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Abstract—In this paper, we study the so-called N -model,
which consists of two pools of servers. Pool 1 contains N1 servers
while pool 2 consists of one server, which can be inactive time
to time. The 1st pool is fed by a Poisson input of the 1st class
customers. Provided all servers of pool 1 are busy and the queue
size exceeds a given threshold, a class-1 customer, with a given
probability, jumps to server of pool 2, if this server is active.
Under exponential assumptions, the number of customers in
the 1st pool is a Markov birth-death process. The periods of
activity/inactivity constitute initially a ”transient” process, which
converges to a stationary regime. In this research we deduce
stationary distribution of this Markov process in an explicit form.
Moreover, we find conditions, when the mentioned convergence
of the alternating process of activity/inactivity of the server in
the 2nd pool implies convergence of the birth-death process,
describing the 1st pool, to stationary regime. Moreover, this
convergence is demonstrated by simulation.

I. INTRODUCTION

In this work, we develop stability analysis of the so-called
N -model. This model has been proposed and analyzed by an
extended fluid approach in the paper [1]. The authors also
considered this model in previous work [2]. In general, this
model belongs to a class of Skills-Based systems. This property
can be expressed in particular by assignment of the servers
among customers depending on their class or priority. Both the
design and analysis of Skills-Based Routing is a complex and
challenging problem. A classic multi-server system describes
situation, when all servers are equally-skilled [3], [4]. The
N -model we consider in this work is a two-pool system,
which serves class-1 customers following Poisson input. These
customers arrive in the 1st pool, and depending on the state
of the queue may jump to pool 2 to be served there. At that, a
class-1 customer meeting all servers in pool 1 busy (or when
queue-size in pool 1 exceeds a threshold C > 0) jumps to pool
2 to be served as a class-(1,2) customer. A distinctive feature
of this model is that server in pool 2 is unavailable time to
time, and when the server is unavailable, class-1 customer can
not jump to pool 2.

Another variation of this model has been considered in
[5]. In the papers [1], [4], [6], [5], [2] can be found a moti-
vation to introduce and study class of N -models. Interaction
between servers, which exists in N -model, makes stability
and performance investigation of these systems much more
complicated. These models constitute a wide class of the
systems with interacting servers. Also models under study

belong to systems with flexible servers and, alternatively, can
be called cross-trained servers [7], [8], [9], [10]. We note that
flexible servers can be used, when there are a few different
classes of customers arrive in the system. In this case, some
servers can serve a fixed set of classes of customers, while
remaining servers accept more classes of customers. In other
setting, service capacity may be shared between servers to
increase throughput. An important example of this setting is
the cognitive radio, where a dynamic management is applied
for using the best wireless channels to avoid congestion. Such
a radio can detect unused frequency bands and switch between
free channels without interruption of transmission.

We call regime of the server in pool 2 stationary, if the
server is switching in inactive state (switch off) as soon as
becomes idle. Alternatively, we call this regime transient, if
server of pool 2 may stay active after departure of a served
customer. Then convergence of the transient regime of the 2nd
pool to stationary one can be described as follows: assume that,
when the 2nd pool is idle, inactivity periods appear initially
with a rate λ2. In this case, server, being idle, can be also
active. Assume further that λ2 → ∞. In this case, each time,
when server (in pool 2) becomes idle after completion of
service, is switches immediately in inactive state. Namely such
a policy we call stationary regime of pool 2.

The contribution of this work is as follows. First of all, for
exponential service times, that is for pure Markovian model,
we construct Kolmogorov equations and derive the stationary
distribution of the number of customers in the 1st pool with
N1 ≥ 1 servers, provided the 2nd pool (server) is in the
stationary regime initially. Another contribution of this work
is that now we allow that class-1 customer jumps (in idle)
pool 2 with a probability p only. (In previous works [5], [2],
[13] we have considered the case p = 1 only.) Moreover,
using approach from [11], we prove the following continuity
property of the model: if the 2nd pool approach stationary
regime (that is λ2 → ∞), then the distribution of the 1st
pool approaches the stationary distribution corresponding to
the system in which the 2nd pool is initially in the stationary
regime. In this work we also verify the continuity property by
simulation.

The paper is organized as follows. We describe the model 
in Section II. Section III contains the main mentioned above 
theoretical results: solution of Kolmogorov equations and the 
proof of convergence queue-size distribution in pool 1 to 
distribution for the model with initially stationary pool 2.
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Section IV contains simulation results.

II. DESCRIPTION OF THE MODEL

We consider a two-pool queueing model with infinite-
capacity buffers. The 1st pool contains N1 servers, while
the 2nd pool contains only one server (we often will not
distinguish 2nd pool and 2nd server). The 2nd pool uses
multiple vacations policy: when idle, it becomes inactive time
to time. It is assumed that the 1st pool is fed by a Poisson input
with rate λ1. Arriving class-1 customers can be served by the
servers of both pools, and it reflects a flexibility of the servers.
Service times of class-1 customers are exponential with rate
μ1. If server 2 is active at a moment t, then it inspects the
state of the 1st pool and, if the queue size of the 1st pool
Q1(t) exceeds a given threshold C ≥ 0, then a waiting class-1
customer may jump to the server of pool 2 with a probability
p, becoming a class-(1, 2) customer. Service time of such a
customer is exponential with rate μ12. But if the 2nd pool
is active at the instant t and Q1(t) < C, then the 2nd pool
starts an inactive period (vacation). The inactivity periods have
exponential duration with rate μ2. As we mentioned above
such a regime of the 2nd pool is called stationary. To obtain
an analytic solution, we consider only the case when service
rate of class-(1,2) customers equals the rate of the inactivity
period lengths of pool 2, that is μ1 = μ12.

It is assumed that service times of class-i customers
{S(i)

k , k ≥ 1} are independent, exponential with rate

μi = 1/ES(i) ∈ (0, ∞), i = 1, (1, 2).

(In what follows, we omit the serial index to denote a generic
element of an i.i.d sequence.) All sequences are assumed to
be independent.

We denote Q1(t), X1(t), Z1(t) the number of customer
waiting in the queue, the number of busy servers and the total
number of customers in pool 1, respectively, at instant t−. We
note, that it is does not matter for stability analysis, which
waiting class-1 customer jumps to pool 2, when server of pool
2 is active and Q1(t) ≥ C.

III. THEORETICAL RESULTS

In this section, we derive the stationary distribution of the
number of customers at pool 1.

For this purpose we compose Kolmogorov equations for
the stationary probabilities of the state of the 1st queue,
considering that the 2nd pool is in stationary regime initially.
Introduce traffic intensities

for k = 1, . . . , N1

ρk =
λ1

kμ1
,

and

ρN1+C+1 =
λ1

N1μ1 + pμ2
.

It is easy to check, that the following balance relations for
stationary distribution of the process {Z1(t)} hold true:

for k = 0, . . . , N1 − 1 the following equations hold

λ1Pk = (k + 1)μ1Pk+1,

whence it follows, that

Pk+1 =

k+1∏
1

ρiP0. (1)

For k = 0, . . . , C − 1

λ1PN1+k = N1μ1PN1+k+1,

implying

PN1+k+1 = ρk+1
N1

N1∏
1

ρiP0. (2)

Also for k ≥ 0

λ1PN1+C+k = (N1μ1 + pμ2)PN1+C+k+1,

and we obtain

PN1+C+k+1 = [ρN1+C+1]
k+1[ρN1

]C
N1∏
1

ρiP0. (3)

By means of normalization condition
∑∞

k=0 Pk = 1, we obtain

1 = P0 + P0

N1∑
l=1

l∏
i=1

ρi + P0

C∑
l=1

ρN1

l
N1∏
i=1

ρi

+ P0[ρN1 ]
C

∞∑
k=1

[ρN1+C+1]
k

N1∏
i=1

ρi. (4)

It gives the following explicit expression for P0:

P0 =
[
1 +

N1∑
l=1

l∏
i=1

ρi +

N1∏
i=1

ρi
ρN1(1− [ρN1 ]

C)

1− ρN1

+

N1∏
i=1

ρi[ρN1
]C

ρN1+C+1

1− ρN1+C+1

]−1

, (5)

where, recall,

ρN1+C+1 =
λ1

N1μ1 + pμ2
. (6)

Recall, that EQ1 is the mean stationary number of cus-
tomers in the queue of the pool 1.

EQ1 =

∞∑
k=N1+1

(k −N1)Pk

=

N1∏
i=1

ρiP0

N1+C∑
k=N1+1

(k −N1)
[
ρN1 ]

k−N1

+ ρCN1

N1∏
i=1

ρiP0

∞∑
k=N1+C+1

(k −N1)[ρN1+C+1]
k−N1−C

=

N1∏
i=1

ρiP0[
ρN1

(1− ρN1
)2
(1− ρCN1

− CρCN1
+ CρC+1

N1
)

+
ρCN1

ρN1+C+1(C − CρN1+C+1 + 1)

(1− ρN1+C+1)2

]
. (7)
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Recall, that EX1 is the mean stationary number of busy
servers in the 1st pool (assumed, that pool 2 is in a stationary
regime).

EX1 =

N1∑
k=1

kPk +N1P (k ≥ N1 + 1, k ≤ N1 + C)

+ N1P (k ≥ N1 + C + 1)

= P0

[ N1∑
k=1

k

k∏
i=1

ρi +N1ρN1

1− ρN1
C

1− ρN1

N1∏
i=1

ρi

+ N1ρN1

C ρN1+C+1

1− ρN1+C+1

N1∏
i=1

ρi

]
. (8)

Next we study the model with the server of pool 2, which is in 
a ”transient ”regime. It means, that intervals between starting 
points of inactivity periods of the server are exponentially 
distributed with rate λ2. Thus the stationary distribution {Pk} 
we found above (see (1)-(3), (5)) formally relates to the case, 
when λ2 = ∞, which we call stationary multiple vacation 
regime of the 2nd pool, or stationary regime, for short. Now 
we prove the following convergence property of the process 
{Z1(t)}: the distribution of the process {Z1(t)} converges, 
as λ2 → ∞, to the stationary distribution {Pk} (which 
corresponds to initially stationary pool 2).

Note, that it has been proved in [12], that the 1st pool is
stationary, if the following sufficient condition holds:

μ1N1 + pμ2 − λ1

λ1
> 0. (9)

Condition 9 provides stability of the 1st pool apart from the 
threshold C.

To prove this property, we use a condition obtained in
[11], which is formulated below for the birth-and-death process
{Z1(t), t ≥ 0} with birth (input) rates λ(k) and death (service)
rates μ(k), where k is the current state of the process Z1. In
case, when C = 0, we obtain, that birth and death rates as
follows:

λ(k) = λ1,

μ(k) = μ1k, k ≤ N1,

μ(k) = μ1N1 + pμ2, k > N1.

We must verify the following condition from [11]:

inf
k≥0

(
λ(k) + μ(k + 1)− dk−1

dk
μ(k)− dk+1

dk
λ(k + 1) > 0, (10)

where constants dk must be positive. We take the following
constants:

dk = 1, k = −1, · · · , N1 − 1,

dN1
= 1 + ε = δ,

dN1+k = δk+1, k ≥ 1,

where ε > 0 will be selected below.

For k = 0 , · · ·  , N 1−2 we obtain, that condition (10) 
indeed holds:

λ1 + μ1(k + 1)− μ1k − λ1 = μ1 > 0.

For k=N1 − 1, we have

λ1 + μ1N1 − μ1(N1 − 1)− (1 + ε)λ1 = μ1 − ελ1 > 0,

if we take ε < μ1/λ1.

For k=N1 it follows, that

λ1 + μ1N1 + pμ2 − 1

1 + ε
μ1N1 − (1 + ε)λ1

=
−ε2λ1 + ε(μ1N1 + μ2 − λ1) + μ2

1 + ε
> 0,

if in turn, we select ε < ε1, where

ε1 =
μ1N1 + pμ2 − λ1 +

√
(μ1N1 + pμ2 − λ1)2 + 4pλ1μ2

2λ1

is a positive root of a quadratic function

−ε2λ1 + ε(μ1N1 + μ2 − λ1) + μ2 = 0.

Finally, for k ≥ N1 + 1, we have

λ1 + μ1N1 + pμ2 − 1

1 + ε
(μ1N1 + pμ2)− (1 + ε)λ1 > 0,

if

ε <
1

λ1
(μ1N1 + pμ2 − λ1).

It is clear, that

ε1 >
1

λ1
(μ1N1 + pμ2 − λ1).

Taking into account all restrictions to ε, we obtain, that 
condition (10) holds if ε satisfies the following constraints:

0 < ε < min
(μ1

λ1
,
μ1N1 + pμ2 − λ1

λ1
. (11)

It remain to note that ε > 0, satisfying (11) exists by condition 
(9).

IV. SIMULATION

In this section we demonstrate convergence of EQ1 and
EX1 in the model with the 2nd pool, which is in a transient
regime to the corresponding values in the model with initially
stationary server of the 2nd pool.

We denote by ÊQ1 and ÊX1 the sample mean estimates 
of the mean queue size EQ1 and the mean number of busy 
servers EX1 obtained in formulas (7) and (8), respectively.

In simulation we apply the number of arrivals n = 100000
and

λ2
(j) = (j + 1)λ2

(0), 0 ≤ j ≤ 13,

where λ2
(0) = 0.5. To obtain smoothed trajectory, in each case

we perform 100 runs. We use ”R studio” software to run the
simulative model.

Recall, that this property was proved for case with C = 0.
And we demonstrate it for the system with exponential service
time and the following parameters

λ1 = 18, μ1 = 10, μ12 = μ2 = 5, p = 0.1, N1 = 2

(see Fig. 1 and Fig. 2).
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Fig. 1. Convergence of ÊQ1 to the theoretical value EQ1 = 5.947, C =
0, p = 0.1
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Fig. 2. Convergence of ÊX1 to the theoretical value EX1 = 1.764, C =
0, p = 0.1

Also we demonstrate convergence of ÊQ1 to EQ1 and ÊX1

to EX1 for the system with exponential service time and the
following parameters

λ1 = 18, μ1 = 10, μ12 = μ2 = 5, p = 0.1, N1 = 2

with C = 1  (see Fig. 3 and Fig. 4).
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Fig. 3. Convergence of ÊQ1 to the theoretical value EQ1 = 5.987, C =
1, p = 0.1
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Fig. 4. Convergence of ÊX1 to the theoretical value EX1 = 1.768, C =
1, p = 0.1

Fig. 5 and Fig. 6 demonstrate monotone decrease of EˆQ1 
and ÊX1 as probability of a jump p increases for the system 
with

λ1 = 18, λ2 = 7, μ1 = 10, μ12 = μ2 = 5, N1 = 2, C = 0

and number of arrivals n = 100000. Fig. 7 and Fig. 8 illustrate 
the same property of ÊQ1 and ÊX1 for the same system with 
C = 1.
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Fig. 5. Monotone decrease of ÊQ1, C = 0
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Fig. 6. Monotone decrease of ÊX1, C = 0
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Fig. 7. Monotone decrease of ÊQ1, C = 1
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Fig. 8. Monotone decrease of ÊX1, C = 1

As expected, when threshold C is fixed and probability of

a jump p increases, both ÊQ1 and ÊX1 decreases. It happens,
because waiting class-1 customers jump to the 2nd pool with
larger probability.

Fig. 9 and Fig. 10 demonstrate monotone increase of EˆQ1 
and ÊX1 as threshold C increases for the system with

λ1 = 18, λ2 = 7, μ1 = 10, μ12 = μ2 = 5, N1 = 2, p = 1

and number of arrivals n = 100000.

Fig. 9. Monotone increase of ÊQ1

Fig. 10. Monotone increase of ÊX1

V. CONCLUSION

In this paper, we study the N -model consisting of two
pools where the 1st pool is a classic queueing system and the
server of the 2nd pool uses multiple vacations policy. When
queue size in the 1st pool exceeds a threshold C, a waiting
customer may jump to the 2nd pool, if it is active at this
instant. We derive the stationary distribution of the number of
customers of the 1st pool. Moreover, we find condition imply-
ing convergence of the basic birth-death process in the 1st pool
to a stationary distribution, when the 2nd pool approaches a
multiple vacation policy. Theoretical results are illustrated by
a few numerical examples obtained by simulation.
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