
Analysis Of Robotic Platforms: Data Transfer
Performance Evaluation

Andrei Gavrilov1, Marlen Bergaliyev2, Sergey Tinyakov3, Kirill Krinkin4

1,2,3,4Saint Petersburg Electrotechnical University “LETI”
St. Petersburg, Russia

gavrilov.andrew1999@yandex.ru1, marlen.ber@mail.ru2, sergey.tinaykov2001@gmail.com3, kirill@krinkin.com4

Abstract—Every robotic system has to have high
performance, which in the first place depends on data transfer
performance. Interaction between processes plays a big role and
can introduce very significant delays in the operation of the
system. Therefore, the choice of the platform on which the system
will be built is very important. This paper shows the
characteristics of data transmission for these platforms and helps
to make a choice for a specific development and task. This paper
considers the well-known robotic platforms, developed criteria
for evaluating characteristics, and tests for measuring them. For
each criterion was made a comparative analysis of the platforms.
The conclusion is made about the applicability of a specific
platform to solving various problems and building various
systems.

I. INTRODUCTION

At the heart of any robotic project or autonomous driving
system is a framework that manages the resources of the
software components of the system and transfers data between
these components. Such frameworks can be used both for
prototyping the system and for the release version, so an
important problem is the speed of data transfer in a system built
on their basis. Since the speed of data transfer can greatly affect
the operation of the system, you should seriously consider
choosing a platform for building your system.

The purpose of this paper is to evaluate the data transmission
characteristics of such management frameworks. Such
characteristics as delay at different lengths of the transmitted
message, jitter, and round trip time are evaluated.

The object of research in this paper is Nvidia Isaac, Apollo
Cyber RT, ROS2. ROS2 and Apollo Cyber RT are open source
and already used in different projects.

The paper describes the methods and scenarios in which
certain transmission characteristics were studied, and a
description of these scenarios is presented in section II. The
described scenarios should help to understand how well the
framework performs in a particular situation. The following is
a brief description of the platforms under consideration in
section III to understand the features of each framework that
may affect latency. Review and analysis of the results obtained
in section IV. Based on the data from all the sections, it is
possible to draw conclusions about the applicability of the
framework in various tasks, depending on their features and
data transfer characteristics.

RELATED WORK

One of the well-developed autonomous driving platforms is
Apollo. A driving prediction architecture for different scenarios
and for different learning models was developed based on

Apollo [1]. A path planning module with resolution-complete
collision avoidance capability was developed for Apollo [2].
Known bugs were analysed for Apollo and Autoware [3]. For
supporting cross-vehicle applications dynamic modeling
procedure also based on Apollo[4]. Safety mechanisms for
autonomous vehicles were designed using Apollo [5]. The
performance analysis of Apollo and Autoware was conducted
in [6].

ROS is a widespread, easy to use framework for developing
robotics platforms and it has a wide community. Also this
framework can be used as a platform for autonomous vehicles.
Not the whole platform may be developed by ROS, but. ROS
сan be used only for some parts of it, for example, car vision,
navigation[7], stereo vision by 2D LiDAR and RGB-D
Camera[8], or for the whole platform[9]. It can be implemented,
for example, for FPGA board[10]. The design of a mobile robot
based on ROS was described in [11].

There is a lot of middleware that is used in distributed
systems that are widely used in IoT [12-14]. A comparison of
ROS, Apollo and the recently developed Robust-Z was in [15].
Requirements and tests are needed to evaluate systems for real-
time operations. The description of this was in [16]. Also there
were descriptions of modularization and real-time
architecture[17],[18].

II. METHODOLOGY

Test scenarios were developed to obtain the desired data
transmission characteristics. Each test scene is set up to
investigate certain data transmission characteristics. The most
used type of data transmission in such systems is IPC, because
most of the main software modules that analyze the received
data run on the main and most powerful computer. It is on this
computer that the largest amounts of data are transmitted, and
IPC is the fastest way to transmit this data. In all cases, the IPC
bus data transfer model was established, with the exception of
ROS2, since it does not provide the ability to explicitly specify
the data transfer method. Parameters that increase the reliability
of data transmission or guarantee delivery have also been set.

The basic concept of all test scenarios is the interaction of
several programs (nodes) with different message frequency and
different message length. Some test scenarios use mechanisms
such as process prioritization and CPU affinity setting using the
CPUSET mechanism. This allows you to avoid unexpected
interruptions of the program and get the most accurate data.
Also, to get the most objective data, delays are calculated only
when reading the message data, as the timestamp of sending is
stored in the message itself. Thus, the resulting delays include
such factors as reading and writing data, waiting for the

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

message queue, and delays in the functioning of the framework
itself. Next, we will consider the main test scenarios in which
the characteristics of data transmission were investigated.
A) Test: Queue processing

The test is aimed at investigating the processing of the
message queue. In the test, the first node sends messages to the
other node without any interval. Thus, the queue accumulates.

The test is performed with a message size of 50 and 60 000
bytes. The total number of messages for each subtest is 5000.
The priority of the processes is set to 99. The first node is bound
to CPU_0, the second node to CPU_1. So, each process is
separate and works without interruptions during queue
processing, which allows you to get the most accurate data
about the studied characteristic.

B) Test: Changing sizes and frequencies of messages
The test is aimed at investigating the total latency on the

message size and sending frequency. The test also shows the
reaching peak of the throughput at different message sizes and
sending frequencies. In the test, the first node sends messages
to the other on a given interval. The message size increases from
128 bytes to 2 MB in 256 KB increments every 100 messages.
The total number of messages is 800.

The test is performed with frequencies from 20 to 1000
messages per second. Nodes are not bound to cores. The priority
of processes is 99.
C) Test: Ping-pong of the minimum message size

The test is aimed at investigating total latency, jitter and
RTT (Round Trip Time) of each message of the minimum size.
The test also shows the number of copies between the user space
and the kernel space. In this scenario the ping-pong model is
used: one node sends a message to the other, and then both
exchange messages only after receiving a message from the
other node. The test stops when the set number of transmitted
messages is reached.

The total number of messages for each node is 10000. Size
of each message is 10 bytes. Nodes are not bound to cores, and
process priorities are not set.

D) Test: Ping-pong with different frequencies, message
sizes and number of pairs

The test is aimed at investigating the dependence of the total
latency on the message size at different message sending
frequencies and on the number of process pairs. In this scenario
also the ping-pong model is used, but the node sending the first
message, also called the first node, does not expect to receive a
message from the other node and sends new messages on a
given frequency. The other node works as in the previous test.
If the first node difference between the number of the sent
message and the last received one is greater than the watermark,
no message will be sent. The test stops when the set number of
transmitted messages is reached.

The watermark equals 50 for the test. Nodes are not bound
to cores and process priorities are not set.

The test consists of 2 types of subtests: 1) one pair
exchanges messages on a given frequency; 2) on frequency 400
messages per second several pairs exchange messages. The first
type of subtests is performed with frequencies from 20 to 1000

messages per second. Total number of messages is 2400,
message size increases from 128 bytes to 2 MB in 256 KB
increments every 300 messages. The second type of subtests is
performed with the following number of pairs: 1, 2, 3. Total
number of messages is 1200, message size increases from 128
bytes to 2 MB in 512 KB increments every 300 messages.

III. OVERVIEW OF FRAMEWORKS

A) Nvidia Isaac Engine
The Isaac Engine is a software framework developed by

Nvidia to create robotics applications. It provides data
processing and deep learning for intelligent robots.

In Isaac Engine you build applications by creating small
components, which pass messages between each other. It uses
a graph that tries to avoid memory copies on the host-device.
Also graphs help to break down a complex task into small
objects. Isaac Engine uses CUDA buffer objects for messages
to increase performance.

Isaac Engine comes with a visualization framework that
allows to easily create plots, drawings, 3D scenes and other.
There is also Isaac WebSight, a web application for inspecting
and debugging applications. Isaac Engine has a Python API that
allows creating applications on Python without losing for
functional or performance.

Isaac Engine fully supports NVIDIA GPUs and CUDA,
TensorRT, NPP and other frameworks that allow you to build
the robotics application.
B) Apollo Cyber RT

Apollo Cyber RT is an open source, runtime framework that
was created specially for autonomous driving. It uses a
centralized model.

The base of architecture is a set of components, which
generate data outputs from defined data inputs. Apollo Cyber
RT uses a DAG (Directed Acyclic Graph) dependency graph to
extract components dependencies and link them. At runtime,
framework takes these linked components and fused data from
sensors to create lightweight user-level tasks. Each task is
scheduled according to priorities and resource availability to
optimize executing.

Apollo Cyber RT has a configurable and flexible user level
scheduler, a set of development tools, a large sensor drivers and
minimum dependencies.

The technology behind Apollo Cyber RT provides
optimized data transmission and processing out of the box. This
framework comes with a well-defined task interface and
efficient data fusion, allowing developers to create solutions on
top of it.

C) ROS2
ROS2 is a large-scale framework for prototyping a robotic

platform. Also, a large number of ready-made modules have
been written for this framework, which can help in designing
your own platform. At the heart of data transmission, ROS2
uses Data Distribution Services. ROS2 is a modified version of
the ROS that provides an interface for implementing any
middleware for data transfer. Also, ROS2 is better suited for
real-time systems than ROS.

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 438 --

ROS2 has many utilities, including utilities for visualizing
the transmitted data and for simulations. Each module is
independent and can only depend on the received data. In
general, ROS2 provides a complete set of tools for easy and fast
prototyping of your own system. It has a large community,
which helps ROS to constantly develop and update.

IV. EVALUATION

A) Test: Queue processing
Fig. 1-3 show the test results for this scenario.

Fig. 1. ROS2 delay time

Fig. 2. Apollo delay time

Fig. 3. Isaac delay time

There we can see that ROS2 cannot deal with a lot of
messages sent in a small time period, so delivering and
processing messages takes too much time. Apollo is more stable
than ROS2, but delay fluctuates during the whole test. There is
also an increase in the delay at the end, which is associated with
the features of testing. Isaac shows excellent results: a very
small delay and no jumps or drops. As you can see from Fig. 3,
graphs overlap each other. This means that there is no difference
in delay for messages of 50 and 60000 bytes.

B) Test: Changing sizes and frequencies of messages
In Fig. 4-5, you can see the effect of changing the sending

frequency on delays in ROS2. As the frequency increases, the
delays continue to increase, but the queue is formed with a
smaller message size.

Fig. 4. Delay time with 40 msgs/sec

Fig. 5. Delay time in with 100 msgs/sec
In Fig. 6, you can see that with large messages at a frequency

of 200 messages per second, the delays in ROS2 increased very
fast and a queue appeared. As the frequency increases, the
queue begins to grow with a smaller message size, so we don’t
present results with a greater frequency.

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 439 --

If the message size is over 1 MB, Apollo and Isaac have the
same delay, otherwise Apollo has greater delay as we can see in
the Fig. 7. Also Apollo’s delay has the jumps at every message
increment. Isaac has a small delay and no growth or jumps with
frequency increasing.

Apollo has systematically large delays on 400 messages,
where the message length increases to 256 KB. This
phenomenon is repeated every time and at a different frequency
of sending. This may be due to reserving memory for sending
large messages and can't be related to the testing system.

Fig. 6. ROS2’s delay time with 200 msgs/sec

Fig. 7. Isaac’s and Apollo’s delay time with 1000 msgs/sec

The following conclusion about stability can be done from
the graphs. ROS2 has a very unstable delay which depends on
the message sending frequency. ROS2 has a fast growth of
delay at message sending frequency over 200 messages per
second. Growth of delay does not increase quickly on message
size below 1 MB, but then the delay starts to increase faster.
Apollo and Isaac, unlike ROS2, have a stable delay that does
not depend on the frequency of sending messages.

C) Test: Ping-pong of the minimum message size
In this test, we are looking at RTT, latency and jitter for very

small messages. So, Fig. 8-12 shows us these characteristics.

Fig. 8. Isaac’s, Apollo’s and ROS2’s delay time

Fig. 9. Isaac’s, Apollo’s and ROS2’s RTT

Fig. 10. ROS2’s jitter

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 440 --

Fig. 11. Apollo’s jitter

Fig. 12. Isaac’s jitter
In this test queue not accumulates, so no one has the jumps

and increases in delay or RTT, except for isolated cases that
may be related to the testing system. Isaac has the best delay
time and RTT. Apollo and ROS2 are far away from it, but
Apollo has better results than ROS2. The Table I shows the
median values for jitter.

TABLE I. MEDIAN JITTER VALUE FOR EACH FRAMEWORK

Framework Median jitter value,

ROS2 78.9803

Apollo 49.217

Nvidia Isaac 5.871

ROS2 has the largest jitter – up to 1 millisecond in some
cases. The situation is better with Apollo – jitter is up to 0.25
millisecond, but there are regular jumps up to 1 milliseconds.
Isaac has the smallest jitter — less than 0.1 millisecond.

D) Test: Ping-pong with different frequencies, message
sizes and number of pairs

In previous tests, ROS2 has shown the worst results, so at
this point it is clear that ROS2 is an outsider. This test is similar

to test B, but there is a bidirectional node communication,
unlike test B, so the results will be worse. For this reason, ROS2
has not been tested.

Fig. 13. Isaac, Apollo delay time with 1000 message per second frequency

Since in this test, in comparison with test B, we receive a
response to each message, the resource consumption increases
and the amount of data transmitted also increases by 2 times.
Based on this, Apollo has significant differences in comparison
with test B, which can be seen in Fig. 7 and 13.

Fig. 14. Apollo’s delay time with 2 pairs

Fig. 15. Isaac’s delay time with 2 pairs

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 441 --

Fig. 16. Apollo’s delay time with 3 pairs

Fig. 17. Isaac’s delay time with 3 pairs

As you can see from Fig. 14-17, the delay of Apollo and
Isaac increases with each message, but Apollo has a larger delay
than Isaac. Isaac's delay is in range of 10 milliseconds unlike
Apollo which has a delay of up to 200 milliseconds with rare
falls, that is in all cases greater than the delay of Isaac. We
present only one case with 1000 messages per second, because
the other results are very similar, and there is no significant
difference between them.

You can see that graphs for Apollo in Fig. 14, 16 behave
differently and do not overlap each other. On the other hand,
graphs for Isaac in Fig. 15, 17 have very similar signatures and
values, so they are concentrated in one place. This means that
Apollo’s pairs work in different ways, unlike Isaac's pairs which
work in the same way. The following conclusion can be done
for subtest with a different number of pairs, Apollo is unstable:
when one of the pairs of Apollo has a delay drop, the others
have a peak. In all other cases, all of the pairs have a peak of
delay. Isaac, on the other hand, is very stable, all pairs have the
similar delay. Also with an increase in the number of pairs,
Apollo delay peak grows in contrast to Isaac, whose peak does
not depend on the number of pairs.

The delay of more number of pairs is predicted based on
analysis of 1,2 and 3 pairs. The Apollo’s delay has dependence
on the number of pairs and increases by 200 milliseconds with
each new pair. Isaac, on the other hand, is very stable and does
not depend on this. This way you can increase the number of
pairs without performance loss.

CONCLUSION

The resulting data makes it clear that ROS2 is not well suited
for creating a reliable real-time system. But the main advantage
of ROS2 is the simplicity of designing any system, as well as a
large number of publicly available packages that solve various
tasks, which speeds up development. ROS has a large amount
of training documentation and a fairly large community that can
help you solve problems.

Apollo Cyber RT showed good results, but still worse than
Nvidia Isaac. This framework is developed for autonomous
vehicles and is generally intended for this. Highly specialized
software is written for it, which solves the problems of transport
with autopilot, and this solution is one of the leading open
source frameworks for autonomous transport.

The leader in almost all test scenarios was Nvidia Isaac. This
solution is positioned by Nvidia as a simple tool for designing
robots. In the architecture of this solution, only the IPC bus can
be used for data transmission, for which it is necessary to know
in advance all the modules that communicate and enter them in
the configuration, and the TCP/IP protocol for other cases. This
solution makes it impossible to dynamically connect modules
for IPC interaction without making edits to the source code, but
as a result, we get extremely small delays.

TABLE II . MAXIMUM/AVERAGE LATENCY AND JITTER OF
FRAMEWORKS

Test
scenario

Framework Latency max/avg, ms
Jitter

max/avg, ms

Ping-pong
of the

minimum
message

size

ROS2 4.08/1.25 2.83/0.078

Apollo 3.789/0.231 3.56/0.049

Isaac 0.917/0.012 0.904/0.04

Changing
sizes and

frequencies
of

messages
(Frequency

= 1000
msgs/sec)

ROS2

Message
size, KB

128 13.99/1.49 12.49/0.25

512 112.38/76.80 46.17/25.02

1536 2030.06/1880.62 479.30/136.72

Apollo

128 3.13/0.24 2.89/0.09

512 3.41/1.651319 1.76/0.39

1536 2.76/1.81 0.95/0.24

Isaac

128 1.15/0.09 1.05/0.03

512 2.28/1.04 1.24/0.35

1536 2.50/1.19 1.31/0.47

Table II shows the main characteristics for the test B and C,
which show the difference in latency and jitter. In the other 2

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 442 --

scenarios, you can clearly see the graphs presented in the
previous section. Analyzing this data, we can say that in all
scenarios, Nvidia Isaac showed the best results and is
significantly ahead of its competitors.

As a result, the simplest and fastest combined solution for
building an autonomous system is Nvidia Isaac. This solution is
the youngest and the community is just beginning to learn and
use this solution. In general, it is created to replace ROS
completely, since it has analogues of all the utilities necessary
for development and testing, and also has compatibility with
ROS, which allows you to develop modules for a system built
on ROS using ROS bridge. In addition, this platform provides
additional opportunities for using neural networks in their
solutions. It seems that Nvidia Isaac is the most promising
platform for creating robots.

REFERENCES
[1] K. Xu, X. Xiao, J. Miao and Q. Luo, "Data Driven Prediction Architecture

for Autonomous Driving and its Application on Apollo Platform," 2020
IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 2020,
pp. 175-181, doi: 10.1109/IV47402.2020.9304810.

[2] Y. Zhang, H. Sun, J. Zhou, J. Pan, J. Hu and J. Miao, "Optimal Vehicle
Path Planning Using Quadratic Optimization for Baidu Apollo Open
Platform," 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas,
NV, USA, 2020, pp. 978-984, doi: 10.1109/IV47402.2020.9304787.

[3] J. Garcia, Y. Feng, J. Shen, S. Almanee, Y. Xia and Q. A. Chen, "A
Comprehensive Study of Autonomous Vehicle Bugs," 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE), Seoul,
Korea (South), 2020, pp. 385-396.

[4] J. Xu et al., "An Automated Learning-Based Procedure for Large-scale
Vehicle Dynamics Modeling on Baidu Apollo Platform," 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Macau, China, 2019, pp. 5049-5056, doi:
10.1109/IROS40897.2019.8968102.

[5] T. Bijlsma et al., "A Distributed Safety Mechanism using Middleware and
Hypervisors for Autonomous Vehicles," 2020 Design, Automation & Test
in Europe Conference & Exhibition (DATE), Grenoble, France, 2020, pp.
1175-1180, doi: 10.23919/DATE48585.2020.9116268.

[6] V. M. Raju, V. Gupta and S. Lomate, "Performance of Open Autonomous
Vehicle Platforms: Autoware and Apollo," 2019 IEEE 5th International
Conference for Convergence in Technology (I2CT), Bombay, India,
2019, pp. 1-5, doi: 10.1109/I2CT45611.2019.9033734.

[7] S. Jose, V. V. Sajith Variyar and K. P. Soman, "Effective utilization and
analysis of ros on embedded platform for implementing autonomous car
vision and navigation modules," 2017 International Conference on
Advances in Computing, Communications and Informatics (ICACCI),
Udupi, 2017, pp. 877-882, doi: 10.1109/ICACCI.2017.8125952.

[8] B. Abhishek, S. Gautham, D. Varun Rufus Raj Samuel, K. Keshav, U. P.
Vignesh and S. R. Nair, "ROS based stereo vision system for autonomous
vehicle," 2017 IEEE International Conference on Power, Control, Signals
and Instrumentation Engineering (ICPCSI), Chennai, 2017, pp. 2269-
2273, doi: 10.1109/ICPCSI.2017.8392121.

[9] S. Gatesichapakorn, J. Takamatsu and M. Ruchanurucks, "ROS based
Autonomous Mobile Robot Navigation using 2D LiDAR and RGB-D
Camera," 2019 First International Symposium on Instrumentation,
Control, Artificial Intelligence, and Robotics (ICA-SYMP), Bangkok,
Thailand, 2019, pp. 151-154, doi: 10.1109/ICA-SYMP.2019.8645984.

[10] K. Hasegawa, K. Takasaki, M. Nishizawa, R. Ishikawa, K. Kawamura and
N. Togawa, "Implementation of a ROS-Based Autonomous Vehicle on an
FPGA Board," 2019 International Conference on Field-Programmable
Technology (ICFPT), Tianjin, China, 2019, pp. 457-460, doi:
10.1109/ICFPT47387.2019.00092.

[11] M. Köseoğlu, O. M. Çelik and Ö. Pektaş, "Design of an autonomous
mobile robot based on ROS," 2017 International Artificial Intelligence
and Data Processing Symposium (IDAP), Malatya, 2017, pp. 1-5, doi:
10.1109/IDAP.2017.8090199.

[12] N. M. Htaik, N. A. M. Maung and W. Zaw, "Enhanced IoT-based
Interoperable and Configurable Middleware using Semantic Web
Techniques," 2018 15th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON), Chiang Rai, Thailand, 2018, pp.
90-93, doi: 10.1109/ECTICon.2018.8620032.

[13] E. S. Pramukantoro, A. Kusyanti and Yazid, "Performance Evaluation of
Semantic IoT Middleware," 2018 International Conference on Sustainable
Information Engineering and Technology (SIET), Malang, Indonesia,
2018, pp. 230-233, doi: 10.1109/SIET.2018.8693193.

[14] E. S. Pramukantoro, W. Yahya and F. A. Bakhtiar, "Performance
evaluation of IoT middleware for syntactical Interoperability," 2017
International Conference on Advanced Computer Science and
Information Systems (ICACSIS), Bali, 2017, pp. 29-34, doi:
10.1109/ICACSIS.2017.8355008.

[15] W. Liu, H. Wu, Z. Jiang, Y. Gong and J. Jin, "A Robotic Communication
Middleware Combining High Performance and High Reliability," 2020
IEEE 32nd International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), Porto, Portugal, 2020, pp. 217-
224, doi: 10.1109/SBAC-PAD49847.2020.00038.

[16] D. Yu and H. S. Park, "Real-time middleware with periodic service for
industrial robot," 2017 14th International Conference on Ubiquitous
Robots and Ambient Intelligence (URAI), Jeju, 2017, pp. 879-881, doi:
10.1109/URAI.2017.7992853.

[17] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku and Woo-Keun Yoon, "RT-
middleware: distributed component middleware for RT (robot
technology)," 2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Edmonton, AB, Canada, 2005, pp. 3933-3938, doi:
10.1109/IROS.2005.1545521.

[18] D. Choi, S. Kim, K. Lee, B. Beak and H. Park, "Middleware architecture
for module-based robot," 2006 SICE-ICASE International Joint
Conference, Busan, Korea (South), 2006, pp. 4202-4205, doi:
10.1109/SICE.2006.31477

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 443 --

