that might occur in the tube. Hence, the
safest solution is to create an entirely autonomous pod that will
have an on-board machine to execute the pod launch script.

To create a script capable of controlling the pod at sonic
speeds a powerful navigation system must be developed for
the vehicle that will allow for precise pod positioning inside
the tube. Section II-B4 on page 3 describes the navigation
system in it’s entirety. In addition, since Master Units are
the computers responsible for running the pod launch script
there is a need for redundancy measures that must be build
to avoid pod stoppage in case of an unexpected Master Unit
shutdown (Note, this is an important implication for a real-
world scenario, because it would not be viable to stop all of
the pods in the tube in case one of them experiences a Master
Unit malfunction).

To solve this problem, Waterloop is using a Deterministic

Finite Automata (DFA) that is distributed between multiple
Master Units running in parallel. Fig. 7 on page 5 describes the
pod state machine and triggers that cause state transitions. The
consensus between Master Units network is achieved using
a Raft Algorithm, [10]. The only change that is made to
the algorithm is predefined initial node hierarchy instead of
randomly generated one. Three Master Units on-board of the
pod will be running the launch script with one of them as
ACTIVE MU and others as IDLE. In case of the active MU
FAILURE, heartbeat, established between all three MUs, will
notify one of the other MUs to move into an ACTIVE state
and continue execution of the launch script, while a watchdog
on the FAILED MU will cause a MU reboot and set its state to
IDLE once machine has restarted. Fig. 8 on page 6 describes
the complete Master Unit recovery procedure. Therefore in
case of a Master Unit failure, the system iterates through
IDLE MUs without interruption of the launch script and only
a simultaneous failure of all three Master Units will cause pod
emergency braking procedures.

3) Execution of emergency braking procedures with
Watcher Unit: In order to ensure the pod can be brought to a
complete stop in case of failure of all Master Units (MUs), a
Watcher Unit (WU) will be overseeing the state of all Master
Units using heartbeat. In case the Watcher Unit doesn’t detect
heartbeat from any of the three Master Units, an emergency
braking procedure will be triggered; where the main pod
battery will be shut off and the physical failsafe brakes trigger
will engage upon power shutdown. Fig. 8 on page 6 shows the
conditions at which the Watcher Unit engages the emergency
braking procedures. To ensure a complete independence of the
Watcher unit from the rest of the system, the watcher unit will
be powered separately using an independent Li-Po battery.
Watcher Unit is built using a Raspberry Pi Zero, which has
been chosen due to its smaller dimensions, low cost, and off-
the-shelf availability.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 368 --

• Sensor Hubs

◦ Front Sensor Hub

IMU Accelerometer
Friction Brakes temperature
Front-Wheel temperature
Photoelectric Distance sensors x2
MEMS-based 360 Tilt sensor
Front friction piston solenoid temperature

◦ Central Sensor Hub

IMU Accelerometer
Liquid Cooling pressure
24V Battery current
EC-Brakes temperature x4
Liquid Cooling temperature IN
Liquid Cooling temperature OUT
24V Battery temperature
EC-Brakes Solenoid temperature x2
Main Battery temperature x4

◦ Rear Sensor Hub

IMU Accelerometer
Rear-Wheel temperature
Photoelectric Distance sensors x2
Friction-drive motor temperature x2
Rear friction piston solenoid temperature
x2
ESC temperature

• Control Hub

◦ Main control Hub

Liquid Cooling
Friction-Drive brakes
EC-Brakes
Rear friction solenoid x2
Front friction solenoid x2

Fig. 4: List of all sensors on-board of the pod distributed between sensor

and control hubs. Note, different distributions are possible to create more

redundancies, only one possible approach is shown here

Fig. 5. Goose 3 sensor map

4) Navigation System: In order for Hyperloop to become
a safe method of transportation it must have an accurate
navigation system that will be used to determine the location
of the pod in the tube. Fig. 9 on page 6 describes the data flow

(a) Histogram

(b) Box Plots

Fig. 6. TCP vs. QUIC with no multiplexing vs. QUIC with multiplexing

in navigation system. Note, the navigation system has proved
to be a challenging task due to the restrictions of SpaceX
competition, where no modifications can be applied to the test
tube, which means that the entire navigation system must be
completely self-contained in the pod.

To ensure accuracy of the system, an odd number of
independent acceleration sensors will be used to create a basic
majority voting system and a Kalman filter [9] will be applied
after to remove spikes in data. Finally, for additional accuracy
a shaft encoder will be installed on the main friction drive
shaft to read wheel’s rounds per minute (RPM).

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 369 --

Fig. 7. Pod DFA state machine

Two other methods have been considered to locate the pod
inside the tube. (1) Laser Range finder and (2) Color sensor
and SpaceX in-tube color stripes. However, Laser Range finder
can significantly lose its precision at long ranges as track
imperfections constantly introduce changes to pod’s pitch, roll
and yaw, which can result in sensor reading wrong distance.
As a solution to possible navigation needs, SpaceX provided
in-tube color stripes that have a single purpose to allow teams
have an in-tube navigation system. However, selecting a color
sensor proved to be a challenge as the range of the sensor has
to be adjusted with a third party lens, which is difficult to find;
and all of the off-the-shelf sensors are designed for close range
operation.

C. Control panel

In order to provide with control over the pod during
the launch, a control-panel Graphical User Interface (GUI)
will be developed. For best performance with QUIC packets,
a desktop application will be developed for x64 Windows
machines. The Control panel will provide with various pod
control elements that will primarily be used for testing outside
of the competition tube. While the entire pod launch script is
executed from the on-board computers, having minimal control
elements is vital for testing purposes. In addition, the Panel
will be used for pod telemetry visualization purposes. Fig. 10
on page 6 shows the proposed Control Panel GUI.

D. Testing

Two types of testing procedures will be used to validate
correctness of pod’s software and embedded systems. Unit
and Integration tests will be developed to test software, and
Hardware in the Loop (HiL) tests will be used for testing
of embedded systems. To run HiL tests, there is a need for
a simulation environment that will allow running tests in an
environment as close to real-life conditions as possible. Fig.
11 on page 6 describes a HiL testing rig that will be used to
test pod’s embedded systems. To control the simulation and
verify test results, control-panel will be replaced with control-
machine, sensors will be replaced with HiL transmitter that
is capable of simulating individual sensors output (via I2C
connection) or send packets directly to CAN-BUS network
and will take test input from a test computer.

To test individual sensors (that are not included in HiL
testing) a series of Unit tests will be developed to test sensor
accuracy and best installation methods.

III. RESULTS

The system presented above addresses all of the challenges
described in the initial problem statement. It allows for (1)
Collection of sensor data, (2) Execution of control commands,
and (3) Execution of pod launch script and provides with
powerful testing features as well as post-launch analysis.

The single point of failure identified in the system is a
failure of the CAN-BUS , which would result in a controlled
breaking procedure initiated by Watcher Unit. The following
procedure is the only safe method to keep the pod from
damaging the tube and the team will use wire shielding to
minimize the chance of CAN-BUS network getting damaged.
Finally, every single element in the system can be tested
through a series of unit tests or integration tests that will further
decrease likelihood of failures.

IV. FUTURE WORK

A. Switching CAN-BUS network to Ethernet network

The system can be further improved by switching CAN-
BUS network on the pod for an Ethernet network. Ethernet
(100 Mbps) has much faster bandwidth vs. CAN-BUS (1
Mbps) and can potentially create a much larger system or
can potentially allow for faster sampling rate of sensors. How-
ever, since Ethernet networks are usually centralized through
Ethernet Hubs, the change could potentially introduce new
vulnerabilities to the system such as routers. All in all, the
current pod, with existing number of on-board sensors, simply
does not require such high-speed network and only introduces
additional problems to the configuration and increases the costs
(additional router and Arduino Ethernet shields costs)

B. Accommodating for multiple pods in the tube

Finally, the current system has been built with a single
pod in mind (based on SpaceX competition guidelines). In the
real-world application the system will be expanded to many
pods in the tube at a time, which creates the need for inter-
pod communication, as braking of one pod, will require the
braking of all other pods traveling behind.

Hyperloop Alpha white-paper has theorized a minimum
6km distance between two pods at any time and a braking
distance of 3km for each pod [11]. With these assumptions, the
simplest solution would be to allow inter-pod communication
so that the malfunctioning pod can notify others about its
braking state. However the following system is reliant of pod’s
on-board computers that are constantly functioning in extreme
conditions (experiencing acceleration or deceleration).

A better solution to the problem would be making changes
to the Hyperloop tube which is a static object and that is
capable of using much more reliable communication methods
such as wired networks. In our vision, in an application
outside of SpaceX competition, the tube will become subject
to changes (currently SpaceX competition rules do not permit
teams altering test tube), which will allow for augmentation
of on-board pod navigation system with tube sensors that can
track position of the pod with better precision and do not have
to rely on the wireless network for communication. A number
of sensors will be installed throughout the tube that will be
able to track the position of all pods in the tube at the same

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 370 --

Fig. 8. MU recovery cycle. Complete transition cycle that allows for stateless recovery procedure

Fig. 9. Navigation system outline. Use of three IMUs is required to have a
voting ability to verify the acceleration output of the sensors

Fig. 10. UI with minimal required control elements and real-time data
visualization components

time (possible candidates for sensors are laser sensors due to
their vacuum compatibility).

In this case, the system will use a similar approach to
dispatcher centers currently used for airplane navigation. Fig.
12 on page 8 displays the communication system of the
dispatcher and the pods as well as in-tube navigation sensors.
Using a number of sensors installed throughout the tube:

Fig. 11. HiL test rig developed to simulate real pod launch conditions and act
as a complete system integration test

combination of time it took a pod to travel between sensors
and the distance between the sensors will produce accurate pod
velocity. The tube will provide the dispatcher with location of
every pod in the tube as well as their speed. In case of one
pod braking, the tube will detect braking pod’s deceleration,
will notify the dispatcher, which in turn will signal other pods
traveling behind the malfunctioning pod to break.

Implementation of such solution will require creation of
an Ethernet network between tube sensors and the dispatcher
panel. Note in this case, the dispatcher panel is an extended

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 371 --

(added functionality to handle simultaneous control of multiple
pods) version of control-panel previously described in the
paper. The following solution has not been implemented by
Waterloop yet, but has been thoroughly researched.

V. CONCLUSION

This paper presented the software and embedded design of
the Goose pod, which participated in the SpaceX Hyperloop
Competition from 2015 to 2017. As well as, a complete testing
configuration and a look into possible future improvements that
can be made. The system allows for very few points of failure
and is capable of scaling to much larger pods as well as general
transferability to other applications that require remote control
over partially-autonomous vehicles. We can see the following
system being used for control of various devices such as robots,
rockets, trains, ships and more. The entire embedded system
has been developed using off-the-shelf components such as
Arduino Mega, Raspberry Pi 3B and Raspberry Pi Zero. All
of the software is published under MIT license on Waterloop’s
Github account [5]. The total cost of the system has been kept
under $300 (not including the costs of other embedded and
electrical components such as sensors, batteries and control
elements).

ACKNOWLEDGMENT

This projects successful outcome was the result of a
massive team effort of the Waterloop, consisting team members
[3] across Mechanical Engineering, Electrical Engineering,
Computer Science, Business Management and Administration
departments of Waterloo. This work could not have been
completed without their contribution to the project.

The Waterloop was fortunate to have sponsors, supporters,
press and Kickstarter campaign [6], who generously provided
help and funding for this project, their support is hereby
acknowledged and well appreciated. Additionally, we would
like to thank SpaceX for organizing and hosting series of
competitions.

REFERENCES

[1] Goose - is a Hyperloop pod made by Waterloo University team, Goose
X, (Web-page). https://teamwaterloop.ca/racer-goose-ii/

[2] Official web-page of University of Waterloo https://uwaterloo.ca/

[3] Waterloop - team members, Waterloop Team,, (Web-page). https://
teamwaterloop.ca/team/

[4] SpaceX, SpaceX Hyperloop Test-Track Specification,, SpaceX.(Online
Article), 2016. https://cdn.atraining.ru/docs/TubeSpecs.pdf

[5] Official page of Hyperloop Goose project with open-source materials
https://github.com/waterloop

[6] Kickstarter, Waterloop: The Canadian SpaceX Hyperloop Competition
Team,, (Web-page). https://www.kickstarter.com/projects/1629380361/
waterloop-the-canadian-spacex-hyperloop-competitio

[7] Comparing TCP and UDP Speed and Packet Loss Over LAN and WAN
http://milliways.bcit.ca/res/report.pdf

[8] QUIC, a multiplexed stream transport over UDP https://www.chromium.
org/quic

[9] A New Approach to Linear Filtering and Prediction Problems 1960 https:
//www.cs.unc.edu/∼welch/kalman/media/pdf/Kalman1960.pdf

[10] In Search of an Understandable Consensus Algorithm, https://raft.
github.io/raft.pdf

[11] Hyperloop Alpha white paper http://www.spacex.com/sites/spacex/files/
hyperloop alpha.pdf

Fig. 12. Pod-Tube-Dispatcher communication system

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 372 --

