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Abstract—Many sectors have been related to massive
population growth, whether healthcare, industry, transport, or
information systems. Many of these industries daily generate a vast
amount of data, and a basic system of the data processing stopped
to fulfill efficiencies of data manipulation. The central data
processing also has various disadvantages, such as central storing
of the server, low storability, and high costs. Because of these, but
also another reasons, the system called distributed data processing
was created. Distributed data processing led to calculations’
acceleration, higher redundancy, and bigger storability. The
massive use of the calculation servers happens during distributed
data processing with big data, causing unsatisfactory
performance. Based on observations, we created an architecture
capable of effectively adding and deleting the calculation units
based on demand in the data processing and increasing resistance
against an error. The experiments show that the newly created
architecture can increase security, not only of the data processing
but also of processed data security. On the other hand, adaptation
to the performance plays a critical role we achieved after
performing the planned experiments.

I. INTRODUCTION

Distributed data processing is a method of computer
network, where more computers in different places, share
options for computer processing. This is the difference opposite
the only one centralized server managing and providing the
options of the processing to every connected system. The
computers forming the distributed network for data processing
are placed in different places, but they are connected through
wireless or satellite connections.

The data exploding in last years result in increasing demand
after the big data processing in modern data centers, usually
distributed in different geographic regions, for example in the 13
data centers of Google company in the 8 countries on 4
continents [1]. The big data analysis proved its significant
potential to uncover valuable knowledge about the data, improve
decision-making, minimalize risks, and develop new projects
and services. On the other hand, the big data were already
translated into the high price, because of high demand after the
calculation and communication sources [2]. The researchers
assume, the costs on hardware data centers will still grow, which
is related to its high costs of efficiency of increasing and
customer demand. This is why it is necessary to study the
problem of cost minimalization for the big data processing
distributed in many data centers.
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Several methods were developed to optimize the prices,
regarding optimal calculation units. It was suggested, for
example, to change the data center size to reduce the calculation
costs by the edit of the number of activated servers through task
placement [3]. Based on the data center change, the study was
created, focused on the geographic deployment of the data center
[4], [5]. The problem of distributed processing data is related
also to its effectively created communication. We noticed the
studies devoted to the mentioned problem to improve the data
through the task placement in the server, where the input data
are placed to prevent distant data loading [6].

Even if the studies, as mentioned above, brought specific
positives in distributed data processes, they are diametrically
different from the system with cost-effective data processing
because of the following reasons:

e  Source waste — to details, which occurs in the system,
is related to appropriate treatment. Some data are
occurring in the system more often, some data are
accessed less often, so it is unnecessary to have them
constantly available. This fact helps us to effectively
manipulate the data, which are no often demanded;
thus, it will reduce the costs, or it will reduce the
number of the servers needed for processing,

e  Connection in networks — the data center’s velocity is
influenced by several factors related to their cost
characteristic [7]. However, the existing strategy of the
direction between the data centers does not use the
variety of network connections in the data centers. This
is because, because of a limitation of storing capacity
and calculations, storing all tasks to the same server is
not possible, where relevant data are stored. It is
necessary to withdraw certain data from the distant
server,

e The data's inefficiency — in the system, there are the
data, which replication can also depend on its
appropriate use. Often used data demands bigger
replication because of their key role than the data
inappropriate to access, thus the reduction of individual
servers overload could happen. Also, an amount of
consumed storage could be reduced.

We study the cost problem for big data processing to
overcome these weaknesses of the existing solutions and the
efficiency of the data replication between several servers. We
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take the limitation of the provided number of server into account
in our cost optimization. We aim to optimize a vast amount of
the data to eliminate the needed replicas amount. Our primary
papers are summarized like this.

e Optimize the number of parallel processes used in
processing the significant data amount, thus preventing

excessive server overload.

Optimize the replicated data amount, based on
individual data weight, thus optimizing the number of
servers needed to manage the data.

II. RELATED WORK

Optimization of parallelism

Nowadays, it is possible to use many developers such as
Hadoop, Spark, Flink, Samza, and many others, when using
distributed data processing. A data division is used in these
systems to manage parallelism, and it is central for these systems
to achieve the scalability of significant calculation clusters.
However, the systems' diversion techniques are very primitive,
which causes severe problems regarding the performance. In the
paper focused on the given problematic, researcher Schneider
introduced a compilator and runtime system, together with the
team [8], which automatically extracts the data parallelism in
distributed flow processing. According to the available
resources, their access to a compilation of the parallel areas, the
compilator ensures security. Thereby it takes an operator
selectivity, state, diversion, and dependence on the operators into
account. A distributed runtime system ensures that n-tuples
always leave the parallel areas in the same order they could be
without the data parallelism by using the most effective strategy
identified by the compilator. Another point of view on the given
problem has researcher Dean together with Ghemawat [9], who
came up with an idea of using MapReduce implementation
running in a big group of commodity machines. They transferred
the calculation to various devices, and they use cluster by Google
in the research.

Price optimization

Until recently, the vast data centers were used to calculate
the massive amount of the data. The data centers provide various
calculation purposes in many ways, which is related to their cost,
too. According to the [10], the data center can be composed of
many servers and can consume megawatts of energy. Electricity
cost price is a big negative in processing the vast data amount
for the data center providers. This is why significant attention of
the academic community and the industry [11], [12], focused on
reducing electricity costs. Between the mechanisms developed
until recently for energy management in the data centers, the
techniques attracting significant attention are task placement and
DCR.

DCR and task placement are usually considered as typical to
meet the requirements of calculations. Liu and col [13]
repeatedly review the same problem, including delays in the
network, Fan et al. [11] examine the strategies of providing
energy, how much of a calculation device is possible to safely
and effectively place, regarding given budget and energy. Rao
and col. Examine how to reduce the electricity costs by the user’s
demands movement to geographically distributed data centers
with relevantly actualized sizes meeting the demands. A very
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different idea for the price optimization was given by researchers
like Sharon Q. [14] and the collective focusing and comparing
the efficiency of the transfer from a physical server to a cloud
service. The mentioned study compares centralized data centers,
virtual servers, and safe data transfer through the internet.
Another researcher from the scientific community Qian
addressed a similar problematic together with the collective [15],
who published the paper focused on the definition of the term,
history, advantages, and disadvantages of cloud computing and
the definition of the value chain and efforts on standardization.

Data protection

Nowadays, data protection belongs to an essential part of the
development of whichever system. We noticed four key works
during our research from researchers Agarwal, Cidon,
Schachnai, and Jin together with their collectives, addressing
given problematic. Agwal, together with his research team
(A.P.Aakash 2020), designed a mechanism of the data
placement, Volley for geographically distributed cloud services.
This work takes costs on bandwidth WAN, interdependencies,
limitation of the data center capacity, etc. into account. Volley
analyses protocols based on the so-called “interactive optimizing
algorithm.” The algorithm is based on the access data and client
placements. The mentioned paper also provides the migration
recommendations back to the cloud service. The second exciting
study from researchers Cidon and his collective [16] is related to
a mechanism named by MinCopysets. The algorithm is based on
the effective placement of the data replicas because of making
the placement of data durability more effective in distributed
data centers. The third mentioned by the researcher and the
collective [17] examines how it is possible to minimalize the
costs related to communication while ensuring the comfort by
the end-user, based on various video files’ copies placement on
servers and with that relating loading capacity of the associated
copy. The recently published study by Jin, together with the
collective [18], designed a standard scheme optimization,
optimizing virtual machine placement and providing
recommendations with the direction of network flow because of
energy saving.

Reliability

In studying the system's reliability, we also examined the
problem dealing with the sensitivity and accuracy of the problem
provided. In the paper [20], the author deals with managing the
temporary system's granularity and proposes a data-sharing
model based on the reliability, sensitivity, and accuracy of data
providers. It provides a system concept that introduces a cash
prospect, which is then evaluated in the experiment section.
Optimization of the data flow by historical data aggregation and
limitation of the data amount is a core part for the system
decision making, whereas the time for data transferring is strictly
limited.

Another look at increasing reliability is given in the studies
in the article [21]. The main idea is to manage the data
asynchronously, and then the data is merged. Study data began
in 2006 and is the result of an in-depth analysis. The study's
achieved result is the creation of architectural design for a
distributed information system with asynchronous update data.
During the development of the researchers concluded came the
need to store versioned data on the server. Their different
approach to solving reliability in the mentioned paper uses new
techniques of storing versioned data in a unitemporal relational
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Fig 1. Kinesis Architecture

database. Storage is a departure from traditional security
practices. The created solution can also preserve the advantages
of RDBMS, such as referential integrity and transaction
processing.

The rest of the paper is structured as follows. Related works
are summarized in the II part. Part III represents our system
model. The cost optimization is formulated as problem MNLP
in section IV and then, it is linearized in section V. Theoretic
findings are proved by the experiments in section VI. Part VII
competes with our work in the end.

III. CONTRIBUTION
We used Amazon Kinesis Stream in cloud service Amazon
for distributed data processing. Amazon Kinesis Streams is a
permanent and scaling service in real-time.

e The consumers get records from Kinesis Data Streams
and process them. We build our applications using
either Kinesis Data Analytics, Kinesis API, or Kinesis

Client Library (KCL).

For processing data in the Kinesis service, we created a
script, which we saved at the following address
https://github.com/romanceresnak/kinesis/blob/master/script.py
.The mentioned script performs the following steps:

The values entering the system are portrayed in Fig 1 on the
left. It is seen, the records are coming from different calculation
units EC2, respectively, from any mobile application having API
client access with the help of service Cognito.

The data processing velocity in the process portrayed in fig
1 depends on the efficiency of operation Kinesis. Because of
this, we provided the flexibility of scaling to service Kinesis,
based on overloading.

It can group gigabytes of the data in a second from hundreds
of thousands of resources, including flows of the database
events, flows of web clicks, financial transactions, protocols IT,
social media channels, and location watching events. The caught
data are given in milliseconds for the analytic data in real-time,

560

Consumer

including anomaly detections in real-time, dashboards in real-
time, and dynamic price making. Of course, it is also the
connecting to the service Kinesis with different computers and
servers. Subsequently, the processing runs as follows:

e The producers put records (data ingestion) into KDS.
AWS provides Kinesis Producer Library (KPL) to
simplify producer application development and

achieve high write throughput to Kinesis data stream.

A Kinesis dataStream is a set of shards. Each shard has
a flow of data records. Data records are formed of a
sequence number, a partition key, and a data blob
(up to 1 MB), an immutable bytes sequence

We created a script for the data processing in service Kinesis,
which we uploaded to the following
address https://github.com/romanceresnak/kinesis/blob/master/
script.py The mentioned script performs the following steps:

At first, it will start up a timer to catch the time of the
script performing.

We create a client with Kinesis in the French region
(eu-west-1), returns a client.

Loads data in form the CSV renamed to ‘data.csv,’
returns a pandas DataFrame

Each record's fields are combined utilizing a '|' (pipe)
character, which we influence later. We cluster up all
the information and post it Kinesis to be handled
utilizing the customer we made, giving the Stream
name and shard tally. Shards are turned through to take
into consideration appropriate fanning out of the
remaining task at hand. Notwithstanding, we are just
utilizing one here.

e  Subsequently, we stored the data into 2 data regions.

We stored the data into two regions, which means a
replicative coefficient is set to value 2. We set an automatic data
replication in our structure in the case of region loss. The
number of copies is automatically found out in the case of the
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region loss. If data replication is not equal to value 2, the data
are automatically replicated to another region. Regarding the
mentioned case, we set an automatic message [P address, which

A. Scaling up policy

The automatic storing upwards allows the amount of the
needed threads to adapt, based on the data increasing, that is to
say traffic.

Lambda

SNS

—

Scale Up Topic

<—Initiate scale-up

Scale Up

Increase Increase threshold

shard count Report ALAHM status

"Scal&up treshold cmssed—_’h Scale Up Alarm

CIoudWatch Alarm

{

Kinesis Stream

Fig 2. Scale Up Architecture

We created an architecture for scaling of thread amount
portrayed in Fig 2. It comprises four services: Kinesis Stream,
Lambda function, Simple Notified Service, and Amazon
CloudWatch.

The alarm of service CloudWatch monitors metrics of
Kinesis Data Stream service. When the alarm threshold is
achieved, for example, because of demand growth, respectively,
the number of threads, so some of the mentioned events will
trigger the alarm. This triggering of the alarm will alert the
automatic application of adaptation policy, which reacts by
automatic scaling downwards, based on stated preferences.

At the point when the scaling strategy is set off, Application
Auto Scaling calls an API activity. The consider passes the new
number of Kinesis Data Stream shards for the ideal limit. The
call additionally passes the name of the asset to scale, given by
Amazon API Gateway. Amazon API Gateway summons an
AWS Lambda work. Given the data sent by Application Auto
Scaling, the Lambda work increments or diminishes the quantity
of shards in the Kinesis Data Stream. It does so by utilizing
Kinesis Data Stream's UpdateShardCount API activity. The
accompanying chart represents the situation.

The Lambda will report two custom metrics (OpenShards
and ConcurrencyLimit) to CloudWatch whenever strongly
invoked to enable tracking when scaling up occurs. These usage
metrics will allow us to monitor scaling behavior.

As recently referenced, the Scale-Up Lambda will utilize an
alert to screen a Kinesis metric to check whether it crosses a
determined limit.

The prescribed methodology is to quantify the whole of
IncomingRecords or IncomingBytes from the related Kinesis
stream for more than 5 minutes. This will give us direct
knowledge into how much information streams into the stream
and settles on educated choices concerning scaling.
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has the purpose of the region loss camouflage to avoid
whichever data loss is noticed by the end-user

B. Scaling down policy

A Lambda scales down the Kinesis stream, the scale-up alert,
and alternatively an outside Lambda to their unique settings.

When daily during an off-top hour (after bombed logs have
been prepared), a CloudWatch Rule will trigger the Scale Down
Lambda at 10-minute stretches. This is done to balance the
impediment Kinesis has for downsizing (the most reduced
legitimate objective shard check is half of the current free shard
tally). The whole architecture is shown in Fig 3.

Lambda CloudWatch Rule
l ghtly trigger ‘
Scale Down Rule
Scale Down
Decrease Decrease threshold

shard count

»>
‘ Scale Up Alarm

-

CloudWatch Alarm

e

Kinesis Stream

Fig 3. Scale down architecture

This Lambda will avoid the scale-down cycle if the stream is
at present under heavy use, on the off possibility that it is as of
now being downsized or on the off chance that it has just been
downsized to the default number of shards.

Like the Scale-Up Lambda, the Lambda will likewise report
two custom measurements (OpenShards and ConcurrencyLimit)
to CloudWatch at whatever point is effectively summoned.

C. Threshold Calculation

In view of the requirement for the application, a programmed
valuation of limit esteem occurs.

For Kinesis stream with n shards, Lambda will scale to all
things considered n summons (as constrained by its held
simultaneous executions).

Every Lambda sends a normal of m records to the Kinesis
stream every second.

The time frame, by which the alert screens the whole of a
measurement, is s seconds.

In this manner, the edge to screen is

n*m*s (1)

To guarantee scaling up happens before the information falls
behind, we can rather screen a level of the determined limit.
Since 80% is viewed as best practice by AWS, we will screen
that esteem as opposed to going ahead.
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D. Cross-Region Replication

The values, which are processed, are to be stored after the
successful manipulation effectively. The vast data amount is not
possible to store on a central computer, and so they are stored
distributed. The data loss could cause a protracted or alternative
data loss because we work with a huge data amount.

The data in service Amazon are stored to Amazon S3, which
reliability is defined as 99,99999999%. Even if the number is
this high, it needs to preserve the reliability and data
accessibility. That is why we decided to replicate the data
between individual regions in the network.

We defined the replicative coefficient to value two by this
method, which will automatically evoke the operations, in the
case of error or failure, controlling the amount of replicated data
in the system. If the replicative data coefficient is not equal to 2
after the region or any value failure, so the data are automatically
replicated to other regions.

Based on the replicated data in two regions, we fulfilled the
critical condition of preserving the critical data copies in places
distanced hundreds of kilometers from each other. Our solution
fulfills maintaining the strict regular demands to preserve
sensitive financial and personal data, too.

E. Cross-Region Replication

We created 3 files with different file sizes and different data
volumes for the purposes of this experiment. The files are
uploaded on these addresses:

https://github.com/romanceresnak/kinesis/blob/master
/data2010-1000.csv

https://github.com/romanceresnak/kinesis/blob/master
/data2010-50000.csv

https://github.com/romanceresnak/kinesis/blob/master
/data2010-100000.csv

The created files are about the size of 1000, 50000, and
100000 records. All operations were done in the following
configuration:

TABLE I. SERVER CONFIGURATION

al.medium
EC2 Instance vCPU: 1

MeM(GiB): 2

master: 1x
m3.xlarge
EMR cluster
core: 2x

m4.4xlarge

The values, we measured during the records processing
about size 1000, 50 000 and 100 000, are as follows:

For 1000:
Total Records sent to Kinesis: 1000
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Runtime: 6.782348799345345 [s]

For 50000:
Total Records sent to Kinesis: 50000
Runtime: 8.23432452345244 [s]

For 100000:
Total Records sent to Kinesis: 100000
Runtime: 8.96464356323443 [s]

As seen in the results for the number of records 1000, 5000,
and 100 000, the values did not degrade, and they did not grow
exponentially with the increasing number of records. This fact is
right influenced by the automatic adaptation of the calculation
units based on an increasing number of data related to its
increasing demand after the calculation units.

Pulling out units

o)
w

[Count of units]
N
w

o =
ownkunN

=] 000 records — es====50 000 records 100 000 records

Fig 4. Pull out server drives

As seen in fig 4, the values we measured the size of 1000
records show that automatic scaling was not needed for these
purposes because of the low data capacity. Our set value of the
server overload was set at 80%, which was not exceeded in this
value, and so any growth of the number of calculation units did
not happen. Except for the mentioned fact, value 1 is always the
value representing a minimal number of the calculation units,
which are figured by the server at the beginning and the end of
the process.

While comparing the values, which can be seen in fig 4, the
number of calculation units increased by the data growth to
50000 records. As was mentioned above in the paper, the
calculation unit occupancy crossed the border of 80% in the
processing of 50000 values. Thus, it caused the growth of the
calculation units. Even the number of calculation units that
equals 2 was not enough to reduce the server occupancy, so
another calculation unit was added again. With the number
equaled to 3, the server occupancy reached the level when it was
unnecessary to add or delete units. The server with optimal
occupancy was able to process incoming data. The opposite
effect happens after the processing of 2/3 records. The number
of the calculation units needed to process the data started to
decrease until it was not necessary to give only value 1 for the
data processing. Therefore, the server overload did not optimize,
and the cost optimization connected to the operation of the data
processing.
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We recorded a similar effect with the data growth to 100000
records, too. We reached the border equaled to 4 with the
calculation units in automatic scaling after approximately half
of the data. Subsequently, the data overload was decreasing,
which is also related to the decreasing value of the calculation
units towards 1.

As it is seen, the automatic adaptation of the performance
works effectively either with several 1000 records or 100000.
Thus, it helps us ensure a sufficient amount of the data to make
the system work in optimal server overload with the inquiry on
effective manipulation with operating costs.

IV. CONCLUSION

The majority of the accesses focus on the vast data amount
in distributed data processing, which are in the system and create
a new way to access the data effectively. Many researchers'
effort is also to reduce the replicated data amount, thus reducing
the hardware amount needed for the value storing to the system.
This document has another attitude and shows how to effectively
manipulate the data in the system and the data entering the
system in real time. Based on achieved experiments related to
the data replication, we do not share the same opinion with other
researchers claiming the replicative coefficient has to be set
minimally to value 3. Based on the experiments we assume, the
replication coefficient must be set to value 2, which leads to data
storage reduction, decreasing the calculation units, and of course
to the cost optimization. The critical part is the data processing
on devices geographically and physically separable and is
connected by a highly available connection. This aspect makes
our access unique in comparison with for example the work [19].

According to our experiences, automatic adaption lasts
upwards only a few seconds, causing an increasing amount of
operating costs. The solution was implemented in the paper,
which adapts the calculation units number also downwards with
decreasing calculation demand and because of effective use of
the provided resources.

Automatic permission of the data replication is related to
their appropriate management. The data watching with the
replicative coefficient set to value 2 always signalizes that the
system automatically starts to replicate the data in case of
whichever data outage. The significant advantage is the setting
of an elastic IP address, capable to mask the outage of the
relevant area. Thus the user will not find that any outage
happened.

Our designed architecture could be appropriate while using
the applications, which do not know the data amount entering
the process and needing the massive level of the performance
variability while designing the application. We can imagine that
entering data could automatically perform the structure's edit and
influence the performance based on the structure type. We will
try to apply these designs to our next work.
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