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Abstract—In the current work, an approach to implement AI-
based techniques in real-time focusing mainly on the detection,
tracking, and landing on the target object is presented. For an
object detection, CNN algorithm is utilized. For object tracking
and stabilizing, a novel algorithm is developed that can execute
along with object detection via sequential stream data. For
landing, a vision-based algorithm is used to estimate the distance
between the UAV and the detected object. For UAV control,
a Fuzzy-PID controller is designed to steer the UAV by a
continuously manipulation of the actuators based on the stream
data from the tracking unit and dynamics of the UAV. For UAV
landing, a new type of fuzzy logic controller is developed to
compensate for the nonlinear ground effect that affects the safe
landing of the UAV. All the developed algorithms are executed
on an NVIDIA Jetson TX2 embedded artificial intelligence
device, and an ARM Cortex M4. Experimental results show
that the tracking algorithm responds faster than conventionally
used approaches, and the safe landing algorithm minimized the
landing time of the UAV and provided the safety assurance as
compared to conventional controllers. Furthermore, a farming
monitoring and automated wireless charging is considered as an
application example.

I. INTRODUCTION

Autonomous multicopter robots are among the most promis-

ing research activities due to the special characteristics of these

robots such as mechanical simplicity, small size, and easy

to control. Among these multicopter robots are the Quad-

copters. Quadcopter is a type of Unmanned Aerial Vehicles

(UAV), which is lifted and propelled by four rotors [1].

The Quadcopter has been increasingly used in education and

research area due to its low cost, and high maneuverability.

Furthermore, a quadcopter is capable of handling complex

tasks in cramped and crowded environments, cable of taking-

off and landing in cramped areas [2], as well as it has a simple

control mechanism compared to the other types of UAVs [2].
Object-detection, tracking and safe-landing process is one

of the most important pre-functions in the UAVs, as it can be

used in different separate applications, e.g., surveillance [3]

and safe-landing for battery charging [4], or drone delivery

service [5]. Also, drones offer a potential solution for agri-

environmental monitoring application including crop health

monitoring, landscape assessment, livestock health monitoring

and overall biodiversity assessment of rural areas [6].
There have been several methods focusing on object track-

ing and based on making use of different sensors [7]. Vision-

based object detection is one of the cheapest and convenient

method by which the obtained information from vision sen-

sors, e.g., RGB camera, can be used in other tasks simultane-

ously, e.g., odometry and navigation [8] [9].

The main drawback of vision-based object tracking methods

is the high computation cost of executing their algorithms

w.r.t. the performance, energy, and accuracy [10]. Using

cloud servers for object detection is not possible since the

communication cost between the drone and cloud enormously

prolongs response time in real-time stream data processing of

object tracking; Cloud computing systems are internet-based,

and service outages are always possible and can occur for

various reason. Furthermore, using wireless communication

for streaming data is not practical due to its limited coverage

area and high latency which lead to significant degrade in

performance. Moreover, detecting objects in run-time basically

faces noisy and low-resolution images accompanied by the

background motion that negatively affects the accuracy of the

detection outcome. Therefore, application execution on this

platform requires appropriate system architecture and adopted

algorithms to improve the system constraints as much as

possible while meeting the strict requirements.

In this paper, our aim is to provide an adaptable fuzzy con-

trol mechanism for the Quadcopter that is able to manipulate

its actuators, i.e., throttle adjustment and the roll and pitch

of the drone, in different environments. Two separate fuzzy

controllers are proposed, 1) a fuzzy controller to adjust the

drone’s throttle based on two inputs of speed and distance from

the ground, 2) a fuzzy mechanism to adjust the parameters of

the PID controller based on two observations of position of

the drone and speed. The former controller is responsible to

adjust the throttle of the drone to provide fast and smooth

navigation movement while the latter controller manipulates

the roll and pitch of the drone for efficient tracking in different

environmental conditions.

II. IMPLEMENTED REAL-TIME CONTROL ALGORITHMS

In this work, a real-time feedback-based object detection, 
tracking and landing algorithm is developed that can be 
adapted to be executed on the presented system architecture. 
Fig. 1 shows the feedback-based algorithm for the devel-
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Fig. 1. Block diagram of the developed system

oped algorithm. The proposed system is divided into three

main algorithms:

• Object detection algorithm.

• Distance estimation.

• Object tracking algorithm.

The high-performance processor receives the visionary data

from the camera and fed it into the object detection algorithm

to detect the target object for tracking and landing. Once

the target is detected in the camera scene, the CNN returns

the image with a boundary box around the detected object,

and its position in the frame. Afterwards, the position of the

detected target is passed to the object tracking and landing

algorithms simultaneously and is subtracted from a reference,

which is the center of the frame to give out the error.

The controller units is utilized based on the error of each

algorithm to output the suitable throttle adjustment required

for controlling the Quadcopter landing and the roll/pitch angles

responsible for stabilizing the Quadcopter above the detected

target, and thereby, the actuation parameters to each motor

will be adjusted.

A. Object detection algorithm

After receiving the captured image from the camera, a CNN

algorithm is applied. In this work, a pretrained Single Shot

Multibox (SSD) with the MobileNet detector is used for object

detection [11]. After applying the SSD model, a boundary box

will be drawn around the detected object. The location data

of the detected object is extracted and used as an input to the

object tracking and landing algorithms.

B. Distance estimation algorithm

Once the object is detected and the position of the detected 
object is extracted, this information is fed to the distance esti-

mation algorithm to control the landing of the Quadcopter. In 
this work, a pinhole camera model [12] is utilized to calculate 
the distance between the Quadcopter and the detected object. 
Once the distance is estimated and filtered, the vertical speed 
of the Quadcopter is obtained and is passed to the controller 
unit as shown in Fig. 1 to give out the suitable throttle 
adjustment value that is required to land the Quadcopter safely 
on the detected object.

To account for the ground effect that exists near the ground

while the Quadcopter is descending, a fuzzy logic controller

(FLC) is utilized to control the Quadcopter landing. Ground

effect refers to the increased upward force to the multicopter

frame near the ground, in relation to high altitude flight con-

ditions. The FLC proposed in this paper has been developed

and explained in our previous articles [13] [14].

C. Object tracking algorithm

In Figure 1, once the object is detected, its position is

given to the object tracking unit to start the tracking process.

In this work, a Fuzzy-PID controller is utilized to overcome

the instability of the Quadcopter, especially under external

disturbances such as wind. Two inputs are given to the Fuzzy-

PID, position of the detected object (pos) and its change of

position (�pos), and three outputs are acquired, Kpf , Kif

and Kdf which are determined by a set of fuzzy rules that are

used to adapt the Kp, Ki and Kd gains of the PID controller

as in Equation 1-3, where G is a gain value that can be used

to for tuning the output of the Fuzzy-PID, P is the sum of the

proportional gain Kp and the Kpf gain, I is the sum of the

integral gain Ki and the Kif gain, and D is the sum of the

derivative gain Kd and the Kdf gain. The output of the Fuzzy-

PID is described in Equation 4, where the error e(t) = pos
represnts the current position of the detected object, and y(t)
is the the required angle needed for tracking the object. Figure

2 depicts the basic structure of the Fuzzy-PID controller. The

Fuzzy-PID developed in this work is based on [7].

P = (G×Kpf ) +Kp (1)
I = (G×Kif ) +Ki (2)
D = (G×Kdf ) +Kd (3)

y(t) = (P × e(t)) + (I ×
t∫

0

e(τ)d(τ)) + (D × de(t)

dt
) (4)

Fig. 2. Fuzzy-PID basic structure

III. EXPERIMENTAL STUDIES AND RESULTS

A. Object detection

The CNN algorithm used for detecting the objects is a

SSD mobilenet v1 which is optimized to run on embedded

platforms in real-time. The SSD mobilenet v1 is implemented

on a low power-consumption Nvidia Jetson TX2 in the Python
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programming language. The object detector is trained to

detect two objects, a circular and a rectangular object as

shown in Figure 3. The average frame rate (fps) achieved by

SSD mobilenet v1 is 25fps with 90% accuracy which make

it more suitable for real-time applications.

Fig. 3. Object detection algorithm output
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Fig. 4. Distance estimation output comparison

Fig. 5. Quadcopter experimental setup

Fig. 6. Controller result in a rectangular trajectory

B. Distance estimation

Initially, the Quadcopter is hovering at the 3 meters altitude.

Once the object is detected in the scene, a pinhole camera

model is applied to estimate the distance between the Quad-

copter and the detected objects. Later, the estimated distance is

passed to the FLC to calculate the throttle adjustment required

for safely landing the Quadcopter on the detected object. The

drawback of detecting one object is that this objects needs to

have a big size to be able to be detected in high altitude.

However, while the Quadcopter is approaching the ground

specifically under 1m, it will become impossible to estimate

the distance due to the insufficient size of the big detected

object. For this, a smaller object has been placed on the bigger

one, so when the Quadcopter approaches the 100cm it will

estimate the distance based on the information of the smaller

objects.

Figure 4 shows the output values of the pinhole camera

model while the Quadcopter was landing compared to a laser-

based optical ranging sensor (LIDAR-Lite v3). The mean error

of the pinhole camera model is 2.4% which makes it suitable

for such applications where we have a known width of the

detected object.

C. Object tracking

To verify the feasibility of the developed algorithm, several

experiments were performed outdoor under environment ef-

fects, e.g., windy weather, to obtain the optimal values for the

parameters gains that is used for object-tracking algorithm.

The experimental setup shown in Figure 5, is composed of

Quadcopter frame with a flight controller connected to a Jetson

TX2 through UART communication. Initially the Quadcopter

is flying at the altitude of 3 meters, and is tracking an RC

car in a rectangular trajectory, to test the response of the

proposed controller. Once the RC car is detected, real-time

object detection is triggered, and a boundary box is drawn

around the moving RC car based on our developed object

detector. The object tracking algorithm will then proceed.

The experimental target is moving in a rectangular path un-

der various speed. Figure 6 show the results of the performed

trials using our object tracking algorithm and is compared to

a PID controller that was developed in our previous work to

follow a human based on CNN detection [15].

According to the previous evaluation of the experimental

results, the Fuzzy-PID controller has proven that it has better

response, and shorter settling time compared to the typical PID

controller.

IV. AUTONOMOUS NAVIGATION OF A UAV AND WIRELESS

AUTOMATED CHARGING FOR FARM MONITORING

We now introduce a potential practical application of the

real-time control system presented in the previous sections,

namely autonomous navigation and wireless charging for farm

monitoring. It consists of three main parts: A ground station

system, an autonomous navigation system, and a wireless

charging station. The ground station system is responsible of

sending the required path to be followed to the UAV. Also, its

responsible for acquiring the locations of the drone wireless

stations around the planned path. The autonomous navigation

system consists of a flight controller that regulates the drone

attitude and measures the drone battery voltage in real-time,

and an AI embedded platform which oversees calculating the

required drone attitude for autonomous navigation. The AI
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Fig. 7. Schematic diagram of the proposed example application

embedded platform is connected to a vision-based system that

is used in farm monitoring based on AI, and a LiDAR that

is used to create a detailed 3D map to aid the drone in the

navigation process by creating a path planning, especially in

the controlled-environment agriculture (CEA). Based on the

output of the vision-based system and the LiDAR, the drone

will be able to adjust its attitude as the geography varies to

avoid collisions by utilizing the tracking algorithm. Finally, a

live data stream (e.g. farm monitoring images, drone location,

battery voltage etc.) is sent back to the ground station. If the

measured battery voltage reached a specific lower threshold,

the ground station would send the location of the nearest

wireless charging station to the drone to interrupt its ongoing

task and move to charge its battery. To ensure a smooth and

safe landing to the wireless charging station, the proposed

object detection and distance estimation is used to detect the

charging station based on a vision-based system and control

the speed and position of the drone while landing. The diagram

of the proposed solution is depicted in Figure 7

V. CONCLUSION

In the current study, an approach for real-time implementa-

tion of CNN-based object detection, tracking and landing for

a Quadcopter is presented. The current research provides a

major contribution in UAV automation system. The developed

system provides an efficient way for using a CNN to detect

an object in real-time, extract its position, and use this data to

ensure a safe, fast and stable tracking, stabilizing and landing

process without the need of using any additional sensors.

The presented system can be used in many applications

such as search-and-rescue, tracking a specific object, landing

for battery charging, drone delivery service, and agriculture

applications. The developed system provides an efficient way

for using a CNN to detect an object in real-time, extract its

position, and use this data to ensure a safe, fast and stable

tracking, and landing process without the need of using any

additional sensors.
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