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Abstract—Deep clustering technique is a state-of-the-art deep 

learning-based method for multi-talker speaker-independent 
speech separation. It solves the label ambiguity problem by 
mapping time-frequency (TF) bins of the mixed spectrogram to 
an embedding space, and assigning contrastive embedding 
vectors to different TF regions in order to predict the mask of the 
target spectrogram of each speaker. The original deep clustering 
transforms the speech into the TF domain through a short-time 
Fourier transform (STFT). Since the frequency component of 
STFT is linear, while the frequency distribution of human 
auditory system is nonlinear. Therefore, we propose to use 
constant Q transform (CQT) instead of STFT to achieve a better 
simulation of the frequency resolving power of the human 
auditory system. The ideal upper bound of signal-to-distortion 
(SDR) of CQT based deep clustering is higher than that based on 
STFT. In the same experimental setting on WSJ0-mix2 corpus, 
we gave a detail description in selecting meta-parameters of CQT 
for speech separation, and finally the SDR improvements of this 
method achieved about 1dB better performance than the original 
deep clustering. 

I. INTRODUCTION 

Multi-talker monaural speech separation has a vast range of 
applications. For example, a home environment or a conference 
environment in which many people talk, the human auditory 
system can easily track and follow a target speaker's voice from 
the multi-talker’s mixed voice. In this case, if automatic speech 
recognition and speaker recognition are to be performed, a 
clean speech signal of the target speaker needs to be separated 
from the mixed speech to complete the subsequent recognition 
work. Thus it is a problem that must be solved in order to 
achieve satisfactory performance in speech or speaker 
recognition tasks. There are two difficulties in this problem, the 
first is that since we don't have any priori information of the 
user, a truly practical system must be speaker-independent. The 
second difficulty is that there is no way to use the beamforming 
algorithm for a single microphone signal. Many traditional 
methods, such as computational auditory scene analysis 
(CASA) [1], [2], [3], Non-negative matrix factorization (NMF) 
[4], [5], and probabilistic models [6], [7], do not solve these 
two difficulties well.  

     More recently, a large number of techniques based on 
deep learning is proposed for this task. These methods can be 
briefly grouped into three categories. The first category is 

based on deep clustering (DPCL) [8], [9], which maps the time-
frequency (TF) points of the spectrogram into the embedding 
vectors, then these embedding vectors are clustered into several 
classes corresponding to different speakers, and finally these 
clusters are used as masks to inversely transform the 
spectrogram to the separated clean voices; the second is the 
permutation invariant training (PIT) [10], [11], which solves 
the label permutation problem by minimizing the lowest error 
output among all possible permutations for N mixing sources 
assignment; the third category is end-to-end speech separation 
in time-domain [12], [13], which is a natural way to overcome 
the obstacles of the upper bound source-to-distortion ratio 
improvement (SDRi) in short-time Fourier transform (STFT) 
mask estimation based methods and real-time processing 
requirements in actual use. 

This paper is based on the DPCL method [8], [9], which has 
achieved better results than the traditional method. However, 
DPCL and its most following work use STFT as front-end. 
Specifically, the mixed speech signal is first transformed from 
one-dimensional signal in time domain to two-dimensional 
spectrum signal in TF domain, and then the mixed spectrum is 
separated to result in spectrums corresponding to different 
source speeches by a deep clustering method, and finally the 
cleaned source speech signal can be restored by an inverse 
STFT on each spectrum. Since the distribution of the frequency 
components in STFT are linear, while the human auditory 
system is nonlinear to frequency perception, thus we hope to 
replace the STFT front-end with certain coefficients that can 
imitate human auditory system. There are two popular 
candidates, which are the Mel-frequency cepstral coefficients 
(MFCC) and constant Q transform (CQT) [14]. However, the 
MFCC coefficients are not suitable to be a front-end for DPCL 
for two reasons, one is that it is difficult to do the inverse 
transform of MFCC coefficients, the other is that the sampling 
in the frequency-domain of MFCC is sparse. On the other side 
CQT with the dense coefficients are an easily reversible 
nonlinear transform which also very similar to the human 
auditory system [14]. In this work, we showed that DPCL with 
CQT as front-end can achieve 1dB better performance in 
separation than that with STFT as front-end. 

The remainder of this paper is organized as follows: Section 
2 briefly reviews the DPCL framework. Section 3 describes the 
definition and implementation of CQT. The detail experimental 
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results and comparisons are presented in Section 4 and the 
whole work is summarized in Section 5. 

II. SPEECH  SEPARATION WITH DEEP CLUSTERING  

The main principle of DPCL is to use a powerful network 
such as LSTM to learn a high-dimensional embedding for each 
TF unit such that the embedding vectors belonging to the same 
speaker are close to each other in the embedding space, and 
farther otherwise [8], [9]. Then these embedding vectors will 
be clustered into different classes which corresponding to 
different speakers. Traditional DPCL uses STFT as front-end, 
however in fact STFT has linear distribution in frequency 
components, while CQT ensures a constant Q factor across the 
entire spectrum and thus gives a higher frequency resolution 
for low frequencies and a higher temporal resolution for high 
frequencies. Thus in this work we will use CQT as front-end 
instead of STFT in DPCL to achieve better performance. We 
summarize the framework of DPCL with CQT as in Fig. 1. 
The description of CQT will be reviewed in the next section. 

 

Fig. 1. The framework of deep clustering with CQT 

III. CONSTANT Q TRANSFORM 

A. Brief review of CQT 

CQT was proposed by Brown, Judith C. [14] in 1991 to 
simulate the human auditory system by using a transform with 
fixed quality factor Q. The quality factor is a concept 
borrowed from the filter theory, and it is defined as the ratio of 
the center frequency of the filter to the bandwidth, where the 
bandwidth refers to the frequency at which is 3 dB less than 
the highest point of the filter's amplitude-frequency on the 
characteristic curve. For an ambiguous analogy of the 
transform domain, the center frequency can be considered as 
the frequency components of the transform domain, and the 
bandwidth can be considered as the frequency band of that 
frequency component. A series of experiments show that CQT 
achieves better results than STFT in music and speech analysis 
[14], [16], [17].  

The original purpose of introducing CQT is to better 
analyze the fundamental frequency and the harmonic formant 
frequency position of the instrument, so as to be able to 
separate the sound of the musical instrument or achieve a 
musical instrument effect with better sound characteristics. 
Therefore, the bandwidth of the CQT frequency component is 
equivalent to a 1/24th-oct bank filter, as shown in equation (1), 
where  denotes the frequency of the k-th frequency 
component, B denotes the 1/B octave, and  denotes the 
minimum frequency of the CQT. The reason why B defaults 
always to 24 is that studies have shown that the 1/24 octave is 
similar to the human auditory system, but indeed for the best B 
is different for different applications.  
 

                  (1) 
 

TABLE I.  THE COMPARISON BETWEEN CQT AND STFT 

 CQT STFT 

Frequency  exponential in 
k 

k  linear in 
k 

Window Variable=  Constant = N 

Resolution 
 

Variable =  
Constant = 

SR* / N 
Constant = Q Variable = k 

Cycles in 
Window 

Constant = Q Variable = k 

 
The time window length corresponding to each frequency 

component of the STTF is same and fixed, so the frequency 
components are linearly distributed. Intuitively, it is only 
necessary to implement CQT by the STTF according to the 
frequency components of the CQT and take corresponding 
time windows, as in equation (2). The simple comparison table 
of CQT and STFF is shown in Table I [14], where SR stands 
for sampling rate. 

 

     (2) 

   
However, the CQT directly implemented by Equation (2) 

cannot implement inverse transformation, which greatly limits 
its scope of use. Velasco, Gino Angelo [16] and Holighaus, 
Nicki [17] extract the invertible CQT based on the 
nonstationary Gabor transform (NSGT), and combine STFT 
and inverse STFT to simplify the computation to improve the 
transform efficiency. Because of the need to implement an 
inverse transform, the definition of the DC component and the 
Nyquist CQT frequency component is increased. 

 
Fig. 2. Spectrograms of ‘22gc0103_1.9955_050c010t_-1.9955.wav’ in wsj0-
mix2 dataset. Spectrograms computed with the STFT (top), and with the CQT 
(bottom). 
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The relationship between the center frequency and 
bandwidth of the CQT frequency component are shown in 
Table II [17], where ξ denotes the frequency and Ω denotes the 
bandwidth.  indicates the lowest frequency of CQT,  
indicates the highest frequency of CQT, and  indicates the 
sampling rate. Following the tradition, k denotes the index of 
the CQT frequency component, k = 1, ..., K, K is an integer 
representing x ≤  ≤  ⁄ 2, where  ⁄ 2 represents the 
Nyquist frequency. Using this method can achieve the CQT 
and ICQT of entire audio or partial audio. In particular, the 
spectrum in this section refers specifically to the frequency 
spectrum from the STFT where the frequency component is 
linear. 

TABLE II. THE RELATIONSHIP BETWEEN CQT CENTER FREQUENCY AND 

BANDWIDTH  

k 
0 0 

1,…..,K   
K+1 

K+2,…..,2K+1  
      

According to the basic definition of CQT, the lower the 
frequency, the larger the bandwidth. However, for the human 
auditory system, only when the frequency is higher than 
500Hz, it is similar to CQT, and the bandwidth below 500Hz 
is close to smooth. Therefore, in calculating the bandwidth of 
CQT, a new parameter γ is introduced, and the specific 
calculation formula is as shown in the following equations. 

                                     (3) 

                                      (4) 

where b represents the bandwidth of each octave equivalent 
filter.  

The process of the forward and reverse transformation of 
CQT will be briefly summarized below. The process of 
forward transformation is: 

1) Obtain the spectrum through STFT. 

2) Based on the length of STFT and B, calculate the 
number of CQT frequency components and the spectral range 
covered by each CQT frequency component, and the length of 
the frequency domain window function that simulates the 
time-domain down-sampling. 

3) The spectral data of each CQT frequency component 
corresponding range is extracted by a window function, and 
the length of the highest frequency component is achieved by 
zero padding, to provide information redundancy and matrix 
output. 

4) The CQT data of this frequency component is obtained 
by using inverse STFT on the zero padded data. 

Inverse CQT process: 

1) Do STFT to the data of each CQT frequency 
component and the number of conversion points is the length 
of the data. 

2) According to the time length of each CQT frequency 
component to simulate the time domain down-sampling, it is 
taken from the low frequency on the STFT data, and then put 
into the corresponding spectrum position. Where the length of 
the spectrum is the length of the data block. 

3) After the operation of all CQT frequency components 
is completed, the frequency spectrum undergoes inverse STFT 
to obtain the time domain signal recovered by the CQT.  
 

IV. EXPERIMENTAL RESULTS 

A. Dataset and neural network 

We evaluated our system on two-speaker speech 
separation problem using WSJ0-2mix dataset [8], [9], which 
contains 30 hours of training and 10 hours of validation data. 
The mixtures are generated by randomly selecting 49 male and 
51 female speakers and utterances in Wall Street Journal 
(WSJ0) training set si_tr_s, and mixing them at various signal-
to-noise ratios (SNR) uniformly between 0 dB and 5 dB . 5h of 
evaluation set is generated in the same way, using utterances 
from16 unseen speakers from si_dt_05 and si_et_05 in the 
WSJ0 dataset. To reduce the computational cost, the 
waveforms were down-sampled to 8 kHz. 

We re-implemented the traditional DPCL. The network 
structure and parameters of DPCL used in this paper is 
basically consistent with the literature [8], [9]. The neural 
network for extracting the embedding vector is a 4-layer 
bidirectional LSTM with 600 cells in the forward and 
backward directions. Each layer of LSTM introduces dropout 
of 0.3 but does not introduce recurrent dropout. Finally, an 
embedding vector is output through a fully connected layer. 
The network is trained from scratch using the Adam 
algorithm. The window length is 32ms, the hop size is 8ms, 
and the square root of the Hamming window is used as the 
analysis window for traditional DPCL with STFT. 256-point 
STFT is performed to extract the 129-dimensional log 
magnitude feature of each frame for BLSTM training. 

B. The selection of CQT parameters 

In this section, we select the most appropriate CQT 
configuration parameters by calculating the SDRi upper bound 
of the separated speech. For the case where the two speaker's 
speech is mixed into one, the SDRi upper bound of CQT based 
DPCL is better than the STFT based under the same 
experimental conditions. 

The main parameters used in CQT are B, γ, and the 
window functions. At the same time, the data block length and 
the minimum frequency of a single CQT processing will 
theoretically also have the influence on performance of voice 
separation. Therefore, we evaluate the influence of various 
factors on the separation performance by calculating the upper 
bound of the ideal SDRi. The literature [8], [9] defines the 
SDR ideal upper bound as follows: compute the ideal mask 

from clean signals that are not 
mixed compared to the mixed signal, and then the speech 
signal of each speaker is separated by these ideal mask. The 
SDR calculated based on these separated signals is called the 
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ideal SDR upper bound. SDRi represents the SDR of the 
separated voices minus the original SDR without separation. 
In our computation, the original SDR of the evaluation data set 
= 0.15dB, which is consistent with the work [8], [9]. The 
SDRi ideal upper bound of STFT based DPCL is 13.5dB. 

In this section five groups of tests are used to analyze the 
effect of different CQT parameters on the separation 
performance, which will be introduced one by one. The default 
parameters are  of B=24, γ=20, window function is Hanning 
window, the length of CQT processing data block is the length 
of each segment of mixed audio, and the lowest frequency of 
CQT is 27.5 Hz. 

The first group of tests is to evaluate the effect of the 
number of equivalent filters B per octave on the separation 
performance. The other parameters were fixed as γ = 20, the 
window function was a Hanning window, and the CQT 
processing data block length was the length of each mixed 
audio segment. The lowest frequency of CQT is 27.5Hz. Table 
III shows the results of this set of experiments and shows that 
B=36 can achieve better separation performance. 

TABLE III.  THE EFFECT OF THE NUMBER OF EQUIVALENT FILTERS (B) ON THE 

SEPARATION PERFORMANCE (DB) 

B 12 24 36 48 60 72 

SDRi 13.99 14.73 14.77 14.69 14.59 14.50

 
The second set of tests evaluated the effect of γ on 

separation performance. Other parameters were: B=24, 
window function is Hanning window, CQT processing data 
block length is the length of each mixed audio, and CQT 
minimum frequency is 27.5 Hz. Table IV shows the 
experimental results of this group, where the bandwidth of the 
equivalent filter of CQT is equal to ERB at γ=26.4. The 
experimental results show that the larger the γ, the better the 
separation performance. 

TABLE IV. EFFECT OF Γ ON SEPARATION PERFORMANCE (DB) 

 

0 3 10 20 26.4 30 

SDRi 13.64  14.04  14.53  14.83  14.88 14.88 

 
The third group of tests is to evaluate the influence of the 

window function on the separation performance. The other 
parameters are: B=24, γ=20, the length of the CQT processing 
data block is the length of each mixed audio, and the lowest 
frequency of the CQT is 27.5 Hz. Table V shows the results of 
this set of experiments and shows that the window function is 
a Hamming window for better separation performance.  

The fourth group of tests is to evaluate the effect of 
different data block lengths on the separation performance. 
The other parameters are fixed as B=24, γ=20, window 
function is Hanning, and CQT minimum frequency is 27.5 Hz. 
Table VI shows the experimental results of this group, where 
seconds indicates the time length of the data block, and all 
indicates that the data block is not divided. The results show 
that the longer the data block length, the better the 
performance. 

TABLE V. EFFECT OF WINDOW FUNCTION ON SEPARATION  
PERFORMANCE 

Window hanning cos rectangle triangle hamming 

SDRi 14.83  14.91  14.32  14.89  14.94  

Window 
Blackm

an 
blackharr modblackharr nuttall nuttall10 

SDRi 14.61  14.25  14.25  14.22  14.83  

Window 
nuttal10

1 
nuttall20 nuttall11 

nuttall0
2 

nuttall30 

SDRi 14.94  14.37  14.56  14.61  13.76  

window 
nuttall2

1 
nuttall12 nuttall03 gauss wp2inp 

SDRi 14.07  14.22  14.28  14.57  12.57  

 

TABLE VI. EFFECT OF DATA BLOCK LENGTH ON SEPARATION  
PERFORMANCE 

seconds 0.125 0.25 0.5 1 all 

SDRi 13.58  14.23  14.52  14.69  14.83  

 
The fifth set of experiments evaluated the effect of 

increasing the minimum frequency of CQT to 110 Hz on the 
separation performance. Because the fundamental frequency 
of the speech is around 200 Hz, considering the bandwidth of 
the signal, the probability that the effective frequency 
component of the speech signal lower than 110 Hz is very low. 
Therefore, by increasing the minimum frequency of CQT, the 
data amount is reduced by 27.6%, thereby reducing the 
complexity of deep clustering training. Other parameters are 
fixed as B=24, γ=20, window function is Hanning, and CQT 
minimum frequency is 110 Hz. Table VII shows the 
experimental results of this group. The results are similar to 
those of the fourth group. The longer the data block length is, 
the better the performance is. However, the SDRi of all data 
block lengths is lower than the experimental results of the 
fourth group, indicating that the minimum frequency of the 
CQT is raised to 110 Hz or Performance has a negative 
impact. 

TABLE VII. EFFECT OF CQT MINIMUM FREQUENCY TO 110HZ DATA BLOCK 

LENGTH ON SEPARATION PERFORMANCE 

seconds 0.125 0.25 0.5 1 all 

SDRi 13.50  14.08  14.35  14.50  14.58  

 

Finally, combining all the experimental results, the best 
parameters of CQT for speech separation should be B=36, 
γ=20, window function is Hamming window, CQT minimum 
frequency is 27.5 Hz, no data block. However, considering the 
complexity of calculation, training the network requires the 
unity of data length, and because of the mistakes of previous 
array experiments, the standard experimental parameters of 
our CQT are B=36, γ=20, window function is cosine window, 
CQT minimum frequency It is 110Hz and the data block 
length is 1 second. The theoretical upper limit for SDRi is 
based on a CQT framework that is 1 dB higher than the STFT-
based framework. 
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C. CQT based DPCL vs. conventional DPCL 

 
Fig. 3 Loss over epochs on the WSJ0-2mix training and validation sets with 
CQT based DPCL 

Based on the previous section of the experiment using CQT 
parameters and a deep clustering network, we trained the 
network and calculated the SDRi of the model. Other network 
parameters include batch size = 32. Each data block contains 1 
second of audio content. The CQT data block size is 126*323, 
which means that the frequency components of the CQT are 
126 in total. Each second contains 323 CQT samples. The 
training and validation loss is shown in Fig. 3. The 
performance is shown in the Table VIII. It can be seen that 
similar to the difference between the ideal SDRi upper bound, 
CQT based DPCL achieved one 1dB better performance than 
traditional STFT based DPCL. 

TABLE VIII. THE SEPARATION PERFORMANCE (dB) OF CQT BASED DPCL 

DPCL CQT based STFT based 

SDRi 10.7  9.6  

 
V. CONCLUSION 

In this paper we have proposed a monaural speech 
separation method based on constant q transform (CQT) and 
deep clustering. We give a detail description in selection of the 
meta-parameter of CQT in speech separation. Since CQT 
ensures a higher frequency resolution for low frequencies and 
a higher temporal resolution for high frequencies, we achieve 
better separation results than conventional deep clustering 
which uses short time Fourier transform (STFT) as front-end. 
In future we plan to test wether CQT will constantly better 
than STFT in other separation methods, such as PIT based 
framework [10], [11]. 
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