
SystemC-model for GigaSpaceWire Protocol
Simulation

Dmitry Kuznetsov, Valentin Olenev
Saint-Petersburg State University of Aerospace Instrumentation

Saint Petersburg, Russia
{dmitry.kuznetsov, valentin.olenev}@guap.ru

Abstract—The paper describes implementation process of
GigaSpaceWire protocol simulation System-C model. At current
point there are no available or implemented simulation models of
this protocol. Implementation of the GigaSpaceWire model will
offer the possibility of protocol testing and validation. After the
model description, the paper provides results of the
GigaSpaceWire protocol specification validation, obtained during
protocol simulation.

I. INTRODUCTION

GigaSpaceWire [1] is an onboard communication protocol
aimed to provide abilities to use gigabit link technologies and
galvanic isolation for SpaceWire networks. For achieving this
goal, GigaSpaceWire replace DS encoding schemes with
8b10b encoding. With 8b10b encoding using of Fibre and
Serial RapidIO [2] channels become possible. Therefore, it
becomes possible to implement galvanic isolation, increase
data transfer rate and link cable length. However, adding of
8b10b encoding in SpaceWire channel causes significant
changes in such basic elements of SpaceWire links as state
machine, silence exchange procedure, flow control
mechanism, encoding of SpaceWire symbols and complete
replacement of physical layers.

The GigaSpaceWire PHY layer transmits and receives raw
bit sequences over a physical link. Before starting to receive of
data symbols, the PHY layer receiver establishes a bit
synchronization. When the bit synchronization is achieved,
performing a deserialization and a symbol alignment become
possible. The symbol alignment allows to be sure, that 10b
sequences after deserialization corresponds to GigaSpaceWire
symbols. For performing the symbol alignment
GigaSpaceWire use special symbols called Comma symbols.
Comma symbols are sent with some delay, called a Comma-
time and receiving of the Comma symbol trigger symbol
alignment correction process. The GigaSpaceWire state
machine has the same states as the SpaceWire state machine,
but there are some changes in the rules for entering states and
states operations. For the connection establishment
GigaSpaceWire uses Comma symbols instead of IDLE
symbols (which are SpaceWire NULL symbols) and static
time delays replaced with calculated delays, basing on a value
of the Comma time [3]. Comma symbols in GigaSpaceWire
also used in the silence exchange process. This is due to the
symbol alignment, that should be performed before the re-
connection process. The GigaSpaceWire flow control protocol
is the same as a flow control, which defined in the SpaceWire
specification, but sets different values for parameters,
expanding a maximum value of credits counter. But for
support connections, where GigaSpaceWire links connects two

SpaceWire nodes (means of GigaSpaceWire-SpaceWire
bridges), the GigaSpaceWire specification allows to operate
flow control with SpaceWire flow control values. Also, for
supporting backward compatibility with SpaceWire networks,
GigaSpaceWire does not affect the upper layers of the
SpaceWire protocol (transport, network, and packet). In
another words, GigaSpaceWire is replacement for only the
lower layers in SpaceWire networks.

At this moment there are no implementations of
GigaSpaceWire simulation models. Generally, only two
GigaSpaceWire implementations were found in the public
domain – a SDL formal implementation [4] and a VHDL
implementation for FPGA and ASIC [5].

The SDL implementation is intended to describe the
structure and functioning of the protocol. Specifications and
descriptions on the SDL language allow to analyze and
interpret a protocol specification uniquely. The advantage of
the SDL language is in the structuring tools inherent in it,
which facilitate description of a protocol. Significant
disadvantages of the SDL model are that this model is
implemented only on an example of one network topology and
changing of the network topology is difficult process, with
SDL models can work only well-trained specialists with
knowledge of the SDL language.

Another implementation is the VHDL implementation for
FPGA and ASIC. VHDL is actually a formal description of the
final GigaSpaceWire implementation for FPGA and ASIC.
The VHDL language allows to simulate developed
components and results of simulation are the closest to a real
device behavior. Disadvantages are in high cost of software
developing in the VHDL language, dependence in deep
knowledge of the hardware description languages and
principles of FPGA and ASIC operations. The most significant
disadvantages are in dependencies in specialized an IDE for
modification and executing VHDL models and difficulties
with files input\output operations. Compared with SDL
models, changing of a network topology in the VHDL
implementation is more accessible, however, constructing
complex topologies that are characteristic of more real-life
onboard networks is difficult.

SystemC [6] is a library for C++ programming language.
This library provides necessary tools for modeling hardware
systems at various levels of abstraction: a simulation time,
events and event management mechanisms, special data types
for describing devices and organizing communication between
them. At the same time, it’s possible to use all features of the
C++ language object-oriented developing. Since C++ is a

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

common and widely applicable programming language,
modifying a SystemC source code is a relatively simple task.
Also, software written in C++ is quite easy to embed in more
complex integrated software solutions, such as CADs.
Developed SystemC models possible to compile as stand-
alone programs, allowing to use SystemC models without any
required IDE.

As already mentioned above, the GigaSpaceWire protocol
is a replacement for the lower layers of the SpaceWire
protocol. Based on this feature, it was decided to take as a
basis for development already developed a SpaceWire
protocol model in SystemC, replacing the lower layers in this
model with GigaSpaceWire levels. One of these
implementations is a software component for SpaceWire
networks simulation [7] of a SANDS CAD system [8].
SANDS consist of 4 software components, which solving
different tasks of the SpaceWire network design. Detailed
information about SANDS is described in Chapter V. In
current paper we interested in “Component #4” us the fourth
of SANDS components, that is in order for the SpaceWire
SystemC simulation.

II. СOMPONENT FOR SPACEWIRE NETWORKS SIMULATION

A key point for choosing this Component as basis for the
GigaSpaceWire implementation is that the SpaceWire
simulation core implementation is based on the SystemC
language. Also, the architecture of this implementation has a
modular structure.

Component #4 has two network simulation modes: Bit
level — a simulation of the full stack of the SpaceWire
network with transport protocol or application, and Packet
level — a simulation of the upper layers only: network,
transport, and applications. Fig. 1 shows difference between
simulation modes. The Bit level simulation mode based on the
SystemC language model time mechanism. This is done in
order to achieve more accurate comparison between model
behavior and hardware behavior. The Packet level simulation
mode based on the SystemC language event mechanism. In
this mode events, triggered by various functions, trigger other
functions. Such modeling ignores some functions of
SpaceWire, which greatly simplifies logic of the model.

Fig. 1. Two simulation modes in SANDS

The architecture of Component #4 is implemented in such
way that any object in the simulation network is an
implementation of a pure virtual base class by inheriting from
this class [9]. Objects essentially are network device models
(nodes, channels, routers), messages, device components
(ports, channel interfaces, application layers, etc.). It is
possible to implement a new version of class with deferent
functionality and behavior. Almost each class has its own
configuration parameters. Each parameter is set up with
default parameter during a topology construction process.
However, it is possible to change all parameters by means of a
special configuration file. The configuration file stores not
only parameters value, but also the topology description. In
fact, Component #4 is a bundle of classes and methods used to
build the topology of particular network.

Component #4 perform only simulation and does not
consist with a GUI. The network topology setting up with the
special configuration file. Such configuration file can be
created manually or in a specialized CAD system, such as
SANDS. Results of simulation saving in a special encoded
format. Each simulation event record created according to
specific rules. Such way in creating events history allows to
reduce computer resources usages and log-file size. Reduced
load on computer in turn allows to save events records almost
immediately, eliminating data loss. Cause encoded log events
unreadable at all, it is required in special tools for decode log-
files. On the other hand, log-files are compact and could be
easily copied to another computer or sent to another engineer.
In addition, it is possible to modify a view of simulator events
notes during decoding process: change types of viewing
events, language, etc.

III. GIGASPACEWIRE IMPLEMENTATION PROCESS

The implemented protocol model should have a backward
compatibility with the upper layers of the SpaceWire network,
replacing only the lower layers. During the development, this
particular feature of protocol was taken into account.
Implementation work was divided on following subtasks:

• Implementation of GigaSpaceWire state machine;
• Implementation of 8b10b encoding and decoding;
• Implementation of messages class;
• Implementation of GigaSpaceWire protocol channel

messages;
• Implementation of bit messages class;
• Implementation of simulated noisy channel;
• Adaptation of log system.

At the current point, developing of the GigaSpaceWire
simulation model is performed only for more detailed the Bit
level simulation mode. For this mode, the simulation model is
implemented as close as possible to the specification, which
will also allow to validate the protocol specification.

During researching of the Component #4 SpaceWire model
implementation architecture (see Fig. 2), class with
implementation of a basic channel interface was chosen as the
starting point for the GigaSpaceWire implementation. This

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 561 --

class receives and transmits symbols from/to the channel,
contains implementation of the state machine, the mechanism
for silence exchanging, the exchanging SpaceWire service and
information symbols at a higher level.

Fig. 2. Component #4 class architecture

A channel class is implementation of a half-duplex channel
with two buffers for each direction of data transfer – input and
output. Between input and output buffers a message corruption
mechanism is implemented. The message corruption
mechanism inverts a one random message bit in accordance
with a specified Bit Error Rate (BER). Messages are
transmitted as instances of a channel message class. In other
words, messages in the channel are transmitted not in form of
the bit-wide stream, copying values of bits from one level to
another, but in the form of the message class instance pointers
that were previously created during simulation. This solution
is quite rational - unlike real networks, unpredictable events
(such as effects of electromagnetic waves or radiation on the
communication channel) cannot be happened during modeling.
In addition, this solution allows reduce the workload of
computer and speed up the simulation process. However, for
inverting a random bit of symbol, a transmitted symbol must
be represented in the form in which it is transmitted in a real
device. This type, or rather the class corresponding to this type
in Component #4, is called a bit message. After inverting a
random bit, basing on the new sequence, the new instance of
the message class should be created, it will be placed to output
buffer.

For messages transmission it is necessary to implement a
channel message class in addition to the message class. The
channel message is a class, which fields are a transmitting
message and an additional information for the message
corruption mechanism operation in the channel — information
about a delivery status, a channel speed, a type of error after
detecting a message corruption. Since GigaSpaceWire sends
10b code sequences in the channel, which are result of the
8b10b decoder operation, it was decided to add these
sequences to channel message fields. 10b code sequences are
necessary not only for modeling of 8b10b decoder operations,
but also for operations in the channel with simulated noise.

The implemented class of GigaSpaceWire message (in
comparison with the same class from the SpaceWire
implementation) has following innovations: functions for
creating GigaSpaceWire characters basing on SpaceWire
characters and vice versa, functions for creating
GigaSpaceWire character. GigaSpaceWire characters is the
form of ZXX.Y (for 8b sequences) or Zxx.y (for 10b
sequences), where Z is the character type flag (where K means
control character, D means data character), XX is subgroup of
the 5 most significant bits of character, Y is subgroup of the 3
least significant bits, xx is subgroup of the 6 most significant
bits of character, y is subgroup of the 5 least significant bits.
These sequences were implemented as a separate class to
simplify work with the 8b10b encoder and simplify
modifications in the log system for the GigaSpaceWire model.
For correct operation of the Component #4 log system,
functions for internal SpaceWire and GigaSpaceWire
messages identification numbers forced assignment was
added. This ID is created automatically by the simulator and is
used to track message transferring on the network. For
supporting a backward compatibility with the upper layers,
GigaSpaceWire characters are created based on previously
created SpaceWire characters. After receiving of
GigaSpaceWire symbols from the channel new SpaceWire
characters are created for transfer. Thus, for each character,
transmitted over the GigaSpaceWire network, the internal ID
changes at least 2 times, it can cause some failures in log
functions operation.

During the implementation of the GigaSpaceWire model,
small changes also occurred in the bit message class. Bit
messages are created on the base of 10b-code sequences; after
a bit corruption the new 10b-code sequence is created on base
of the new bit message.

It should be noted, that the simulation model of the
GigaSpaceWire protocol does not implement signal and
physical levels. This is due to principle of channels operation
in Component #4, described previously. Implementation of
serialization, deserialization and bit synchronization are not
required.

One of main innovation in GigaSpaceWire is a modified
state machine. The main changes of the state machine are in
use of new Comma characters for establishing connections and
detecting a disconnection. In addition, it uses timers with
calculated values instead of static timers. These values are
calculated based on a transmission time of two Comma
characters.

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 562 --

Implementation of the 8b10b encoder was completed as
functions of encoding and decoding. Component #4 by default
creates a new class instance for each device in a network
topology. However, encoding and decoding functions for each
network elements are the same. Moreover, for the 8b10b
encoder working it’s also requires in special tables for
encoding/decoding. Creating a new instance of the 8b10b
encoder class will re-initialize these tables, allocating more
memory for their storage. To exclude possible non-optimal
usage of memory, as well as possible slowing down when
performing the simulation, the class of 8b10b decoder was
created with using a Singleton pattern [10]. In this case, the
8b10b decoder class initializing once and all next class
instances initialization will have access to the first created
8b10b class instance. Similar instances of the 8b10b encoder
class are creating in each GigaSpaceWire basic channel
interfaces and they get access to encoding and decoding
functions. Input arguments for encoding and decoding
functions are an input sequence, a RD balance value and an
encoding/decoding error status variable pointer. Thus,
decoding tables are initialized once.

At the current stage of development, it was decided to
make minimal changes in the log system for the simulation
model of the GigaSpaceWire protocol. In the Component #4
log system was added only information about 8b10b encoder
operations, names for GigaSpaceWire character types and
state names of the GigaSpaceWire state machine. This
information is minimal and more than sufficient for testing and
debugging of the developed protocol model.

IV. GIGASPACEWIRE SPECIFICATION ISSUES

During the implementation of the state machine, in the
latest revision of the specification, following errors and
inaccuracies were noticed. The specification does not imply a
clear description for a DiscDetect parameter setting during the
connection establishing process.

In the specification defined following parameters:

• CommaTime - time interval between transmission of
two comma symbols;

• DiscDetect - time interval during which a connection
error is determined;

• wait_conn_time - time interval for establishing a
connection;

• etc.
Value of the DiscDetect parameter should be at least twice

greater than the CommaTime value. Value of the
wait_conn_time parameter must be no less than 8 times value
of the CommaTime parameter. According to the specification,
the wait_conn_time should be set each time, when we enter
any state of the state machine. However, the text does not
specify the DiscDetect value setting information. It is known
that “… if the receiver of one of the sides did not accept the
Comma symbol during the DiscDetect time interval, this event
should be recognized as detecting of a disconnection error in
the exchange level of this side …". Considering that "… A
receiver error event is a connection error or a decoding error
…", we can conclude, that the DiscDetect timer expiration – is
a part of the receiver error in the state machine. Moreover, the
receiver error and the wiat_conn_time are defined as events
for entering the “Reset” state.

Unclear DiscDetect setting problem is especially arising in
the following situation: according to the specification “... if the
first Comma symbol is accepted in “Started” state, the
Got_Comma condition should be considered as fulfilled. If the
state machine is in the “Started” state and the Got_Comma
condition is fulfilled, then the state machine must enter the
“Connecting” state. …”. If the DiscDetect parameter is setting
with the channel enabling or even when entering the “Started”
state together with the wait_conn_time timer, a number of
“unsuccessful attempts” to fulfil the “Got_Comma” condition
is limited by value of the DiscDetect parameter, and the
wait_conn_time parameter becomes not working in principle,
since the value of this parameter is many times greater than the
value of the DiscDetect parameter. Such “unsuccessful
attempts” could be a symbol alignment error or a decoding
error due to the corruption of the first transmitted Comma
symbol.

In addition, there is another unclear definition of the
DiscDetect parameter. The specification defines: “... after a
channel turning on or cold reset, duration of the DiscDetect
time interval shall be 65 symbols...” As mentioned earlier in
the article, the DiscDetect is twice as large as the
CommaTime, when the CommaTime takes value equal to the
transmission time from 8 to 128 symbols. The wording “… the
DiscDetect duration shall be 65 symbols …” create ambiguity
for the operation of calculating value of this parameter after
channel switching on or a cold reset: a value must be
calculated as the sending time of 65 symbols or as the
CommaTime value if this was equal to transmission time of 65
characters, multiplied by two. In the first case, if the
CommaTime value is longer than the transmission time of 66
symbols, the DiscDetect timer will always fire, triggering the
connection error.

Not entirely clear the state machine’s reaction on a
detection of the decoding error. According to the specification
“... if the received code sequence is not found in the 8b10b
decoding table, then it should be considered incorrect and
mean that a decoding error of the 8b10b decoder has occurred.
NOTE - Detecting a decoding error does not necessarily mean
that a decoded code sequence contains an error. A decoding
error may be the result of an error that occurred earlier, but
was not detected by the decoder and changed value of a RD
balance ...” Also, "... Information about an error of the 8b10b
decoder from the encoding level and information about a
decoding error from the symbol level should be sent to the
exchange level ...". As mentioned earlier, a receiver error and
a decoding error are a part of a connection error. Also,
according to the specification, “… A decoding error is the
8b10b decoder error or the symbol level decoder error. If the
receiver is turned on and the Got_Comma condition is set,
then a decoding error must be processed by the exchange
level. If a decoding error is detected, the exchange level, the
state machine should enter the "Restart" state ...". The wording
“… A decoding error must be processed by the level of
exchange” introduces ambiguity - it is not clear what does
mean “processed”. Regarding to the above mentioned,
“processing” means the reaction of the state machine on a
receiver error. A receiver error is an event for entering the
“Restart” state of the state machine. The condition
“Got_Comma” is charged when transition from the “Starting”

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 563 --

state to the “Connecting” state, which means transition from
the “Ready” and the “Starting” state to the “Restart” state
should not be carried out. Therefore, in these states, when a
decoding error occurs (for example, as a result of distortion of
one character in the channel), a value of the RD balance will
be changed and lead to decoding errors of initially correct
sequences until the wait_conn_time will not have triggered.

V. SANDS AND GIGASPACEWIRE INTEGRATION

SANDS is a computer-aided design system for SpaceWire
networks. Essentially, it is a software tool that accompanies an
engineer during onboard space networks development process.
SANDS include four main components:

• Component #1: A component for onboard network
topology design and evaluation of its structural
characteristics [11, 12];

• Component #2: A component for tracking of the non-
intersecting routes for the data transmission in a
network [13];

• Component #3: A component for generation of the
scheduling table for the STP-ISS transport protocol for
the transmission of the data with Scheduled quality of
service [14];

• Component #4: A component for simulation of the
network operation with all the data that component got
from other 3 components and graphical user interface.

This software is applicable at every stage of network
development.

Graphical user interface (GUI) developed in the scope of
VIPE project [15]. The graphical interface provides onboard
network designer interaction with the system, including
construction of network, configuration interface to set up each
device parameters and abilities to control it and simulate. GUI
allows to build network interactively from abstract devices -
nodes, channels, routers. It is enough for user to set
configurable parameters for each device - designed network
will be exported to intermediate representation format to be
used in other SANDS component (see Fig. 3).

Fig. 3. SANDS graphical user interface

Based on the created topology and configuration
parameters, the network can be modeled, and simulation
results are displayed in a form of resulting tables. The process
of simulation itself is hidden from a user, cause all useful
information and results can be available only after simulation
ending. Also, before the simulation it is possible to check a
corresponding checkbox from a list of different available
simulation logs: RMAP [16] log, STP-ISS log, SpaceWire
network information in deferent layers and etc. All selected
logs will be shown in a window with resulting tables (see Fig.
4).

Fig. 4. Results of network simulation

As experiment, the developed simulation model was
integrated in SANDS CAD. Cause developing of the
GigaSpaceWire protocol model was done based on
Component #4, the only one way to integrate the protocol
model in CAD is only replacing the original Component #4
with modified. For integrating of developed model into CAD
system, in VIPE was added necessary fields for switching a
type of required protocol and fields in resulting tables. Also, in
the procedure of the topology constructing in Component #4
was made some correction. Type of a protocol used in device
(SpaceWire or GigaSpaceWire) in the configuration file is
stored in one of fields in a "Port" section and the topology
construction process starts from the upper levels. Because of
this, it is not clear what type of the basic channel interface to
use during device creation. Additional difficulties cause the
fact that the basic channel interface was initialized from a
constructor of a Node/Router core - from these constructors
there is no access to the configuration file. To solve this
problem, a port name was added to a kit name of a
configurable device for determining which type of the basic
channel interface that kit corresponds. It is also important to
note that the basic channel interface for both nodes and routers
is the same.

During the GigaSpaceWire protocol testing, the
implemented model was checked for possible problems
described in Chapter IV. If in the “Start” state the first comma

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 564 --

symbol is corrupted and the state machine does not enter the
“Restart” state – the RD value, after detecting an error, can
become, for example, from the expected value “1” to the value
“-3”. Next received symbols decoding can be complete with
the RD- decoding table value, when the encoding of these
symbols was performed with the RD+ value. However, in the
model, transmitted IDLE symbols were coded and decoded
with a constant value of the RD balance (the IDLE symbol n-1
is encoded and decoded with RD+, the symbol n is encoded
and decoded with RD +, the IDLE symbol n + 1 - with RD +).
This feature allows to "restore" the value of the dynamic
balance and continue a network operation in normal state.

The network model was also tested for a situation, in
which one of the routers operate as the SpaceWire –
GigaSpaceWire bridge. Test was performed using STP-ISS
protocol [17] messages with acknowledgment. This topology
option also turned out to be working, although initially this
goal was not set. Test results confirms a correct operation of
the implemented GigaSpaceWire protocol model, a correct
transmission of characters from GigaSpaceWire protocol
levels to SpaceWire protocol levels, and vice versa.

VI. CONCLUSION

During this work, was implemented the simulation model
of the GigaSpaceWire protocol on the SystemC language.
Comparing with previously created GigaSpaceWire protocol
models, developed simulation model can be added to other
software, such as CAD. Integration is possible only as
modification for Component #4 of SANDS CAD. At the
moment, the developed model is preparing for integration in
SANDS CAD. Integration of developed model will not only
expand functionality of the SANDS CAD systems but will
also allow researchers to conduct experiments with a relatively
fresh protocol that can replace existing solutions. Attracting
the attention of space vehicle network designers to the
GigaSpaceWire protocol, can accelerate process of developing
protocol specification and its preparation for implementation
in onboard computer networks. In comparison with already
implemented models, the model described in this article has
two significant advantages. Implemented SystemC model
quite flexible and allows making experiments with different
and difficult network topologies. Comparing with the SDL
implementation, the topology construction process can be
proceeds in an intuitive understandable graphical user
interface, which is much simpler. In addition, comparing with
the VHDL implementation, the SystemC model allows to use
files for input and output. Thus, SystemC model configuration
parameters are set by means of input file and results are stored
in output files. Accessibility to files I/O streams makes
interaction with the developed model much simpler and
reliable. In general, the described simulation model quite
portable – a topology description, results of simulation and the
simulator its own are standalone files, that can be shared
between specialists. Speaking about disadvantages, the
developed simulation model doesn’t take in a count the
physical layer of GigaSpaceWire networks. Thus, the
GigaSpaceWire protocol is replacement of the SpaceWire
lower layers, the developed model ignores significant part of
the protocol specification. The GigaSpaceWire model provides

the possibility to study and examine exchange and decoding
layers only.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the Ministry of Education and Science of the Russian
Federation.

REFERENCES

[1] Interfaces and protocols of high-speed inter-instrument information
exchange and integration of spacecraft onboard systems. SpaceWire-
RUS. GOST R. Moscow, Standardinform, 2018

[2] RapidIO Interconnect Specification Part 6: LP-Serial Physical Layer
Specification Rev. 2.2., RapidIO Trade Association, June 2011.

[3] Yablokov, E., "GigaSpaceWire - Gigabit Links for SpaceWire
Netwroks" / E. Yablokov, Yu. Sheynin, E. Suvorova et al //
SpaceWire-2013. Proceedings of the 5th International SpaceWire
Conference, Gothenburg 2013. Space Technology Centre, University
of Dundee, Dundee, 2013, pp. 28-34

[4] Stepanov, V. E., “Verification of the draft Russian standard
SpaceWire-RUS using the SDL language”, graduation project (work)
/ V. E. Stepanov, I. Ya. Lavrovskaya; Saint Petersburg State
University of Aerospace Instrumentation. - St.Petersburg, 2016
Accession No. 1739-16B S 79

[5] Yablokov E.N., “Methods of research and development of network
controllers of the channel level for high-speed onboard computer
networks of spacecraft”. The Dissertation of the candidate of
technical sciences. Sciences: 05.13.15: protected 30.05.2019:
approved. 10/31/2019. St. Petersburg.

[6] IEEE Standard for Standard SystemC® Language Reference Manual.
IEEE, January 2012

[7] V. Olenev, I. Lavrovskaya, I. Korobkov, N. Sinyov and Yu. Sheynin,
“Hierarchical simulation of onboard networks”, Intelligent
Distributed Computing XIII.191-196 pp.

[8] Olenev V.L., Lavrovskaya I.I. "Computer-aided design system for
on-board SpaceWire networks simulation and design", Proceedings
of SUAI Scientific session, Part 1, Technical sciences/ Saint
Petersburg, SUAI, 2017.– С. 160-173.

[9] A. Eganyan, L. Koblyakova, E. Suvorova. “SpaceWire network
simulator”, SpaceWire-2010. Proceedings of the 3rdInternational
SpaceWire conference, St.Petersburg, 2010, pp. 403-406.

[10] The "Gang of Four": Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software. AddisonWesley Professional, 1997.

[11] Lavrovskaya I., Olenev V., Korobkov I. “Fault-Tolerance Analysis
Algorithm for SpaceWire Onboard Networks”, 21st Conference of
Open Innovations Association FRUCT, University of Helsinki,
Helsinki, Finland, 2017, pp. 217-223.

[12] Lavrovskaya, I., Olenev, V., “Network Topology Transformation for
Fault Tolerance in SpaceWire Onboard Networks”, 22nd Conference
of Open Innovations Association FRUCT, Jyvaskyla, Finland, IEEE,
2018, pp. 131-137.

[13] Kurbanov, L., Rozhdestvenskaya, K., Suvorova, E. “Deadlock-Free
Routing in SpaceWire Onboard Network”. 22nd Conference of Open
Innovations Association FRUCT, Jyvaskyla, Finland, IEEE, 2018, pp.
107-114.

[14] I. L. Korobkov, N. Y. Chumakova, "Algorithm of scheduling-table’s
design for STP-ISS transport protocol", Proceedings of SUAI
Scientific session, Part 1, Technical sciences, Saint Petersburg, SUAI,
2019, pp 198-204.

[15] Syschikov, A., Sheynin, Y., Sedov, B., Ivanova, V. “Domain-specific
programming environment for heterogeneous multicore embedded
systems”, International Journal of Embedded and Real-Time
Communication Systems, Volume 5, Issue 4. 2014, pp. 1-23.

[16] ESA. Standard ECSS-E-ST-50-52C, SpaceWire — Remote memory
access protocol. Noordwijk : Publications Division ESTEC, February
5, 2010.

[17] Sheynin Y., Olenev V., Lavrovskaya I., Korobkov I., Dymov D.
“STP-ISS Transport Protocol for Spacecraft On-board Networks”.
Proceedings of 6th International SpaceWire Conference, 2014.
Program; Greece. Athens. 2014. pp. 26–31

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 565 --

