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Abstract—The main problem the project addresses is 

reducing time and effort spent by a vendor company on product 
sustaining phase. This is done by development of the approach 
for assisting with customer request resolution based on 
intellectual methods and machine learning algorithms. 

Solution collects resolved issues from bug tracking systems, 
local documentation and confluence pages, creates their 
respective vector models and teaches the algorithm on the data. 
For each retrieved unresolved issue, related resolved ones and 
documentation pages are found as a result of using trained 
algorithm. System also collects user-written rules, that are based 
on information from the issue, and checks them on each 
unresolved issue to give recommendations regarding its status 
change or additional needed information. Based on received 
information, the final report is constructed to show related issues, 
documentation and recommendations for each unresolved issue 
in a user-friendly manner. 

System was tested on Apache Kafka project issues and 
compared to manual approach performed on same data. The 
average time to analyze unresolved issues using the automated 
approach was 12.2 minutes, and the average time spent with the 
manual approach was 18.4 minutes, which means that our 
solution decreases complexity of issue analysis by ~33%.  

I. INTRODUCTION 
The maintenance is one of the most expensive phases in a 

software product lifecycle [1]. In 2005, the maintenance 
accounts for 67% of the project total cost [2]. This is caused 
by a growing of number of places, where an error should be 
fixed (implementation, workflow and/or documentation). 
Every bug in product/service or even a question is the subject 
for customer to create a request to the development company 
for an assistance. A vendor company needs to spend around 
40% of the development time and involve a lot of human 
resources on finding solutions to customer’s requests during 
maintenance stage. Moreover, teaching newcomers at support 
department to understand and operate the provided 
product/service remains one of the most complex issues on 
this stage. 

Improving the quality of support improves a long-term 
relationship between the service/product provider and the 
customer and also makes educational process easier for the 
new support engineers [3]. Thus, the proposed solution to 
automate and assist with debugging product 
issues/bugs/questions can be considered as an actual task for 
the field. 

Since then, many approaches appeared to reduce this 
problem [4]. One of them is bug tracking systems, like Jira [5] 

or Bugzilla. Their primary objective is making a connection 
between customer and developer more subtle. Bug tracking 
systems allow to form, collect and store issues about errors, 
bugs or proposals of improvements for a software product [6].  

However, this approach has its flaws. A developer team 
has to spend time on analyzing new issues. Such as: prioritize, 
find identical, check correctness and so on. These tasks are 
able to be automated with using intellectual methods and 
machine learning algorithms. It is the main goal of our project. 

The most similar tools, which partly solve the problem, are 
Jira plugin Automation for Jira Server [7] and software tool 
Amelia [8].  

Automation for Jira Server gives a possibility to create if-
then-else rules for different events. For example, if issue’s 
type is “bug” then assign it to engineer “A”. This tool has 
intuitive and simple interface. But it is not able to work with 
unstructured data in the description or commentaries in an 
issue. 

Amelia is the smart assistant for employees in a company. 
It aims at forming answers on natural language for the most 
frequent questions and does not really supports an integration 
in development process with Jira or Bugzilla. 

Our way gives more opportunities for engineers to process 
incoming requests. It is based on generating a report with the 
meta-information about every issue. This report let developing 
team see dependencies between issues and the most relevant 
problems and suggest a solution for each step. 

II. LITERATURE REVIEW 
The main part of our approach is algorithm of finding 

similar documents (issues and documentation) [9]. We have 
compared following text information processing methods. 

BM25 [10] – is the ranking function, based on 
TF-IDF [11]. It is used in modern search engines 
(ElasticSearch). BM25 has the same advantages like TF-IDF: 
reduction of impact of the more frequently used words and 
normed word weight. Indeed, function contains regulating 
factors. The disadvantage is negative index value for words 
with high frequency. 

Latent semantic analysis (LSA) [12] – the algorithm, 
which is able to identify correlations between documents in a 
corpus and to systematize ones into topics. The advantages: 
working with both documents and terms, using in 
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classification and clusterization and avoidance of influence of 
polysemy and homonymy. But this algorithm requires much 
computing resources and has the very fast growth of execution 
time with increasing of analyzing data. 

Semantic search using ontologies [13], [14], [15] – the 
algorithm based on semantic network as indexing method. The 
advantages: wider context recognition than in other algorithms 
and the opportunity to execute search requests for terms with 
words, which did not appear in learning dataset. Nevertheless, 
there is no method to full-automatically extract whole 
ontologies from training corpus [16]. 

Doc2Vec [17], [18] – the algorithm, which uses neural 
network to create vectors from each document and cousin 
distance to compare them. The advantages: faster learning 
stage and search request execution than in other algorithms. 

Full comparation between these algorithms is presented in 
Table I. Table legend: N – dictionary size, M – term size, D 
size of documents collection, k – matrix rank (LSA). 

After comparation we have chosen Doc2Vec algorithm to 
search similar text information in our solution, because its 
advantages have been important for us [19], [20]. 

TABLE I. COMPARATION BETWEEN TEXT PROCESSING ALGORITHMS 

Processing 
Algorithm 

Learning 
Comple- 

xity 

Search 
Comple- 

xity 

Context 
Recogni-

tion 

Search 
recall 

BM25 O(ND) O(D*(N+ 
+M/2)) 

No >30% 

LSA O(ND)2k+1) O(ND) Yes 30-50% 

Ontologies base Manual O(ND) Yes <50% 

Doc2Vec O(D(N+D) + 
+Dlog(N)) 

O(D* 
*log(N)) 

Yes 30-50% 

III. APPROACH DESCRIPTION 

A. System requirements 

The key features of the project can be divided into three 
parts based on their outcome.  

First key point is an ability to search similar customer 
requests in the database of already resolved issues. 

The approach classifies customer’s requests with machine 
learning algorithms (Doc2Vec) based on the history database 
issues and provide the list of semantically similar cases [21], 
the list of appropriate engineers and the list of reliable labels. 

Semantically similar cases help to understand if the 
problem has already been resolved or give a quick overview 
on the taken approaches and steps to resolve the case. A 
section with appropriate engineers must allow responsible 
persons to contact with or ask for a help. Classification of 
cases by problematic area also this gives a possibility to 
identify the product component, that needs additional attention 
for improvements, bugs elimination or additional 
documentation. 

Secondly, it will provide semantic search over the 
documentation [22] in addition to cases.  

The result of the search is the table with mapping of the 
document name and page number, that contains semantically 
related information. This helps the engineer to quickly provide 
proper references to the customer or even to learn more about 
problematic component and confirm if the request is a bug or 
not. 

The last feature is application of set of static rules for 
providing formal guidelines.  

Based on the customizable templates, the systems suggest 
engineer to pass the case to proper state (“OPEN”, 
“IN_PROGRESS”, “INFORMATION REQUESTED”, etc.) 
or to request additional information. For example, when 
customer complains about an error in product, but forget to 
attach a log file with stack trace. 

All the approaches are implemented in software tool, 
which is called “Iresolver”. It allows automate resolution of 
customer requests, which in turn allows to decrease the 
amount of time spent by technical support engineers and 
product developers on finding solution to the customer’s 
requests. In Table II requirements for the solution are stated, 
functional (F) as well as non-functional (NF). 

TABLE II. FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS 

ID Description 
F - 1 Software solution should be able to retrieve opened and 

closed issues from the following bug-tracking systems: 
JIRA, Bugzilla. 

 closed issues should be used for training machine 
learning algorithm; 

 for opened issues the recommendations should be 
generated. 

F - 2 Software solution should be able to process documentation 
in PDF, TXT and set of confluence wiki pages formats in 
order to provide page number with semantically similar 
information to the opened request.  

F - 3 Software solution should generate report for opened issues 
that contains recommendations about: 

 semantically similar cases; 
 references to documentation and pages; 
 persons to contact with; 
 case classification; 
 additional information to request and ask the 

customer. 
F - 4 System should generate final report with recommendations 

in HTML and TXT formats. 
F - 5 Software system should be configured with YML 

configuration file and contain list of properties for 
configuration: 

 url and credentials for bug tracking system; 
 filters for select closed and opened cases; 
 report format. 

F - 6 When user launches the system, the system should retrieve 
the unresolved issues from the set Jira project, vectorize with 
the help of model, compare them to the resolved issues and 
documentation and provide the report on each issue. 

F - 7 The system should have the following functionality for 
manual launch:  
create documentation dataset; 

 create documentation vector model; 
 create issues dataset; 
 create issues vector model; 
 create confluence dataset; 
 create confluence vector model. 

F - 8 When customer runs “create issues dataset” command, 
system should retrieve the resolved issues from the set Jira 
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project and provide the dataset. 

NF - 0 System integration in customer’s company business 
processes should be effective and fast with minimal 
expenses for end company. 

NF - 1 System should provide a final issue report on the unresolved 
cases in final and reasonable time. 

NF - 2 System should follow security rules and prevent data leaks 
when working with customer’s data. 

NF - 3 System should follow GDPR. 

 

 

Fig. 1. System architecture 

B. Overall system architecture 

Main inputs of the system are: 
 custom queries, which we get from bug tracking 

systems, such as Jira and Bugzilla, through issue 
connector. 

 local documentation and pages from Confluence portal 
which are collected through documentation connector. 

 set of rules, written by user and used by rules 
processor. 

 report template, which is used by report generator. 
 
In the course of using the system, we need to collect 

resolved and unresolved issues, documentation, create their 
respected vector models, use them in the trained 
algorithm/rules processor and retrieve information regarding 
similar issues, documentation and recommendations. The 
output of the system is a report, which contains all collected 
information. 

Fig. 1 shows overall system architecture, main points of 
the execution, objects that are involved. Boxes with sharped 
angles contain software modules, with rounded – input or 
output data. Table III contains a description of elements 
in Fig. 1. 

TABLE III. ELEMENTS DESCRIPTION IN FIG. 1 

Box name Meaning 
Customer query An existing bug report which contain information 

about issue 
Bug tracking system Software application or a portal in which bug reports 

are created and registered, the main purpose of it is 
to trace the process of solving the problem 

Issue Connector System module, in which needed issues are retrieved 
from bug tracking system with the help of filters 

Unresolved issues Collected issues with the Unresolved status, for 
which our system will find similar resolved issues 
using algorithm and rules 

Resolved issues Collected issues with the Resolved status, which are 
needed for creating vector model and teaching the 
Doc2Vec algorithm 

Local documentation Documentation files in pdf format that exist in a 
local folder 

Confluence pages Articles and documentation that exist on Confluence 
portal 

Documentation 
connector 

System module, in which documentation from local 
folder and Confluence pages is retrieved 

Similar issue 
information 

Result of Doc2Vec usage which contain information 
regarding resolved issues similar to unresolved ones, 
including links, appropriate engineers, possible 
labels 

Similar 
documentation 

information 

Result of Doc2Vec usage which contain information 
regarding documentation similar to unresolved 
issues, including page number and link 

Set of rules Local *.drl files which contain rules built by Drools 
template that can apply to issues and analyze their 
size, status and attachments, and write certain 
recommendations for the user 

Rules processor System module, in which rules are being retrieved 
and used 

Recommendations Natural language sentences, that were collected 
through rules being true for each issue 

Report template Apache Velocity template of the final report, which 
contains all collected results from previous modules 

Report generator System module, in which report template is filled 
with actual system results for each issue 

C. Data flow model 

Fig. 2 shows the general data flow in our system, what files 
are created, what processes are performing with the data.  

 

Fig. 2. Data flow model 
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From Jira/Bugzilla we get text that is transformed in 
dataset file [23]. Then that text is getting stemmed [24] and 
trained in Doc2Vec, the output is vector model file. The 
unresolved issues are collected as text, together with vector 
models are given to the classifier, which output is given to 
report generator. Its output is the final result. 

III. IMPLEMENTATION 

A. Software frameworks 

After analyzing all requirements, we described common 
usage scenarios and interfaces and chose software frameworks 
for realizing main features. Table IV includes technologies 
that we used and their brief description and usage. 

TABLE IV. USED TECHNOLOGIES 

Tool or framework Description 
Java 8 Main programming language. It combined 

adaptability for different OSs, wide functional of 
standard library and many existing external 
libraries and frameworks. 

DeepLearning4j The machine learning framework. We use its 
implementation of Doc2Vec algorithm to solve 
semantic search task. 

ND4J The part of DL4J. It makes possible to work with 
NDArrays and perform all common mathematical 
operations with them. 

Drools This framework allows to create special *.drl file 
with rules, which check one option of a processing 
issue. For example, length of description is not 
equal to zero. 

Apache POI The framework for parsing *.doc or other 
documentation files. 

Jira Rest Java Client The library for getting a list of Jira issues with 
REST API.  

Bugzilla for Java The library for getting a list of Bugzilla issues with 
REST API. 

Confluence Rest 
Client 

The library for getting wiki pages with REST API. 

Logback The logging framework. It has many options to 
configure log templates. 

 
Software is developed on Java language version 8. It was 

the last version at the beginning of the development and now 
one of our tasks is update to Java 14. As IDE we use JetBrains 
IDEA 2019. For version control we have chosen Git, because 
it is commonly used by developers. All operations could be 
launched with batch scripts (.bat for Windows/.sh for Linux) 
and user can set tool configuration with special YML-file. 

System consists of modules that can be classified as 
connectors, processors and reporters. Gradle is used in our 
project due to its easy configuration and building. This tool 
gives us options to add new modules or to update frameworks 
versions without any changes in the code. 

B. Algorithmic components 

We use Doc2Vec algorithm in the processor as our main 
algorithmic component. It’s the innovative approach that we 
use for semantic search [25, 26]. The goal of the algorithm is 
to create numeric representation of the document. Doc2Vec is 
based on Word2Vec model with addition of paragraph vector. 
Doc2Vec uses two ideas for vectorized word representation: 
Distributed Memory (PV-DM) and Distributed Bag Of Words 
(DBOW). PV-DM is based on CBOW [27], which is used in 

Word2Vec. Model is learning to guess the word by its context. 
The main idea of PV-DM is that central word is guessed by 
input context words and paragraph id, as the model was 
previously taught on words from the paragraph. The other 
model of Doc2Vec algorithm is Distributed Bag Of Words 
(DBOW), which ignores the context of words and guess words 
from the input paragraph vector. 

As for the documentation processing, the main component 
is Apache POI that works with text files that is used to create a 
documentation dataset.  

As for the vector model that is formed and serialized into 
the archive, it contains the following files: 

 codes.txt - a text file with codes for the Huffman tree; 
 config.json - a text file in JSON format, which contains 

the settings of the Doc2Vec algorithm; 
 frequencies.txt - a text file that contains the tf-idf and 

bag-of-words metrics for each word; 
 huffman.txt - a text file with the coordinates of the 

points of the Huffman tree; 
 labels.txt - a text file containing a list of identifiers for 

resolved requests. Each identifier is encoded in base64 
format and is on a separate line; 

 syn0.txt - a text file that contains a word encoded in 
base64 format and its weights on each line that make 
up a unique numerical vector. The numbers of weights 
are real and their size is from -1 to 1. This file contains 
the weights of the connections between input and 
hidden neurons in the neural network, which uses the 
H-Softmax [28] function as an activation function; 

 syn1.txt - a text file that contains a weight matrix for 
hierarchical osoftmax. This file contains the weights of 
the connections between the hidden and output neurons 
in the neural network, which uses the H-Softmax 
function as an activation function. After learning the 
algorithm, you can start using it. To do this, the model 
from the VectorModel.zip file is loaded into the 
memory, in which each document is presented as a 
numerical vector and is mapped to a request key. After 
that, a set of JiraIssue objects that represent unresolved 
requests is supplied to the input of the classifier. Text 
data is extracted from these objects and fed to the input 
of the Doc2Vec algorithm. 

C. User Interfaces 

One of the interfaces is a configuration file. User can set 
preferences in configuration file for system to tune 
performance of the system. For example, sets preferences for 
connector, what information to retrieve and from where, tunes 
Doc2Vec algorithm, sets paths for all input/output files 
needed. 

Another one interface is the command line interface. User 
launches application through the console with the commands 
or scripts with the same name, for example: 

 create-issues-data-set – creates resolved issues dataset; 
 create-issues-vector-model – creates vector model of 

the resolved issues dataset; 
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 create-documentation-data-set – creates local 
documentation dataset; 

 create-documentation-vector-model – creates vector 
model of the local documentation dataset; 

 create-confluence-data-set – creates Confluence pages 
dataset; 

 create-confluence-vector-model – creates vector model 
of the Confluence pages dataset; 

 run – retrieves unresolved issues, vectorizes them, 
compares to the resolved issues and documentation, 
gives the final report. 

The last user interface is browser with the final report in 
which there are numbers of similar issues, appropriate 
engineers, links to helpful documentation, ID of helpful 
confluence page and suggestions on further actions. 

The most preferred work mode is distributive. It consists of 
the following parts: 

 bin – folder with bat/sh scripts for launching all user 
task; 

 config – folder with system and logging configuration 
file, report template; 

 data – folder which stores output dataset and vector 
models of all modules; 

 lib – folder which contains source code and “third-
party” libraries; 

 logs – folder with logged information; 
 output – folder which contains created final visual and 

text report; 
 rules – folder with static rules description. 

D. Hardware requirements  

Software solution should launch on modern PCs. Minimum 
hardware requirements for the solution to run are:  

 64-bit versions of Microsoft Windows 10, 8, 7 (SP1); 
 2 GB RAM minimum, 8 GB RAM recommended; 
 2.5 GB hard disk space, SSD recommended; 
 1024x768 minimum screen resolution. 

IV. RESULTS 

A. Testing method 
Testing of our product generally consists of two parts – 

code testing and system testing. 

Code testing included designing, implementation and 
running of unit and integration tests of different modules of 
our application. Tests were developed with Junit testing tool 
and Mockito framework that provides mock-objects 
implementation. All tests written for the project are stored in 
Git repo. 

Also, we follow ci/cd ideas and provide test automation 
and code lining. All stages of code testing are executed with 
Travis pipelines after each commit of any developer. It allows 
us to make our code more stable and safer. 

End-2-end testing were done on Apache Kafka – real 
project provided with JIRA bug-tracking system. iResolver 
was deployed on Laptop Lenovo Thinkpad T560 with RAM 

16GB and HDD 500GB. Deployment on personal computer is 
the only way of deployment we offer for now. 

 
Fig. 3. Connector module configuration 

There are 7096 unresolved requests, 799 confluence pages 
and 1043 Kb of documentation in this project. Learning time 
was 8 min. 31 sec. After this step, the tool created about 140 
Mb artifact data. Summary report creation time was about 1 
min. An example of connector module configuration used in 
testing is shown on Fig. 3. Fig. 4 is showing an example of 
final report for one of the Kafka issues. 

B. Results 

Developed system has been used to compare the average 
time of finding necessary information for processing issue 
using semi-automated approach and the average time of 
manual gaining information for issue resolution. 

As we can see from Fig. 5, the average time to find the 
proper information using the automated approach was 12.2 
minutes, and the average time spent with the manual approach 
was 18.4 minutes. Therefore, decrease in the complexity is 
approximately 33%. 

When engineer performs manual search, they need to 
search all resolved issues by keys and entering filters, then 
look through each issue to see if it matches. Regarding 
documentation, here user should search by keywords in the 
whole document body and analyze paragraphs in relation to 
unresolved issues. This process is not effective time wise so 
automation of it lifts a part of the task off engineers. 

V. CONCLUSION 
During this project, we developed a working prototype of a 

software solution.  

Distinctive features of our solution include: 

 usage of an approach based on the Doc2Vec algorithm 
to identify semantically similar customer requests; 

 usage of semantic search on documentation and wiki 
pages; 

 usage of confluence wiki pages as a source for 
documentation; 

 usage of rule-based engine to generate formal 
recommendations to the user, which contain natural 
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language sentences that provide user with advises on 
whether to ask for additional information about the 
issue, missing files, changing the status of the issue or 
assign it to the appropriate engineer. 

 
Fig. 4. Report example 

 
Fig. 5. Time difference between manual and automated approaches 

The research helped us to get the first feedback from other 
engineers and execute a testing on the real data. Moreover, we 
researched different technologies developed in area of 
automation and machine learning. Analysis of it changed the 

vision of our project and proposed a new development path. 
We have made some points of future work: 

First idea is to develop other deployment approaches based 
on containerized architecture of applications. Kubernetes 
yaml-file deployment description and Helm chart design are 
future areas of discussion. 

Our IResorver tool could be provided with connectors for 
other bug-tracking tools such as YouTrack, Wrike, Slack or 
GitHub. 

The process of research of different machine learning 
libraries and frameworks brought us to eli5 library for Python 
apps that visualize the results of text classification, including 
the reports of Doc2Vec implementation. Such highlighting 
instrument is not built in deeplearning4java, so the analogue of 
this instrument could be designed for iResolver project to 
provide more intuitive demonstration of issues classification. 

The last point to consider is that Docker-based architecture 
would provide new abilities for integration and end-to-end 
testing. 
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