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Abstract— Information measures can be used to evaluate data 

processing results. At the moment there are many different 
unrelated information concepts. The purpose of this paper is to 
propose a theoretical classification for these concepts. Existing 
information concepts are overviewed and analysed. As a result, 
three basic information definitions are identified. Next, these 
basic definitions are derived from a common basis - the function 
concept. The resulting classification can be used for a 
comprehensive evaluation of data processing results, as 
demonstrated by the example of logical formulas. 

I. INTRODUCTION 

The results of data processing can be evaluated in various 
ways. One of such methods is the information evaluation. 
Information evaluation is most relevant in relation to tasks, in 
which there is no idea of the final result. An example of such 
tasks is machine learning without a teacher, for which, unlike 
training with a teacher, it is impossible to apply accuracy 
criteria. 

At the moment there are many different, unrelated 
approaches to determining the amount of information. Some 
researchers propose to consider these approaches as different, 
non-exclusive interpretations. In this paper it is proposed to 
consider the set of information definitions as an integrated 
system, in which each definition corresponds to a certain 
formal property of the information bearer. In other words, the 
purpose of this paper is to construct a theoretically grounded 
classification of information measures. 

To achieve this goal, first of all, a brief overview of the 
various existing definitions of the amount of information is 
presented. Then a preliminary analysis of them is made in 
order to determine which of the existing concepts are 
fundamental and which are derivatives. Further, a formal 
foundation for fundamental concepts classification is given 
and the classification itself is constructed. Finally, the 
application of resulting evaluation system is demonstrated, 
using logical formulas as examples. 

II. REVIEW OF EXISTING INFORMATION DEFINITIONS 

The article “Information” [1] of the Stanford Encyclopedia 
of Philosophy lists the main historical information concepts. 
We present this list to demonstrate their heterogeneity:  

 Fisher Information [2]: the amount of information 
IF(θ), which random variable X contains about the 
dependent value θ. Let  f (x, θ) be some likelihood 
function of θ. If f has sharp jumps, this means that the 

values of X, corresponding to the jumps, contain a large 
amount of information about the value of θ. This 
dependence is reflected in the Fisher information IF(θ), 
which is the variance of the derived likelihood function  
f (x, θ): 

  

,

	

,  
(1) 

 

 Shannon information [3]: the amount of information 
IS(x), which contains some value x of a random variable 
X. The smaller the probability P(x) of some value x, i.e. 
the more “unexpected” it is, the more information it 
contains: 

                        
IF(x) = −logP(x) (2) 

 
The amount of information defined for each value of 
the random variable X is also a random variable, then 
its expectation, or information entropy H(X), 
determines the amount of information contained in 
the random value X as a whole:  
      

H(X) = ∑  (3)
 

 Kolmogorov complexity [4] [5] [6]: characterizes the 
number of computational resources required to 
reproduce the object x based on the description d. It is 
defined as the length of the shortest program p whose 
input is d, and the result of execution 	y: 

                    
K(x) = min(l(p): p(d) = y) (4) 

 
 Quantum information: a generalization of the Shannon 

concept of information for quantum states. The unit of 
information contained in a certain quantum state is the 
Qubit, which, in addition to the discrete values 0 and 1, 
can also take values in the interval [0,1]. The amount of 
information contained in the entire quantum system 
described by the density matrix ρ is measured by the 
von Neumann entropy [7]: 

    
S(ρ) = −Tr(ρ ln ρ) (5) 
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 Information as a state of an agent: a logical 
formalization of such concepts as knowledge and 
belief. For example, in epistemic logic [8], the 
statement that some i-th agent knows the fact a is true if 
and only if a is true on all worlds reachable for the i-th 
agent w′:  

    
 ⊨ ⇔ ∀ , → ⊨ (6) 

 
 Semantic information: information inf (s) is defined as 

the content of the statement s and is measured based on 
its logical probability q(s) [9]: 

    
inf(s) = log 1/q(s) (7) 

 
We supplement this list with the following definitions of 

informativity: 
 Hartley information [10]: usually considered within the 

framework of the Shannon’s theory of information, 
however Kolmogorov [5] singled it out as a separate 
approach. For the combinatorial approach 
independence from any probabilistic assumptions is 
essential. The combinatorial informativity allows us to 
determine the number of characters required for 
encoding a message x of length l in the m-valued code 
with an alphabet, consisting of N characters: 

  
 (8) 

 
 The Kullback-Leibler distance [11]: (relative entropy) 

of discrete random variables X and Y is interpreted as 
the magnitude of the information gain in the transition 
from the distribution X to the distribution Y: 

      

DKL(Y|X) = ∑ (yi)log  (9) 

 

 Akaike information criterion [11]: estimates the 
informativeness of a statistical model with k parameters 
and likelihood function L, as the difference between the 
complexity and accuracy of the model:  

   
AIC = 2k – 2ln(L) (10) 

 
This review allows us to conclude that there are different, 

unrelated definitions of information. Although there are 
studies of the relationship between these concepts [13], the 
final classification was never found. Many researchers, for 
example, the authors of [14], explain this fact by the idea that 
information is a formal concept that can have different, non-
exclusive interpretations. Thus, the modern theory of 
information contains a large set of various unrelated measures. 
There is a problem of their valid formal systematization. 
 

III. ANALYSIS OF EXISTING INFORMATION DEFINITIONS 

Despite various interpretations, some information concepts 
use the same formalism. Therefore, various information 

concepts can be partially systematized according to the 
common formalism. An example of such an approach can be 
found in A. N. Kolmogorov’s article “Three approaches to the 
definition of the concept «quantity of information»” [5]. 

Consider Shannon information (2) and semantic 
information (7). From a formal point of view, these definitions 
are reduced to the expression 

 
I (x) = - log P (x), 

 
where P (x) is some probability distribution. The only 
difference is that in the case of Shannon information the 
distribution of P (x) is interpreted as statistical, and in the case 
of semantic information - as logical. Thus, these definitions 
can be identified from a formal point of view.  

Consider also Shannon entropy (3) and  von Neumann 
entropy (7). Formally, these expressions have the form 

 
H (X) = - ∑ (xi) log P (xi) 

 
where P(x) is also some probability distribution. In the case of 
Shannon entropy, P(x) is also a statistical probability, in the 
case of von Neumann entropy, P(x) is the density matrix. 
Thus, these definitions can also be identified 

In addition, measures of information can be divided into 
basic and derivative. For example, consider the following 
information measures used in information theory [15]: 

 Self-information of some value xi of a discrete random 
variable X with the probability distribution P(xi):  

    
I(xi) = −logP(xi) (11) 

 
 Entropy of a discrete random variable X:  

 
H(X) = −∑ (xi)logP(xi) (12) 

 
 Conditional entropy of a discrete random variables X 

and Y with the probability distribution P(xi) and P(yj) 
and the joint probability P(xi| yj):  
         

H(Y|X) = ∑ ∑ (xi)P(yj|xi)logP(yj|xi) (13) 
 

These measures are derived from a single basic definition, 
in this case, the Shannon definition (2), using various methods 
of probability theory, such as calculating the average value 
and using conditional probability, respectively. Thus, it 
becomes possible to systematize some concepts of information 
by the methods of probability theory used. The results of this 
analysis are shown in the Table 3. Some of the cells in the 
table are not filled in, since the corresponding measures of the 
information are not given in the original survey, however, they 
exist. 

Thus, most of the information measures are systematized 
and come down to three basic definitions: Shannon 
information (2), Kolmogorov complexity (4) and Hartley 
information (8). The exceptions are the information concept as 
a state of the agent and the Akaike information criterion. The 
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first is qualitative concept, not a quantitative one, the second is 
a combination of two basic definitions: Shannon’s and 
Hartley’s. However, to build a complete and sound theoretical 
classification, it is still necessary to bring these basic 
definitions under a single basis. 

TABLE I.  RESULT OF THE INFORMATION CONCEPTS ANALYSIS 

P(x) P(y|x) M(P(x)) M(P(y|x)) 
|

 D(x) 

I(x) - H(x) H(Y|X) DKL(Y|X) IF(x) 
K(x) - - - - - 
IH(x) - - - - - 

 

IV. CLASSIFICATION OF INFORMATION MEASURES 

In this paper, it is proposed to derive a classification of 
information measures from the formal properties of an 
information bearer. As information bearers, it is proposed to 
consider various data processings, starting with mathematical 
formulas and ending with machine learning algorithms, 
including the data itself as “zero” processing. In a very general 
way, these processings are mappings. Thus, the proposed 
solution consists in deriving the classification of information 
measures from the properties of mappings.  

Let there be some arbitrary mapping 
  

X1 × ... × Xn → f1 ... → fl→Y (14) 
 

where Xi, Y are some sets, xi ∈ Xi, y ∈ Y and fj is some j-th 
mapping. 

Each mapping from the set-theoretic point of view can be 
considered as a set of tuples T:  
        

T= {x1…xny: xi ∈ Xi, y ∈ Y} (15) 
 
in which, in turn, one can select a subset Yi:  
   

yi = {x1…xny : y = yi}. (16) 
 

For a set of tuples T, it is possible to distinguish the 
following structures:  

 Domain X = X1 × ... × Xn; 
 Codomain Y = Y1 ⋃…⋃ Yk; 
 The set of mappings  F = YX 

Each of these structures also has certain elements:  

 The domain X consists of the parameters X1, .., Xn; 
 The codomain Y consists of the subsets Y1, ..., Yk. 
 The set of mappings F consists of subsets F1	⋃…⋃	Fm 

of compositions of a certain length. 

Finally, a measure can be specified for each atomic element 
listed above: 

 for a parameter Xi: the number of values |Xi|; 

 for a subset of values Yi: volume |Yi|; 
 for a subset of mappings Fi: volume |Fi|; 

Thus, we assume that the basic information definitions are 
derived from the listed measures of mappings: 

 Kolmogorov complexity is derived from the number of 
parameter values |Xi|, 

 Shannon information - from the volumes of codomain 
subsets |Yi|, 

 Hartley information - from the volumes of subsets |Fi|. 
 

i. Domain informativeness 

In this subsection it is shown that the Kolmogorov 
complexity (4) is derived from the notion of function (14). Let 

us define that the description d(yi) of an object yi ∈ Y is some 
tuple from the set Yi: 
    

d(yi) = x1…xnyi ∈ Yi (17) 

 
For each parameter Xj in Yi, the number of unique values 

|Xj| is specified. Then we determine the length l(d(Xj)) of the 
minimal description of the parameter Xj: 
    

l(d(Xj) = log|Xj| (18) 
 

This description is minimal, because  
      

0 ⇔ | | 1 (19) 
 
In other words, if the value of the parameter Xj in the 
description of yi is constant, then this parameter is not 
considered in the minimum description.  
 

Finally, we define the minimum description length l(d(yi)) 
as the sum of the lengths of the descriptions of the parameters 
Xj:   
      

l(d(yi)) = ∑ (d(Xj)) (20) 
 

Thus, the complexity K(yi) is derived from the volume of 
the parameters Xj: 
   

K(yi) = l(d(yi)) (21) 
 
and characterizes the informativeness of the function domain.  
 

ii. Codomain informativeness  
 

Now we show that the Shannon information (2) is also 
derived from the concept of function (14). The ratio of the 
volumes of the set of tuples T and its subset Yi for some yi can 
be considered as the probability P(yi): 
     

P(yi) = 
| |

| |
 (22) 

 
Since this value characterizes the probability that the 

function value is yi. If every tuple in T ends with yi, then yi can 
be considered as a reliable event:  
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P(yi) = 1  |Yi| =|T| (23) 
 

Conversely, if there is a yi such that no tuple contains it, 
then yi is an impossible event: 
    

P(yi) = 0  |Yi| = 0 (24) 
 

The volume of a set cannot be less than zero, therefore, 
| |

| |
  

is always positive. 
Thus, Shannon information is the negative logarithm of the 

ratio of the volumes Yi and T: 
  

I(yi) = - log
| |

| |
 (25) 

 
and characterizes the informativeness of the function 
codomain. 
 

iii. Mappings  informativeness  

Finally, let us show that the Hartley information (8) is 
derived from the notion of function (14). Let there be arbitrary 
sets X and Y, then there is a set F = YX of possible mappings 

from X to Y. Moreover, for every x ∈ X and y ∈ Y there exists 

a mapping f(x) = y ∈ F. If for some reason only some subset 

F' ⊂ F is available, then for some x and y there may not be 

mapping f ∈ F' Such that f(x) = y. However, if the subset F' is 
functionally complete, then there exists some finite number l, 
such that 
   

…  (26) 
 

Consequently,  
   

l = [logF’F] (27) 
 

Which coincides with the Hartley information, if we 
consider F’ as an alphabet, F as an encoded message, and l as 
the maximum code length. 

Thus, the Hartley information is the maximum length of a 
composition of mappings for some set F’ 	⊆	 F, that is 
necessary for mapping each element of X to Y:  
   

IH(F) = [logF’F] (28) 
 
i.e. it characterizes the informativeness of the mapping itself.  

 
Thus, we built a complete analytical systematization of 

information measures. Three basic definitions identified as a 
result of a preliminary analysis of existing information 
measures correspond to the properties of mappings: 
Kolmogorov complexity corresponds to the domain 
informativeness, Shannon information – the codomain 
informativeness, Hartley information – the mapping 
informativeness. 
 

V. COMPREHENSIVE INFORMATION ESTIMATION  

 
The resulting classification of information measures can be 

used for a comprehensive estimation of the data processing 
results. As an example, consider the task of finding 
dependencies in data. Suppose, as a result of the application of 
a certain algorithm, a dependence was found between the 
attributes a and b, which can be modeled as two alternative 
formulas: f1 and f2. The formulas and their truth tables are the 
Table 2 and Table 3, respectively. Both formulas are mappings 
of the form 2 × 2 → 2, therefore, |T| = 4, |F| = 16. Let us 
estimate the characteristics of the object 1 from each formula. 
The set of tuples Y1 corresponds to the formula f1, the set Y2 – 
to f2, see the Table 4 and Table 5. The information measures 
calculation is presented in the Table 6. 

 

TABLE II. f1 

 
(a      ∨ b) ∧ a 

0 0 0 0 0 

0 1 1 0 0 

1 1 0 1 1 

1 1 1 1 1 

 

TABLE III. f2 

 
a ∨          b 

0 0 0 

0 1 1 

1 1 0 

1 1 1 

 
 

TABLE IV.  Y1 

 
a b 

1 0 

1 1 

 

TABLE V.  Y2 

 
a b 
0 1 
1 0 
1 1 
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TABLE VI. CALCULATION OF INFORMATION MEASURES  

 
 K(1) I(1) IH(F) 

Y1 1 1 4 

Y2 2 0,4 n/a 

 
Thus, the truth of the formula f1 is less complex, which 

corresponds to reality, as 
 

∨ ∧ ⇔  (29) 
 
while the formula ∨  is irreducible. At the same time, f1 
truth is more informative according to Shannon, since the truth 
of f1 is less likely than the truth of f2. Finally, since only one 
mapping is used in f2, its Hartley information cannot be 
compared. 

VI. CONCLUSION 

 We reviewed existing approaches to defining information 
to demonstrate that existing definitions are not related to each 
other and that information theory lacks a theoretical basis for 
their systematization. We also made a preliminary analysis of 
existing measures of information, as a result of which three 
basic definitions of information were identified. Secondly, it 
was established that some concepts of information are 
formally identical and differ only in interpretation. As a result, 
existing measures of information have been systematized, but 
such systematization still lacks theoretical foundation. 

As a solution, we proposed to derive information measures 
from the properties of information bearer, and in the general 
case to consider mappings as such a bearer. As a result, the 
basic measures of information were reduced to the mapping 
properties: Kolmogorov complexity — to the domain 
informativeness, Shannon information — to the codomain 

informativeness, Hartley information — to the informativeness 
of the mapping itself. As a result, we obtained a complete and 
theoretically grounded classification of information measures. 
The application of the resulting classification for a 
comprehensive estimation of information was demonstrated on 
the example of logical formulas. 
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