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Abstract—Perceptual measurements have typically been recog-
nized as the most reliable measurements in assessing perceived
levels of reverberation. In this paper, a combination of blind
RT60 estimation method and a binaural, nonlinear auditory
model is employed to derive signal-based measures (features)
that are then utilized in predicting the perceived level of rever-
beration. Such measures lack the excess of effort necessary for
calculating perceptual measures; not to mention the variations
in either stimuli or assessors that may cause such measures to
be statistically insignificant. As a result, the automatic extraction
of objective measurements that can be applied to predict the
perceived level of reverberation become of vital significance.
Consequently, this work is aimed at discovering measurements
such as clarity, reverberance, and RT60 which can automatically
be derived directly from audio data. These measurements along
with labels from human listening tests are then forwarded to a
machine learning system seeking to build a model to estimate
the perceived level of reverberation, which is labeled by an
expert, autonomously. The data has been labeled by an expert
human listener for a unilateral set of files from arbitrary audio
source types. By examining the results, it can be observed that
the automatically extracted features can aid in estimating the
perceptual rates.

I. INTRODUCTION

After close to a century of research, methods of acquiring

and utilizing various attributes of room acoustics properties

using different room acoustic measures is still a discussed

topic. One of these aspects most recognized by end-users of

sound effect repositories is the perceived level of reverberation.

It would be of great value to these users if they were able to

narrow their search results towards audio files with the desired

amount of reverberation. Another application of automatic

characteristics of reverberation time would be their utilization

in music information retrieval tasks. [10] illustrates how the

accuracy of automatic musical instrument recognition (MIR)

models are affected by the amount of reverberation present.

By inferring the level of reverberation of sounds as a priori,

one could simply train a unique MIR model for different levels

of reverberation. As a contribution, this paper suggests a new

approach towards deriving the perceived level of reverberation

directly from the recorded audio files.
This paper proposes a fresh manner of deriving auditory

parameters, that have been proved to be relevant for the

overall perception of acoustic quality. Most of the feature

extraction methods that have been proposed in the context

of characterizing reverberations up to now are based on the

usage of room impulse response as an input. However, in this

paper, all the approaches rely on the use of recorded audio

files as an input. The parameters considered include four of the

most significant attributes of auditory perception listed in the

ISO 3382-1 standard [3]: Reverberance, Listener envelopment

(i.e., LEV, the feeling encompassed by sound), apparent source

width (ASW), and the clarity. These parameters, along with

a number of other spatial features, including the level of

both foreground and background streams, the interaural time

differences (ITD) present in these streams, and the level of

the low-frequency part of the spectrum (LLS) are estimated

by a binaural, nonlinear auditory model [1]. Section II-B will

cover further details on applying the binaural auditory model

for feature extraction and the properties of such features.

Another parameter of considerable importance in character-

izing the quality of acoustic space is the reverberation time

(RT) [1] [6]. The model presented in [5] can predict the rever-

beration time directly from an audio signal. Combined with the

features gathered from the auditory model, these features can

be used to predict the perceived level of reverberation directly

from the recorded audio signals, eliminating the need for the

room impulse response.

This paper starts by describing the process in which the

necessary features for predicting reverberations are extracted

in the section II. In the section III, the setup in which

the experiments were performed and the models applied for

predicting the level of reverberations are described. Section IV

defines the experimental setup used in this research. Finally,

section V concludes this paper.

II. PERCEPTUAL ATTRIBUTES AND ACOUSTIC

PARAMETERS

In the previous section, it was pointed out that this work

aims to create a model that can predict the perceived level

of reverberation given the raw recorded audio signal. The

succeeding subsections elaborate on the models used to extract

the necessary features, along with details on their correspond-

ing attributes, that are required to be later fed into machine

learning approaches.
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A. Sound Decay Model

To make an effective estimate of the reverberation time

directly from the audio signals an algorithm utilizing the

Laplacian distribution based energy decay model has been

proposed by [5].

The reverberant audio signal is first divided into a number of

overlapping frames [11]. These frames are then preselected in

order to identify any possible sound decays. The preselection

process involves splitting each frame into many subframes, and

examining whether the maximum or minimum energy values

of each sub-frame deviates from its consecutive subframes ac-

cording to [11]. If such a deviation is observed in a consecutive

sequence of subframes, they are identified and marked as a

possible sound decay. The detected frames are then used for

calculating the reverberation time, to create a finite number of

RT values.

A histogram with a fixed bin size of 10 containing the

estimated RT rates is created in order to improve the estimation

veracity. This histogram is updated with the inclusion of each

additional RT value calculated. Since there are no significant

number of outliers present in this histogram [14] due to the

preselection, at every given time, the current RT estimate

is then associated with the maximum value present in this

histogram, instead of the first peak. The variance of the

estimated RT value is then reduced via recursive smoothing.

B. The Binaural Auditory Model

A variety of different auditory models have been developed

to imitate the human binaural auditory system. The binaural

auditory model utilized in this research is a variation of the

better known binaural model titled as the Room Acoustic

Analyzer (RAA) and has been fully detailed out in [9]. A

block diagram displaying an overview of this system is shown

in Fig. 1. The model consists of a peripheral processor that

is first applied separately to the left and right ear channels,

followed by a central processing module.

In order to create an effective model of the human auditory

system, one must take into account the non-linearity of the

human auditory system [13]; it must accurately model the

temporal and spectral masking [16] [18], and the binaural

interactions made in the human auditory system. A model

that can encompass all of the foregoing features is the

binaural model proposed by [24] [26], which is a binaural

extension of the monaural model proposed by [16]. This

model has been further expanded by [4] in order to predict

content specific measures aspects of room acoustic perception.

1) The peripheral processor: This stage imitates the outer

and middle ear, the hair cells, neural firing, and the basilar

membrane residing in the cochlea. As shown in Fig. 1, there

are separate modules and processes carried out for each ear

channels. To create a nonlinear binaural model, the input

signals are first scaled to the correct level, so that an SPL

of 0 dB resembles a root mean square (RMS) value of 1.

To begin, outer and middle ear filtering, which has been

developed as a second-order band-pass IIR filter with cutoff

frequencies between 1 and 4 kHz, is then applied; a fourth

order gammatone (critical-band) filter bank consisting of 41

frequency bands with center frequencies ranging from 27 to

20—577 Hz is then applied to simulate the basilar membrane

inside the cochlea [19]. To simulate phase locking at higher

frequencies and to preserve the signal envelope, the signals are

then half-wave rectified and then passed through a fifth order

low-pass filter with a cut-off frequency of 770 Hz. According

to the absolute threshold of hearing (ATH) curve from [21],

a lower limit is then incorporated into the signals that are

dependant on the center frequency of each band. Values that

are below this frequency dependent threshold are set to zero.

The reason behind this phase is the incorporation of the ATH.

Adaptation loops are then applied in order to imitate the

adaptive properties of the auditory periphery [16]. Neurons

maintaining the human auditory system by transmitting elec-

trical signals in the brain, adjust this sensitivity to the input

they receive. The output is then smoothed so that a stationary

input of 100 dB SPL for the mid-frequency range yields a

steady state output of 100 model units. This is while silence

at the input (i.e., input of 0 dB SPL) produces a steady state

output of 0 model units.

2) The binaural processor: To simulate the binaural in-

teraction in the human auditory system, an equalization-

cancellation approach has been proposed in [26]. This ap-

proach applies so called excitation-inhibition (EI)-type ele-

ments, each with a characteristic ITD and interaural level

difference (ILD), and incorporates a finite binaural temporal

resolution to the left and right ear monaural model outputs.

The produced output of the EI-type elements together shapes a

pattern of the EI activity as a function of the characteristic ITD

and ILD. Based on [20], it can be deduced that the frequency

range 125-1000 Hz is prevalent concerning the perception

of spaciousness. It was later found by [12] that ITD is the

dominant localization cue for this frequency range.

3) The central processor: As the final stage, the central

processor takes the output of the binaural processor (ITD

values), along with both of the monaural outputs as its input.

Note that a low-pass filter with a time constant of 20 ms is

applied to the monaural stage outputs to extract the envelope as

described by [16]. The human auditory system splits an input

stream into a direct foreground stream, which corresponds with

the input source, and a reverberant background stream, which

corresponds with the environment (noise) around the source.

The nonlinear behavior of this model is meant to mimic this

behavior and perform the splitting.

Four of the auditory parameters used for predicting the

perceived reverberances (i.e., reverberance, clarity, apparent

source width, listener envelopment) are produced by the

central processor. Combined with the previous stages, the

following features can be derived from the binaural auditory

model:

Level of foreground stream (LFS): An auditory param-

eters closely associated with the sound source is the level of

the foreground (i.e., source) stream (LFS). To calculate this

parameter, the mean level of the monaural output streams are
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Fig. 1. Schematic of the binaural auditory model [4]. The full model consists of five adaptation loops, two of which are shown above (with τ1 and τ5 being their 
constants) [1]

measured.

Level of background stream (LBS): The acoustic pa-

rameter associated with the reverberance is the level of the

background stream. Much like the LFS, this parameter can

be estimated using the monaural outputs of the model. To

measure the level of the background stream (LBS) the mean

level of the reverberant sound stream output by the monaural

model is calculated.

ITD fluctuation in the foreground (ITDf ): The interaural

time differences present in the output of the binaural processor

are split into two streams. The foreground stream that is

closely related to the sound source is used in calculating the

ITDf . The mean standard deviation of the foreground stream

is used to calculate ITDf .

ITD fluctuation in the background (ITDb): Another

binaural parameter closely related to the reverberance is the

fluctuations present in the background stream (ITDb). Similar

to the ITDf , ITDb is calculated via measuring the mean

standard deviation of the background stream output by the

binaural processor.

Level of the low-frequency part of the spectrum (LLS):
Another factor relating to both the perceived reverberance and

the apparent source width explained below is the absolute

sound pressure levels present in lower frequency bands. By

taking the mean of the output of gammatone filters applied to

lower frequency bands in the peripheral processor, the level

of the low-frequency part of the spectrum (LLS) can be

calculated.

Reverberance (REV ): The intensity of the reverberations

perceived by listeners which is commonly regarded as being

closely related to the physical reverberation time, is what is

formally known as reverberance; in other words, the amount

of time required from the moment the sound source stops until

the sound pressure level deteriorates by 60 dB. As proposed by

[4], a valid approach towards evaluating reverberance is to take

the average level of the reverberant sound stream (i.e., LBS),

which can be calculated using the outputs of the monaural

processing units of the model.

Clarity: Another important aspect of sound is the extent

to which discrete sounds in a signal stay distinct from each

other subjectively in relation to time. The higher the clarity

rate, the easier it is to recognize separate phonemes in a audio

or to identify individual notes residing in a musical piece. To

calculate the perceived clarity, the proportion of the average

direct sound stream levels (LFS) with respect to the mean

reverberant sound level (LBS), which are calculated from the

peripheral processing unit outputs, is measured [4].

Apparent Source Width (ASW ): One of the two most sig-

nificant aspects of auditory spaciousness paired with listener

envelopment is the discernable increase of a sound source with

respect to early lateral reflections. ASW is frequently deter-

mined by the early interaural cross-correlation [23] [22]. As

mentioned earlier in II-B2, fluctuations in both ILD and ITD

with respect to time, create the notion of spaciousness, with

ITD being the more dominant cue. Since the model outputs

ITD as a function of time, it can be utilized in obtaining

a parameter related to ASW. Moreover, [25] demonstrated

how the perceived source width is not only dependant on the

interaural decorrelations but also relates to the absolute sound

pressure level present in lower frequencies (i.e., the level of the

low-frequency part of the spectrum). Therefore, the perceived

ASW can be calculated from the model by incorporating the

output of the binaural processor ITDf , and the level in the

lower bands LLS [4].

Listener Envelopment (LEV ): One could denote a sound

field as an enveloping one when a feeling of being encom-

passed by the sound transpires. As mentioned above, the

second critical perceptual parameter determining spaciousness

that relates to the environment in contrast to the source is the

LEV . LEV includes two important elements: The interaural

cross-correlation (i.e., the spacious aspect of the sound), and

the level in the diffuse part of the impulse response (the

absolute late SPL). A blind prediction of the LEV , which

is closely related to the auditory impression, can be made

since this concept is associated with the binaural and monaural

model outputs. The mean level of the background stream (i.e.,

LFS), and the ITD fluctuations in the background stream can

be utilized in making this prediction.
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TABLE I. PREDICTION ACCURACY ACHIEVED IN TERMS OF CORRECTLY IDENTIFIED 
INSTANCES

Features Setup Number of classes Logistic Regression Decision Tree MLP
RT60, LFS, LBS, ITDf , ITDb, LLS, REV Between source type 2 reverberation classes 67.75 % 72.75 % 75.25 %

RT60 Between source type 2 reverberation classes – – 63.75 %
LFS Between source type 2 reverberation classes – – 54.00 %
LBS Between source type 2 reverberation classes – – 49.50 %
ITDf Between source type 2 reverberation classes – – 50.25 %
ITDb Between source type 2 reverberation classes – – 51.25 %
LLS Between source type 2 reverberation classes – – 57.00 %
REV Between source type 2 reverberation classes – – 58.75 %

III. EXPERIMENTAL SETUP

Evaluations are performed using 400 audio files downloaded

from freesound. Due to the small number of audio samples

available and in order to make use of all the files in both

the training and testing stages, a popular resampling strategy

called three fold cross validation has been employed for the

evaluation. Within each increment, one fold is reserved as

the test set, and the two other folds are used for training

the model. This process is repeated three times so that every

fold is utilized in both training and testing. This problem

has been modeled as a binary classification problem, with

two classes named as a low and high class, which contains

recordings with the low and high perceived level of rever-

berations, respectively. Three distinct approaches have been

employed in addressing this problem. The models used are

Multinomial Logistic Regression, Decision Tree, and Multi-

layer Perceptron [2] [8] [7]. The features applied in each

experiment are listed in Table I. Each sample has been labeled

as to either pertaining high perceived level of reverberation or

low by an expert auditor.

A. Multinomial Logistic Regression

Multinomial logistic regression (MLR) is a widely known

machine learning approach for classifying a set of features that

belong to one of two (or more) possible classes. Given some

samples with distinct feature vectors, a set of functions is then

constructed. Each function holds the probability of a feature

vector belonging to each class. The class with the highest odds

is selected as the predicted label for the specific feature vector.

Each function has a number of parameters that are calculated

during the training phase, where a number of sample feature

vectors, along with their known labels are presented. These

parameters adapted in such a way that whenever encountering

a new set of features that are similar to a set of features seen

previously, the function will output a high probability that the

newly observed features belong to the same class as the similar

feature vectors observed during the training process. Given n
sample, m features, and k classes, the parameter matrix W is

an m ∗ (k − 1) matrix. The probability that each observation

Xi belongs to each class j, except for the final class, is equal

to:

Pj(Xi) =
exp(Xi ·Bj)

((
k−1∑
j=1

exp(Xi ·Bj)) + 1)

The odds that the sample Xi belongs to the last class is equal

to:

1− (

k−1∑

j=1

Pj(Xi))

B. Decision Tree

Among the different decision tree (DT) algorithms, the C4.5

algorithm, which is a successor to J. Ross Quinlan’s ID3, is

probably the most popular ones in the DT family that are used

in the machine learning community.

The approach taken in decision trees is creating a tree data

structure in a recursive manner, in order to partition a data set

into sub-divisions based on a number of tests that are defined at

each node. The final tree consists of a root node, which serves

as an entry point for every sample, internal nodes, that define

the splits, and leaf nodes that represent the observations. De-

cision trees are particularly good at establishing the nonlinear

relationships between feature vectors and their corresponding

classes [17], and deriving content specific measures of room

acoustic perception using binaural, nonlinear auditory model.

C. Multilayer Perceptron

The multilayer perceptron (MLP) uses an algorithm pro-

posed by [15] named backpropagation in its learning procedure

that helps make predictions in machine learning tasks. The

network consists of multiple logistic units that act together in

learning abstract representations of the input feature vectors

in the middle layers. There are nonlinear activation units

between each layer that help in modeling real-world phe-

nomenon by introducing nonlinearity into the model. The

ReLU function is probably the most commonly used activation

function presently available, due to its robustness against the

vanishing gradients phenomenon. For further details on the

implementation and workflow of the MLP, please refer to [15].

IV. EXPERIMENTAL RESULTS

Let us now compare the results obtained from the dif-

ferent experimental setups. The results obtained from these

experiments are summarized and displayed in Table I. These

results are comprised of the performance of different models

on different sets of features, in predicting the perceived level

of reverberation for the input audio signals.

Initially, seven of the features described above have been

incorporated in predicting the perceived level of reverberation.

This experiment also holds the highest level of accuracy
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observed in such experiments, as expected initially. Table I

shows that the highest performance is obtained when using the

multilayer perceptron classifier along with the seven features,

resulting in an accuracy of 75.25%.

Due to the low number of samples, it was assumed that the

more simple machine learning models (i.e., logistic regression,

decision tree) would outperform the MLP, given that the MLP

typically requires a high number of samples to converge. But

surprisingly MLP performs very well even with relatively

small amount of available data for training the model.

In order to discover the most significant extracted feature,

the experiment was repeated for each feature using the model

with the highest accuracy (i.e., the MLP). The results of these

experiments are shown in Table I. As evident in the results, the

feature with the highest effect in predicting the perceived level

of reverberation is the reverberation time, with an accuracy of

63.75% followed by the room reverberance (REV) with an

accuracy of 58.75%.

V. CONCLUSION

After decades of research, a robust method of estimating

the perceived level of reverberation from raw audio signals

is yet to be discovered. Different approaches in extracting

quantified measures which can be utilized in tackling this

problem and coming up with specific measurable reverberation

features from audio signals have been presented over the years

(e.g., calculating reverberation time, the direct to reverberation

ratio). Each of these features has had their own shortcomings

in relating to the perceived level of reverberation.

In this paper, a new approach has been proposed towards

addressing this problem. To be able to blindly extract features

from the raw audio signals, a sound decay model and a

binaural auditory model have been applied. The extracted

features are then used in training various machine learning

algorithms. The obtained results are promising and suggest that

the features extracted using both feature extraction models can

be applied in predicting the perceptual level of reverberation.
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