
Active Control with Backoff Algorithm for Reducing
Broker Load in Smart Spaces

Andrey S. Vdovenko
Petrozavodsk State University (PetrSU)

Petrozavodsk, Russia

vdovenko@cs.karelia.ru

Abstract—Performance degradation on broker side and the
subsequent possible failure is an important issue in smart spaces.
One of the reasons for this problem is the increase in the
number of requests to the broker beyond what it can handle. The
broker can have own management tools to solve such problematic
situations. More often, it is more difficult to implement relevant
approaches to broker itself. Our suggestion is to implement
additional mechanism on agents sides to reduce fault events. The
mechanism is to add a timeout to the persistent request, the value
of which is selected based on the current system state. For timeout
determining we suggest active control with adaptive strategy and
improve it by adding backoff algorithm.

I. INTRODUCTION

Smart spaces can be a perspective environments for de-
ploying IoT applications due to the possible organization of
dynamic detection and interaction between physical objects
with use of the available context in their locations [1], [2]. We
consider smart spaces deployed in localized resource-restricted
IoT environments consumed by a group of mobile clients [3].
Such a smart space is typically associated with a physical
spatial-restricted place equipped with a variety of devices,
where everyday life objects, alongside traditional computers,
become data processors and service constructors to their users,
which use mobile devices for interactions.

A smart space requires a software platform, addressing
interoperability across heterogeneous devices and providing
multiple services. This paper considers the Smart-M3 platform,
which provides open source middleware for implementation of
the smart space concept in IoT environments [4]. The central
component of the M3 architecture is the semantic information
broker (SIB). Each SIB manages and shares a knowledge
base with all the smart space participants. The knowledge
base is semantic, in the form of the RDF triplestore, and
operations with it through SSAP interaction protocol. In IoT,
the broker can be hosted by heterogeneous devices as ordinary
computers or embedded devices with low-capacity as single-
board computers or wireless routers [5].

Large number of simultaneous requests can roughly reduce
broker performance or even call its fault. The broker has own
management tools to resolve such situation, but in some cases
it is better to add additional mechanisms on the agent’s side.
To resolve this issue from mobile client, they can perform
a persistent query with timeouts. But there stands problem
of what is an optimal way to calculate such timeouts. We
suggest the use of active control with adaptive strategy [6],
which could be improved by backoff algorithm. Using of active
control allows to reduce broker load for different requests and

backoff algorithm is intended to avoid simultaneous of the
same requests from different clients.

The rest of the work is organized as follows. Section II
describes Smart-M3 platform management tools for request
pools. Section III shows the implementation of the suggested
approach with use of active control for many clients with
backoff algorithm. Section IV summarizes our current results.

II. REQUESTS POOL PROBLEM IN SMART SPACES

When working in smart spaces, there are problems associ-
ated with the overall performance of the broker and individual
agents, most often mobile clients. Problems with the perfor-
mance of the broker arise because of collisions of requests
from many agents, that send them simultaneously or with small
delays. To resolve such situations, the broker has operations
to manage the processing of the incoming request flow [7].
Table I describes management tools that can be applied on
the broker and client sides to solve overload situations. The
broker can build a queue of requests in the order of their
receiving [8]. As an optimization of this approach in the case
of mobile clients, which rapidly send same requests, the broker
could combine several queries into sets over the data area, and
doesn’t perform unnecessary operations with the database and
sends the result immediately [9].

The broker’s performance with high query intensity is
strongly affected by the amount of information retrieved and
the execution of additional operations (inserting and deleting
triplets, SPARQL queries and subscription maintenance) be-
cause of which the queue begins to grow endlessly. In such
cases, the broker can ignore the arrival of new requests, or
do not perform queries that are more complicated in time and
do not send out-of-date notifications [10]. But in this case,
this strategy can adversely affect the work of the application
system, so it is possible to set priorities performed requests
for active agents, for example, when the highest priority is
given to requests of service agents, and customer requests are
performed in the best effort.

Problem of fault tolerance is vital issue of interests in
related fields of distributed systems and client server commu-
nication networks [11], [12]. Increased loads leads to faults
for them and a large bunch of problems in that cases cause
by using Wireless LANs, because of higher losses percent due
to collisions of radio signals and low-capacity routers. That
is the same for the smart spaces issue. They use different
approaches to achieve fault tolerance quality similar with the

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

TABLE I. MANAGEMENT TOOLS FOR OVERLOAD CONTROL

Host Tool Specification

SIB
FIFO processing Requests pool processed in order of

receiving
Queries caching Caching same queries in memory with-

out interaction with database
Request reject Requests queue have length based on

broker host capacity. Algorithm rejects
requests after they number are bigger
than maximum queue length

Clients Active control strategy Long-term requests performed with
timeout. Timeout value calculation is
based on current system situation

Smart-M3 broker and one of them is backoff mechanism that
implemented by clients [13].

Management on the side of the broker does not always
solve the problems related to mobile clients, for example in
the field of delivery of notifications. Therefore, in this case,
the client can perform its own management, for example,
by addition to the subscription operation of timeout checks,
or completely replacing the subscription operation for inde-
pendent active control of data updates. Fig. 1 demonstrates
request pool to the broker from m mobile clients in case of
active control. For simplicity, we assume that clients are the
same and they perform same persistent requests. Each client
sends n requests, denoted by Ri. Each Ri request repeats
after timeout value tij , where j = 1, ..,m is the index of
repeat, this relation can be denoted by tij = f(Ri, j). The
broker receives requests and maintains queues of them and
starts processing with intensity λpr. Processing intensity mean
that if the client request pool will grow with intensity greater
than λpr, broker would stop answering on requests even with
the use of management tools. Rational choice of values for tij
timeouts would allow to avoid such situation.

III. ACTIVE CONTROL IMPROVED BY BACKOFF

ALGORITHM

The choice of the timeout value depends on the current
situation in the system, i.e., the timeout is shorter when the
data is updated more frequently and the load on the system
small and bigger otherwise. To determine the value of the load
on the broker, the query execution time can be used, since
The average time for executing the query during a no load

Fig. 1. Requests pool to the broker from m clients with same n requests of
different types.

Algorithm 1 Active control with backoff algorithm for n
persistent requests.

Require: initialization of active control on client side
1: for i = 0 to n do
2: {start thread for Ri performing}
3: loop
4: doQuery(Ri);
5: tact = activeControl(Ri);
6: tbck = backoffTimeout(Ri);
7: sleep(tact + tbck);
8: end loop
9: end for

is known. Clients often fulfill their requests in parallel with
similar parameters for determining the value of the timeout.
In this case, it becomes necessary to determine the additional
delay, aimed at reducing the number of simultaneously sent
requests. The best mechanism for this purpose is the backoff
algorithm. Its meaning is a successive increase in the timeout
from which the size of the delay is randomly selected in the
event of a collision of requests, for example, a significant
increase in the execution time of the request. Due to that,
total value of timeout for the request is equal to sum of active
control timeout for i request and backoff algorithm timeout
for client on current j repeat round, i.e., tij = tact

ij + tbck
j .

Algorithm 1 gives pseudo code for use of timeouts with n
persistent requests to reduce broker load by spreading requests
on the timeline. Functions for calculation of active control and
backoff timeouts are described in Algorithm 2 and Algorithm 3
correspondingly.

a) Active control timeout: Following our previous
work [14], we consider the adaptive strategy of active con-
trol. It implements “adaptation to losses” when the client
reduces its check timeout if updates losses are observed and
increases the check timeout, otherwise. In fact, the adaptive
strategy is a generalization of the TCP algorithm of additive–
increase/multiplicative–decrease (AIMD).

Generalized AIMD-like adaptive strategy has the following
form. Let j = 1, 2 . . . be a sequence of the checks done by
the client, tj be the time period between consecutive checks
j − 1 and j, and kj be the number of losses during tj . At
the end of tj−1 the client makes the decision about the next
tj period using tj = f(tj−1, kj−1). In the simplest case, we
straightforwardly apply the AIMD algorithm as follows.

tj =

{
tj−1/α, kj−1 > 0
tj−1 + δ kj−1 = 0,

(1)

where α > 1 stands for decrease and δ > 0 for increase
values of check timeout length. More complete variant of this
equation is described in our previous work [14].

In our previous work [6], we obtain analytical estimates
for parameters that can be used to tune strategy such as T
the expected length of check timeout before a multiplicative
decrease, N the number of consecutive growths and K metrics
for different types of a loss flow.

In this work we generalize adaptive strategy for m clients
with n requests on each. Each client for each request have

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 398 --

Algorithm 2 Active control algorithm for n persistent requests.

function activeControlTimeout(Ri):
1: kj = getQueryLosses(Ri); {receive losses number}
2: calculateEstimates(); {recalculate estimates}
3: if kj = 0 then
4: tact

ij = tact
i(j−1) +N ∗ δ;

5: if T − tact
ij ≤ 0 then

6: {use previous timeout value to avoid losses}
7: tact

ij = tact
i,j−1;

8: end if
9: else

10: tact
ij = tact

i,j−1/α;
11: end if
12: return tact

ij ;

own calculations of timeout values denoted before by tact
ij ,

where i is the index of request in the range of one client.
Algorithm 2 show implementation of adaptive strategy cor-
respondingly with (1) for n persistent requests with use of
analytical estimates. For each request starts a separate thread to
parallel execution of queries. After each query processing, we
calculate estimates to reflect on the current system situation.
The number of consecutive growths N is used for a fast
increase of tij to its high bound. Check current tact

ij values
and if they are bigger than the expected length T , we use
previous timeout value.

b) Backoff timeout: Adaptive strategy in active control
has limitations in the case of many parallel clients. That is
because of the same parameters for requests across all clients,
which mean that requests will be performed in the same
time and this will lead to performance degradation. To spread
requests on timeline suggested use backoff algorithm for each
request on detecting performance degradation.

The main idea in the implementation of the backoff algo-
rithm for smart spaces is event detection when we need to use
it. The most simplest way is a measure of average round trip
time (RTT), i.e., we know the duration of the operation in most
of cases and if the operation takes more time we need to use
the backoff algorithm to improve this by reducing simultaneous
request number. If first use doesn’t give success, then we need
to repeat backoff algorithm until RTT gets close to average.

Standard backoff algorithm can be described by following
equation:

tbck
j = min(tbck

j−1 ∗ factor,maxT imeout), (2)

where factor ≥ 2 and maxTimeout ≤ 5 ∗
average query duration, that stands for stopping increase
backoff value after 5 rounds. This algorithm is currently in
use in all 802.11 standards.

To add additional randomize for backoff value selection
can be used variation described with following:

tbck
j = tbck

j + variation(tbck
j ∗ seed), (3)

where variation is random function that returning value, which
follows normal distribution and seed is for random initializa-
tion.

Algorithm 3 Backoff algorithm for clients.

Require: j = 0 {j is own for each thread}
function backoffTimeout(Ri):

1: j++;
2: {if backoff was reset on previous round}
3: if tbck

j = 0 then
4: tbck

j = minTimeout;
5: end if
6: {determine performance level}
7: duration = getLastQueryDuration(Ri);
8: if duration ≤ getAverageQueryDuration(Ri) then
9: tbck

j = 0;

10: return tbck
j ;

11: end if
12: {calculate backoff timeout}
13: tbck

j = min(tbck
j−1 * factor, maxTimeout);

14: tbck
j = tbck

j + variation(tbck
j * seed);

15: return tbck
j ;

Algorithm 3 shows how the backoff algorithm can be
implemented for active control to decrease simultaneous re-
quests with use of equations (2) and (3). Function store
value of previously calculated timeout and reset it to zero on
performance stabilization. The constant minTimeout is the start
value (e.g., 100 ms). The constant maxTimeout is upper bound
to timeout (e.g., 1 minute). The constant factor is coefficient of
timeout grow (e.g., 2). The constant seed is used for random
fluctuations and can be equal to system time. Duration of
last query is less or equal to average value we stop backoff
algorithm by setting its timeout to zero.

IV. CONCLUSION

We describe our approach to resolve problem of high
request pool of mobile clients to broker. Our suggestion is
to use active control for persistent queries with improving it
by backoff algorithm to avoid simultaneous requests. Improve-
ments are achieved by reducing the number of requests to the
broker, as well as in the event of a decrease in the intensity
of broker processing, clients begin to be distributed on a time
line to allow the broker to stabilize its work. The direction of
our future work is evaluation of the proposed solution with
the use of an experimental system consisted of services and
clients.

ACKNOWLEDGMENT

This research is financially supported by the Min-
istry of Education and Science of Russia within project
2.5124.2017/8.9 of the basic part of state research assign-
ment for 2017–2019. The work is implemented within the
Government Program of Flagship University Development for
Petrozavodsk State University in 2017–2021.

REFERENCES

[1] J. Honkola, H. Laine, R. Brown, and O. Tyrkkö, “Smart-M3 information
sharing platform,” in Proc. IEEE Symp. Computers and Communica-
tions (ISCC’10). IEEE Computer Society, Jun. 2010, pp. 1041–1046.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 399 --

[2] L. Roffia, F. Morandi, J. Kiljander, A. D. Elia, F. Vergari, F. Viola,
L. Bononi, and T. Cinotti, “A semantic publish-subscribe architecture
for the Internet of Things,” IEEE Internet of Things Journal, vol. PP,
no. 99, 2016.

[3] D. G. Korzun, S. I. Balandin, A. M. Kashevnik, A. V. Smirnov, and A. V.
Gurtov, “Smart spaces-based application development: M3 architecture,
design principles, use cases, and evaluation,” International Journal of
Embedded and Real-Time Communication Systems (IJERTCS), vol. 8,
no. 2, pp. 66–100, 2017.

[4] F. Viola, A. D’Elia, D. Korzun, I. Galov, A. Kashevnik, and S. Ba-
landin, “The M3 architecture for smart spaces: Overview of semantic
information broker implementations,” in Proc. of the 19th Conference
of Open Innovations Association FRUCT, S. Balandin and T. Tyutina,
Eds. IEEE, Nov. 2016, pp. 264–272.

[5] S. Marchenkov, D. Korzun, A. Shabaev, and A. Voronin, “On appli-
cability of wireless routers to deployment of smart spaces in Internet
of Things environments,” in Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications (IDAACS), vol. 2.
IEEE, Sep 2017, pp. 1000–1005.

[6] A. S. Vdovenko, O. I. Bogoiavlenskaia, and D. G. Korzun, “Study of
active subscription control parameters in large-scale smart spaces,” pp.
344–350, Nov 2017.

[7] L. Ferdouse, A. Anpalagan, and S. Misra, “Congestion and overload
control techniques in massive M2M systems: a survey,” Transactions
on Emerging Telecommunications Technologies, vol. 28, no. 2, 2017.

[8] L. De Cicco, G. Cofano, and S. Mascolo, “Local SIP overload con-

trol: Controller design and optimization by extremum seeking,” IEEE
Transactions on Control of Network Systems, vol. 2, no. 3, pp. 267–277,
2015.

[9] M. Knuth, O. Hartig, and H. Sack, “Scheduling refresh queries for
keeping results from a sparql endpoint up-to-date,” in OTM Confeder-
ated International Conferences” On the Move to Meaningful Internet
Systems”. Springer, 2016, pp. 780–791.

[10] M. Ohta, “Overload control in a SIP signaling network,” in Proceeding
of World Academy of Science, engineering and technology, 2006, pp.
205–210.

[11] A. S. Tanenbaum and M. Van Steen, Distributed systems: principles
and paradigms. Prentice-Hall, 2007.

[12] A. Lukyanenko, A. Gurtov, and E. Morozov, “An adaptive backoff
protocol with markovian contention window control,” Communications
in Statistics-Simulation and Computation, vol. 41, no. 7, pp. 1093–1106,
2012.

[13] D. Kuptsov, B. Nechaev, A. Lukyanenko, and A. Gurtov, “How penalty
leads to improvement: A measurement study of wireless backoff in ieee
802.11 networks,” Computer Networks, vol. 75, pp. 37–57, 2014.

[14] D. Korzun, M. Pagano, and A. Vdovenko, “Control strategies of sub-
scription notification delivery in smart spaces,” in Distributed computer
and communication networks, ser. Communications in Computer and
Information Science (CCIS), V. Vishnevsky and D. Kozyrev, Eds.
Springer International Publishing, 2016, vol. 601, pp. 40–51.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 400 --

