
Artificial Intelligence Methods for Services and
Product Sustaining Phase

Alexandra Sokolova, Danil Safronov, Kirill Stonozhenko, Maxim Solomonov, Igor Nikiforov, Artem Kovalev
Peter the Great St.Petersburg Polytechnic University

Saint Petersburg, Russia
{sokolova.ae, safronov.d, stonozhenko.km, solomonov.ms, nikiforov_iv, kovalev.ad}@edu.spbstu.ru

Abstract—The main problem the project addresses is

reducing time and effort spent by a vendor company on product
sustaining phase. This is done by development of the approach
for assisting with customer request resolution based on
intellectual methods and machine learning algorithms.

Solution collects resolved issues from bug tracking systems,
local documentation and confluence pages, creates their
respective vector models and teaches the algorithm on the data.
For each retrieved unresolved issue, related resolved ones and
documentation pages are found as a result of using trained
algorithm. System also collects user-written rules, that are based
on information from the issue, and checks them on each
unresolved issue to give recommendations regarding its status
change or additional needed information. Based on received
information, the final report is constructed to show related issues,
documentation and recommendations for each unresolved issue
in a user-friendly manner.

System was tested on Apache Kafka project issues and
compared to manual approach performed on same data. The
average time to analyze unresolved issues using the automated
approach was 12.2 minutes, and the average time spent with the
manual approach was 18.4 minutes, which means that our
solution decreases complexity of issue analysis by ~33%.

I. INTRODUCTION
The maintenance is one of the most expensive phases in a

software product lifecycle [1]. In 2005, the maintenance
accounts for 67% of the project total cost [2]. This is caused
by a growing of number of places, where an error should be
fixed (implementation, workflow and/or documentation).
Every bug in product/service or even a question is the subject
for customer to create a request to the development company
for an assistance. A vendor company needs to spend around
40% of the development time and involve a lot of human
resources on finding solutions to customer’s requests during
maintenance stage. Moreover, teaching newcomers at support
department to understand and operate the provided
product/service remains one of the most complex issues on
this stage.

Improving the quality of support improves a long-term
relationship between the service/product provider and the
customer and also makes educational process easier for the
new support engineers [3]. Thus, the proposed solution to
automate and assist with debugging product
issues/bugs/questions can be considered as an actual task for
the field.

Since then, many approaches appeared to reduce this
problem [4]. One of them is bug tracking systems, like Jira [5]

or Bugzilla. Their primary objective is making a connection
between customer and developer more subtle. Bug tracking
systems allow to form, collect and store issues about errors,
bugs or proposals of improvements for a software product [6].

However, this approach has its flaws. A developer team
has to spend time on analyzing new issues. Such as: prioritize,
find identical, check correctness and so on. These tasks are
able to be automated with using intellectual methods and
machine learning algorithms. It is the main goal of our project.

The most similar tools, which partly solve the problem, are
Jira plugin Automation for Jira Server [7] and software tool
Amelia [8].

Automation for Jira Server gives a possibility to create if-
then-else rules for different events. For example, if issue’s
type is “bug” then assign it to engineer “A”. This tool has
intuitive and simple interface. But it is not able to work with
unstructured data in the description or commentaries in an
issue.

Amelia is the smart assistant for employees in a company.
It aims at forming answers on natural language for the most
frequent questions and does not really supports an integration
in development process with Jira or Bugzilla.

Our way gives more opportunities for engineers to process
incoming requests. It is based on generating a report with the
meta-information about every issue. This report let developing
team see dependencies between issues and the most relevant
problems and suggest a solution for each step.

II. LITERATURE REVIEW
The main part of our approach is algorithm of finding

similar documents (issues and documentation) [9]. We have
compared following text information processing methods.

BM25 [10] – is the ranking function, based on
TF-IDF [11]. It is used in modern search engines
(ElasticSearch). BM25 has the same advantages like TF-IDF:
reduction of impact of the more frequently used words and
normed word weight. Indeed, function contains regulating
factors. The disadvantage is negative index value for words
with high frequency.

Latent semantic analysis (LSA) [12] – the algorithm,
which is able to identify correlations between documents in a
corpus and to systematize ones into topics. The advantages:
working with both documents and terms, using in

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

classification and clusterization and avoidance of influence of
polysemy and homonymy. But this algorithm requires much
computing resources and has the very fast growth of execution
time with increasing of analyzing data.

Semantic search using ontologies [13], [14], [15] – the
algorithm based on semantic network as indexing method. The
advantages: wider context recognition than in other algorithms
and the opportunity to execute search requests for terms with
words, which did not appear in learning dataset. Nevertheless,
there is no method to full-automatically extract whole
ontologies from training corpus [16].

Doc2Vec [17], [18] – the algorithm, which uses neural
network to create vectors from each document and cousin
distance to compare them. The advantages: faster learning
stage and search request execution than in other algorithms.

Full comparation between these algorithms is presented in
Table I. Table legend: N – dictionary size, M – term size, D
size of documents collection, k – matrix rank (LSA).

After comparation we have chosen Doc2Vec algorithm to
search similar text information in our solution, because its
advantages have been important for us [19], [20].

TABLE I. COMPARATION BETWEEN TEXT PROCESSING ALGORITHMS

Processing
Algorithm

Learning
Comple-

xity

Search
Comple-

xity

Context
Recogni-

tion

Search
recall

BM25 O(ND) O(D*(N+
+M/2))

No >30%

LSA O(ND)2k+1) O(ND) Yes 30-50%

Ontologies base Manual O(ND) Yes <50%

Doc2Vec O(D(N+D) +
+Dlog(N))

O(D*
*log(N))

Yes 30-50%

III. APPROACH DESCRIPTION

A. System requirements

The key features of the project can be divided into three
parts based on their outcome.

First key point is an ability to search similar customer
requests in the database of already resolved issues.

The approach classifies customer’s requests with machine
learning algorithms (Doc2Vec) based on the history database
issues and provide the list of semantically similar cases [21],
the list of appropriate engineers and the list of reliable labels.

Semantically similar cases help to understand if the
problem has already been resolved or give a quick overview
on the taken approaches and steps to resolve the case. A
section with appropriate engineers must allow responsible
persons to contact with or ask for a help. Classification of
cases by problematic area also this gives a possibility to
identify the product component, that needs additional attention
for improvements, bugs elimination or additional
documentation.

Secondly, it will provide semantic search over the
documentation [22] in addition to cases.

The result of the search is the table with mapping of the
document name and page number, that contains semantically
related information. This helps the engineer to quickly provide
proper references to the customer or even to learn more about
problematic component and confirm if the request is a bug or
not.

The last feature is application of set of static rules for
providing formal guidelines.

Based on the customizable templates, the systems suggest
engineer to pass the case to proper state (“OPEN”,
“IN_PROGRESS”, “INFORMATION REQUESTED”, etc.)
or to request additional information. For example, when
customer complains about an error in product, but forget to
attach a log file with stack trace.

All the approaches are implemented in software tool,
which is called “Iresolver”. It allows automate resolution of
customer requests, which in turn allows to decrease the
amount of time spent by technical support engineers and
product developers on finding solution to the customer’s
requests. In Table II requirements for the solution are stated,
functional (F) as well as non-functional (NF).

TABLE II. FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS

ID Description
F - 1 Software solution should be able to retrieve opened and

closed issues from the following bug-tracking systems:
JIRA, Bugzilla.

 closed issues should be used for training machine
learning algorithm;

 for opened issues the recommendations should be
generated.

F - 2 Software solution should be able to process documentation
in PDF, TXT and set of confluence wiki pages formats in
order to provide page number with semantically similar
information to the opened request.

F - 3 Software solution should generate report for opened issues
that contains recommendations about:

 semantically similar cases;
 references to documentation and pages;
 persons to contact with;
 case classification;
 additional information to request and ask the

customer.
F - 4 System should generate final report with recommendations

in HTML and TXT formats.
F - 5 Software system should be configured with YML

configuration file and contain list of properties for
configuration:

 url and credentials for bug tracking system;
 filters for select closed and opened cases;
 report format.

F - 6 When user launches the system, the system should retrieve
the unresolved issues from the set Jira project, vectorize with
the help of model, compare them to the resolved issues and
documentation and provide the report on each issue.

F - 7 The system should have the following functionality for
manual launch:
create documentation dataset;

 create documentation vector model;
 create issues dataset;
 create issues vector model;
 create confluence dataset;
 create confluence vector model.

F - 8 When customer runs “create issues dataset” command,
system should retrieve the resolved issues from the set Jira

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 646 --

project and provide the dataset.

NF - 0 System integration in customer’s company business
processes should be effective and fast with minimal
expenses for end company.

NF - 1 System should provide a final issue report on the unresolved
cases in final and reasonable time.

NF - 2 System should follow security rules and prevent data leaks
when working with customer’s data.

NF - 3 System should follow GDPR.

Fig. 1. System architecture

B. Overall system architecture

Main inputs of the system are:
 custom queries, which we get from bug tracking

systems, such as Jira and Bugzilla, through issue
connector.

 local documentation and pages from Confluence portal
which are collected through documentation connector.

 set of rules, written by user and used by rules
processor.

 report template, which is used by report generator.

In the course of using the system, we need to collect

resolved and unresolved issues, documentation, create their
respected vector models, use them in the trained
algorithm/rules processor and retrieve information regarding
similar issues, documentation and recommendations. The
output of the system is a report, which contains all collected
information.

Fig. 1 shows overall system architecture, main points of
the execution, objects that are involved. Boxes with sharped
angles contain software modules, with rounded – input or
output data. Table III contains a description of elements
in Fig. 1.

TABLE III. ELEMENTS DESCRIPTION IN FIG. 1

Box name Meaning
Customer query An existing bug report which contain information

about issue
Bug tracking system Software application or a portal in which bug reports

are created and registered, the main purpose of it is
to trace the process of solving the problem

Issue Connector System module, in which needed issues are retrieved
from bug tracking system with the help of filters

Unresolved issues Collected issues with the Unresolved status, for
which our system will find similar resolved issues
using algorithm and rules

Resolved issues Collected issues with the Resolved status, which are
needed for creating vector model and teaching the
Doc2Vec algorithm

Local documentation Documentation files in pdf format that exist in a
local folder

Confluence pages Articles and documentation that exist on Confluence
portal

Documentation
connector

System module, in which documentation from local
folder and Confluence pages is retrieved

Similar issue
information

Result of Doc2Vec usage which contain information
regarding resolved issues similar to unresolved ones,
including links, appropriate engineers, possible
labels

Similar
documentation

information

Result of Doc2Vec usage which contain information
regarding documentation similar to unresolved
issues, including page number and link

Set of rules Local *.drl files which contain rules built by Drools
template that can apply to issues and analyze their
size, status and attachments, and write certain
recommendations for the user

Rules processor System module, in which rules are being retrieved
and used

Recommendations Natural language sentences, that were collected
through rules being true for each issue

Report template Apache Velocity template of the final report, which
contains all collected results from previous modules

Report generator System module, in which report template is filled
with actual system results for each issue

C. Data flow model

Fig. 2 shows the general data flow in our system, what files
are created, what processes are performing with the data.

Fig. 2. Data flow model

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 647 --

From Jira/Bugzilla we get text that is transformed in
dataset file [23]. Then that text is getting stemmed [24] and
trained in Doc2Vec, the output is vector model file. The
unresolved issues are collected as text, together with vector
models are given to the classifier, which output is given to
report generator. Its output is the final result.

III. IMPLEMENTATION

A. Software frameworks

After analyzing all requirements, we described common
usage scenarios and interfaces and chose software frameworks
for realizing main features. Table IV includes technologies
that we used and their brief description and usage.

TABLE IV. USED TECHNOLOGIES

Tool or framework Description
Java 8 Main programming language. It combined

adaptability for different OSs, wide functional of
standard library and many existing external
libraries and frameworks.

DeepLearning4j The machine learning framework. We use its
implementation of Doc2Vec algorithm to solve
semantic search task.

ND4J The part of DL4J. It makes possible to work with
NDArrays and perform all common mathematical
operations with them.

Drools This framework allows to create special *.drl file
with rules, which check one option of a processing
issue. For example, length of description is not
equal to zero.

Apache POI The framework for parsing *.doc or other
documentation files.

Jira Rest Java Client The library for getting a list of Jira issues with
REST API.

Bugzilla for Java The library for getting a list of Bugzilla issues with
REST API.

Confluence Rest
Client

The library for getting wiki pages with REST API.

Logback The logging framework. It has many options to
configure log templates.

Software is developed on Java language version 8. It was

the last version at the beginning of the development and now
one of our tasks is update to Java 14. As IDE we use JetBrains
IDEA 2019. For version control we have chosen Git, because
it is commonly used by developers. All operations could be
launched with batch scripts (.bat for Windows/.sh for Linux)
and user can set tool configuration with special YML-file.

System consists of modules that can be classified as
connectors, processors and reporters. Gradle is used in our
project due to its easy configuration and building. This tool
gives us options to add new modules or to update frameworks
versions without any changes in the code.

B. Algorithmic components

We use Doc2Vec algorithm in the processor as our main
algorithmic component. It’s the innovative approach that we
use for semantic search [25, 26]. The goal of the algorithm is
to create numeric representation of the document. Doc2Vec is
based on Word2Vec model with addition of paragraph vector.
Doc2Vec uses two ideas for vectorized word representation:
Distributed Memory (PV-DM) and Distributed Bag Of Words
(DBOW). PV-DM is based on CBOW [27], which is used in

Word2Vec. Model is learning to guess the word by its context.
The main idea of PV-DM is that central word is guessed by
input context words and paragraph id, as the model was
previously taught on words from the paragraph. The other
model of Doc2Vec algorithm is Distributed Bag Of Words
(DBOW), which ignores the context of words and guess words
from the input paragraph vector.

As for the documentation processing, the main component
is Apache POI that works with text files that is used to create a
documentation dataset.

As for the vector model that is formed and serialized into
the archive, it contains the following files:

 codes.txt - a text file with codes for the Huffman tree;
 config.json - a text file in JSON format, which contains

the settings of the Doc2Vec algorithm;
 frequencies.txt - a text file that contains the tf-idf and

bag-of-words metrics for each word;
 huffman.txt - a text file with the coordinates of the

points of the Huffman tree;
 labels.txt - a text file containing a list of identifiers for

resolved requests. Each identifier is encoded in base64
format and is on a separate line;

 syn0.txt - a text file that contains a word encoded in
base64 format and its weights on each line that make
up a unique numerical vector. The numbers of weights
are real and their size is from -1 to 1. This file contains
the weights of the connections between input and
hidden neurons in the neural network, which uses the
H-Softmax [28] function as an activation function;

 syn1.txt - a text file that contains a weight matrix for
hierarchical osoftmax. This file contains the weights of
the connections between the hidden and output neurons
in the neural network, which uses the H-Softmax
function as an activation function. After learning the
algorithm, you can start using it. To do this, the model
from the VectorModel.zip file is loaded into the
memory, in which each document is presented as a
numerical vector and is mapped to a request key. After
that, a set of JiraIssue objects that represent unresolved
requests is supplied to the input of the classifier. Text
data is extracted from these objects and fed to the input
of the Doc2Vec algorithm.

C. User Interfaces

One of the interfaces is a configuration file. User can set
preferences in configuration file for system to tune
performance of the system. For example, sets preferences for
connector, what information to retrieve and from where, tunes
Doc2Vec algorithm, sets paths for all input/output files
needed.

Another one interface is the command line interface. User
launches application through the console with the commands
or scripts with the same name, for example:

 create-issues-data-set – creates resolved issues dataset;
 create-issues-vector-model – creates vector model of

the resolved issues dataset;

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 648 --

 create-documentation-data-set – creates local
documentation dataset;

 create-documentation-vector-model – creates vector
model of the local documentation dataset;

 create-confluence-data-set – creates Confluence pages
dataset;

 create-confluence-vector-model – creates vector model
of the Confluence pages dataset;

 run – retrieves unresolved issues, vectorizes them,
compares to the resolved issues and documentation,
gives the final report.

The last user interface is browser with the final report in
which there are numbers of similar issues, appropriate
engineers, links to helpful documentation, ID of helpful
confluence page and suggestions on further actions.

The most preferred work mode is distributive. It consists of
the following parts:

 bin – folder with bat/sh scripts for launching all user
task;

 config – folder with system and logging configuration
file, report template;

 data – folder which stores output dataset and vector
models of all modules;

 lib – folder which contains source code and “third-
party” libraries;

 logs – folder with logged information;
 output – folder which contains created final visual and

text report;
 rules – folder with static rules description.

D. Hardware requirements

Software solution should launch on modern PCs. Minimum
hardware requirements for the solution to run are:

 64-bit versions of Microsoft Windows 10, 8, 7 (SP1);
 2 GB RAM minimum, 8 GB RAM recommended;
 2.5 GB hard disk space, SSD recommended;
 1024x768 minimum screen resolution.

IV. RESULTS

A. Testing method
Testing of our product generally consists of two parts –

code testing and system testing.

Code testing included designing, implementation and
running of unit and integration tests of different modules of
our application. Tests were developed with Junit testing tool
and Mockito framework that provides mock-objects
implementation. All tests written for the project are stored in
Git repo.

Also, we follow ci/cd ideas and provide test automation
and code lining. All stages of code testing are executed with
Travis pipelines after each commit of any developer. It allows
us to make our code more stable and safer.

End-2-end testing were done on Apache Kafka – real
project provided with JIRA bug-tracking system. iResolver
was deployed on Laptop Lenovo Thinkpad T560 with RAM

16GB and HDD 500GB. Deployment on personal computer is
the only way of deployment we offer for now.

Fig. 3. Connector module configuration

There are 7096 unresolved requests, 799 confluence pages
and 1043 Kb of documentation in this project. Learning time
was 8 min. 31 sec. After this step, the tool created about 140
Mb artifact data. Summary report creation time was about 1
min. An example of connector module configuration used in
testing is shown on Fig. 3. Fig. 4 is showing an example of
final report for one of the Kafka issues.

B. Results

Developed system has been used to compare the average
time of finding necessary information for processing issue
using semi-automated approach and the average time of
manual gaining information for issue resolution.

As we can see from Fig. 5, the average time to find the
proper information using the automated approach was 12.2
minutes, and the average time spent with the manual approach
was 18.4 minutes. Therefore, decrease in the complexity is
approximately 33%.

When engineer performs manual search, they need to
search all resolved issues by keys and entering filters, then
look through each issue to see if it matches. Regarding
documentation, here user should search by keywords in the
whole document body and analyze paragraphs in relation to
unresolved issues. This process is not effective time wise so
automation of it lifts a part of the task off engineers.

V. CONCLUSION
During this project, we developed a working prototype of a

software solution.

Distinctive features of our solution include:

 usage of an approach based on the Doc2Vec algorithm
to identify semantically similar customer requests;

 usage of semantic search on documentation and wiki
pages;

 usage of confluence wiki pages as a source for
documentation;

 usage of rule-based engine to generate formal
recommendations to the user, which contain natural

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 649 --

language sentences that provide user with advises on
whether to ask for additional information about the
issue, missing files, changing the status of the issue or
assign it to the appropriate engineer.

Fig. 4. Report example

Fig. 5. Time difference between manual and automated approaches

The research helped us to get the first feedback from other
engineers and execute a testing on the real data. Moreover, we
researched different technologies developed in area of
automation and machine learning. Analysis of it changed the

vision of our project and proposed a new development path.
We have made some points of future work:

First idea is to develop other deployment approaches based
on containerized architecture of applications. Kubernetes
yaml-file deployment description and Helm chart design are
future areas of discussion.

Our IResorver tool could be provided with connectors for
other bug-tracking tools such as YouTrack, Wrike, Slack or
GitHub.

The process of research of different machine learning
libraries and frameworks brought us to eli5 library for Python
apps that visualize the results of text classification, including
the reports of Doc2Vec implementation. Such highlighting
instrument is not built in deeplearning4java, so the analogue of
this instrument could be designed for iResolver project to
provide more intuitive demonstration of issues classification.

The last point to consider is that Docker-based architecture
would provide new abilities for integration and end-to-end
testing.

ACKNOWLEDGEMENT
The research was funded as a part of the state assignment

for basic research (a code of the research is 0784-2020-0026).

REFERENCES
[1] V. Kotlyarov, P. Drobintsev, N. Voinov, I. Selin, A. Tolstoles,

“Technology and Tools for Developing Industrial Software Test
Suites Based on Formal Models and Implementing Scalable Testing
Process on Supercomputer”, in Proc. Tools and Methods of Program
Analysis (TMPA), Dec. 2017, pp. 51-63.

[2] E.E. Ogheneovo, “On the relationship between software complexity
and maintenance costs”, Journal of Computer and Communications,
vol. 2, 2014, p. 1.

[3] O. V. Mamoutova, M. B. Uspenskiy, A. V. Sochnev, S. V. Smirnov
and M. V. Bolsunovskaya, "Knowledge Based Diagnostic Approach
for Enterprise Storage Systems", in Proc. IEEE 17th International
Symposium on Intelligent Systems and Informatics (SISY), 2019, pp.
207-212.

[4] Y.B. Leau, W.K. Loo, W.Y. Tham, and S.F. Tan, “Software
development life cycle AGILE vs traditional approaches”,
International Conference on Information and Network Technology,
vol. 37, no. 1, 2012, pp. 162-167.

[5] J. Fisher, D. Koning, and A.P. Ludwigsen, “Utilizing atlassian jira for
large-scale software development management”, in 14th
International Conference on Accelerator & Large Experimental
Physics Control Systems (ICALEPCS), Oct. 2013.

[6] D. Bertram, A. Voida, S. Greenberg, and R. Walker,
“Communication, collaboration, and bugs: the social nature of issue
tracking in small, collocated teams”, in Proc. 2010 ACM Conf., Feb.
2010, pp. 291-300.

[7] Automation Lite for Jira, Web:
https://marketplace.atlassian.com/apps/1211836/automation-lite-for-
jira.

[8] IPsoft Amelia, Web: https://www.ipsoft.com/amelia.
[9] V.I. Gorodetsky, O.N. Tushkanova, “Semantic Technologies for

Semantic Applications. Part 1. Basic Components of Semantic
Technologies”, Scientific and Technical Information Processing, vol.
46, 2019, pp. 306-313.

[10] S. E. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M.
Gatford, “Okapi at TREC-3”, in Proc Text Retrieval Conf.
(TREC 1994), 1994, p. 19.

[11] J. Ramos, “Using tf-idf to determine word relevance in document
queries”, in Proc. Machine Learning First Instructional Conf., vol.
242, Dec. 2003, pp. 133-142.

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 650 --

[12] T. Landauer, P. W. Foltz, and D. Laham, “Introduction to Latent
Semantic Analysis”, Discourse Processes, vol. 25, 1998, pp. 259-
284.

[13] J. F. Sowa, “Top-level ontological categories”, International Journal
of Human-Computer Studies, vol. 43, Nov. 1995, pp. 669-685.

[14] D. Baryev, I. Konovalov, N. Voinov, “New Approach to Feature
Generation by Complex-Valued Econometrics and Sentiment
Analysis for Stock-Market Prediction”, Cyber-Physical Systems and
Control, Nov. 2019, pp. 573-582.

[15] E.N. Desyatirikova, A. Osama, V.E. Mager, L.V. Chernenkaya, A.S.
Ahmad, “Enhancing the Performance of Reservation Systems Using
Data Mining”, Cyber-Physical Systems and Control, Nov. 2019, pp.
413-421.

[16] A.O. Aleksyuk, V.M. Itsykson, “Semantics-Driven Migration of Java
Programs: A Practical Application”, Automatic Control and
Computer Sciences, vol. 52, pp. 581-588.

[17] N. Maslova and V. Potapov, “Neural network Doc2Vec in automated
sentiment analysis for short informal texts”, Lecture Notes in
Computer Science, vol. 10458, 2017, pp. 546-554.

[18] A. Kovalev, N. Voinov, I. Nikiforov, “Using the Doc2Vec Algorithm
to Detect Semantically Similar Jira Issues in the Process of Resolving
Customer Requests”, Studies in Computational Intelligence, vol. 868,
2020, pp. 96-101.

[19] L. Kang, “Automated Duplicate Bug Reports Detection”, Blekinge
Institute of Technology, 2017, p. 79.

[20] D. Kim, D. Seo, S. Cho, P. Kang, “Multi-co-training for document

classification using various document representations: TF–IDF, LDA,
and Doc2Vec”, Information Sciences, vol. 447, Mar. 2019, pp. 15-29.

[21] L. Hiew, “Assisted detection of duplicate bug reports”, University of
British Columbia, 2006.

[22] A. Sokolova, M. Solomonov, A. Kovalev, I. Nikiforov, “The
semantic search in documentation in automated customer issue
solving system”, in Proc. SPbPU Science Week, 2019, pp. 87-90, (in
Russian).

[23] A.H. Branco and J.R. Silva. “Contractions: breaking the tokenization-
tagging circularity”, Lecture Notes in Computer Science, vol. 2721,
2003, pp. 167-170.

[24] D. Sharma, “Stemming algorithms: A comparative study and their
analysis”, International Journal of Applied Information, 2012.

[25] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval”, in Proc.
32nd ACM/IEEE International Conf., 2010, pp. 45–54.

[26] A.T. Nguyen, T.T. Nguyen, T.N. Nguyen, D. Lo, and C. Sun,
“Duplicate bug report detection with a combination of information
retrieval and topic modeling”, in Proc. 27th IEEE/ACM International
Conf., 2012, pp. 70–79.

[27] G.L Giller, “The Statistical Properties of Random Bitstreams and the
Sampling Distribution of Cosine Similarity”, Giller Investments
Research Notes, no. 20121024/1, 2012.

[28] T. Pellegrini, “Comparing SVM, Softmax, and shallow neural
networks for eating condition classification”, in Proc. 16th Annual
ISCA Conf., 2015, pp. 899-903.

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 651 --

