
JSON SPARQL Application Profile for Linked Data

Andrea Ferrari∗, Elisa Riforgiato∗, Luca Roffia‡
∗ VAIMEE srl, Italy

‡University of Bologna, Italy

Email:andrea.ferrari@vaimee.it,elisa.riforgiato@vaimee.it,luca.roffia@unibo.it

Abstract—This paper presents the JSON SPARQL Application
Profile for Linked Data which is a JSON-LD compliant file
that can be used to describe applications powered by the
SPARQL Event Processing Architecture. Thanks to a publish-
subscribe broker built on top of a generic SPARQL endpoint, the
architecture allows the development of distributed and context-
aware applications based on interoperable microservices. The
SPARQL Application Profile includes all the information needed
to describe an application, like the SPARQL queries and updates
used by each microservice as well as the parameters needed to
connect to a broker instance. The paper presents the ontology
that has been designed to represent the SPARQL Application
Profile from which the JSON-LD context has been eventually
extracted.

I. INTRODUCTION

Services and application are usually designed in a static
way: they are connected each other in a fixed schema and their
interaction is usually described using a set of configuration
files. With the spread of the Internet of Things (IoT), more
and more flexible methods and tools are required to build,
deploy and manage services as well as applications. This is
because IoT applications are heavily based on the interaction
with the physical environment which imposes to deal with
heterogeneous and dynamic data sources. Here a critical aspect
is to ensure interoperability to services and clients. Thereby,
the possibility to reuse in part, or total, other services to
deploy new ones would represent a very important asset.
In this paper, we propose an approach based on Semantic
Web ontologies described in OWL [1] which can provide
a formal and shared representation of the application and
its components. The representation includes all the details,
starting from the microservice configuration up to its own setup
for composing and deploying. We consider as reference archi-
tecture the SPARQL Event Processing Architecture (SEPA)
[2] which implements a publish-subscribe mechanism over
a generic SPARQL endpoint [3]. SEPA provides developers
with an application design pattern named PAC (Producer-
Aggregator-Consumer) which assumes a software component
to be: a producer (i.e., linked to a specific SPARQL update),
a consumer (i.e., linked to a specific SPARQL query used
as subscription request) or an aggregator (i.e., on receiving
events related to a specific SPARQL query it is subscribed to,
it performs a specific SPARQL update) [4]. As shown in 1,
from the JSAP Ontology can be derived a JSON-LD context
that can be used by developers to compose the JSON-LD file of
their applications. This file includes in general also references
to contexts of specific vertical ontology (e.g., Schema.org
[5], SOSA [6]). The JSAP Ontology, and as consequence the
JSON-LD context, is composed by three logical parts: CORE
that contains all the basic information of the services, PAC that
includes the information on the business logic and DEPLOY

Fig. 1. Overview of JSAP-LD environment and usage

that targets the deployment of all services. This paper aims to
present the JSAP-LD and the process we followed to build it
starting from a previous version which was just in plain JSON
[7]. As a first work in this direction, the current implementation
focuses on the CORE part of the JSAP-LD. In the Fig. 1 is
possible to have a look at the JSAP-LD ultimate overview.
Since the JSAP-LD is based on an ontology it is suitable to
be converted into RDF triples and uploaded inside SEPA. The
rest of the paper is structured as follows. As first we present
the background about SEPA and the JSAP configuration file,
as plain JSON. Then an introduction about JSAP-LD follows,
along with the construction process of the JSAP Ontology. A
section is dedicated to the extracted JSAP-LD context, and
a real use case is presented including a comparison with the
plain JSON format. Eventually, discussions and future works
are drawn.

II. REFERENCE ARCHITECTURE AND TECHNOLOGIES

SEPA is a decentralized Web-based architecture designed
to support the development of distributed, dynamic, context-
aware, and interoperable services and applications. A full de-
scription of an application based on SEPA is already available
as a JSON file named JSAP [8] (JSON SPARQL Application
Profile).

SEPA enables the so called Dynamic Linked Data [9], a
layer of distributed publish-subscribe brokers built on top of
Linked Data where publishers and subscribers use respectively
W3C SPARQL Updates and Queries. A graphical represen-
tation is provided by the Fig. 2. Notifications include the
added and removed binding results in the SPARQL Query
due to an incoming SPARQL update. SEPA implements the
PAC (Producer-Aggregator-Consumer) design pattern with a
reusable and extensible set of components. A generic compo-
nent can be one of the following: Producer which corresponds

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



Fig. 2. Dynamic Linked Data, JSAP-LD content

to a publisher, a Consumer which corresponds to a subscriber
and an Aggregator that plays both the roles. For further details
please refer to IEEE Internet of Things Journal[10].

III. ON THE DESIGN OF A SEMANTIC DESCRIPTION OF A

SEPA APPLICATION

The main scope of the JSAP-LD - which stands for an
enriched version of JSAP in JSON-LD [11] - is to represent in
a semantic way what a SEPA application can do. Developers
are recommended to follow the PAC design pattern and to
use JSAP-LD in order to describe the SPARQL queries and
updates used by their applications. This would be the key
to enable interoperability and drive the reuse of application’s
components. JSAP-LD allows to modify the microservices’
interactions, without have to depend on the implementation of
the microservices themselves. Starting from the plain JSON
JSAP configuration file [9] a JSAP Ontology has been designed
and then the corresponding JSON-LD context extracted.

A. JSAP Ontology

The first step of this work has been the design of the JSAP
Ontology through a middle-out approach [12] with the interest
in answering to the following competency questions [13]:

1) What is a JSAP?
2) Which are the main component parts?
3) At what level of specification do we need to represent

these parts?
4) How this ontology may be also suitable to extrapolate

the context for a JSON-LD format of JSAP?

Following the guidelines given by Mcguinness [14], the
explication process [15] of the JSAP Ontology takes also
into account the conceptualization models, the mental model
creator and the mental model user. The ontology, as a particular
model of explicit conceptualization, provides the alignment
between the two models and the creation of a common
knowledge base for the creator and the user. The major benefit
of this choice is given by an active user participation since
this decrease both the possibility of making conceptualization
mistakes and the effort for correcting them on a long term

project [16]. Thereby, people within a multi-agent interaction
system are not just users, but full-fledged actors [17]. A sketch
of the construction process of the JSAP Ontology based on
conceptualization models approach [15] [16] is shown in Fig.
3.

Fig. 3. JSAP Ontology conceptual modeling process

During the ontology creation process, as a result of this
dual cooperation between the user and the creator, we real-
ized that the current JSAP version wasn’t optimized for the
applications that it would be possible implemented, mostly
looking into the future of SEPA. This was a real turning point
of our work, that had to take into account what the JSAP was
and what the JSAP, and even more JSAP-LD, would become.
In this new view, JSAP is more versatile and open to new
extensions. A practical example could be the use of the host
member inside the JSAP: originally the JSAP configuration let
to set just one host for each client but the JSAP Ontology and
the JSAP-LD are actually able to provide more hosts per client,
using the host member related to the SPARQL protocols. A
concrete example will be give in the Section IV.

Once scope, models and main parts were setup, the JSAP
Ontology was developed in OWL format [1] inside the Protégé
editor [18]. Fig. 4 gives an overview of the main ontology
classes and their relationships. As already mentioned in the
introduction, the JSAP-LD is supposed to be composed of
three main parts, namely CORE, PAC and DEPLOY. The
current version of the ontology, and as consequence the derived
JSON-LD context, is focused on the CORE part. The ontology
specification level doesn’t involve instances, that is because
the ontology has to provide a context that makes possible
to express the JSAP-LD instance: the instances are expressed
inside the JSAP-LD and supported by the ontology semantic.
Moreover, although the first released version of JSAP Ontol-
ogy is enough expressive for the given purpose, it could be
considered as a simple ontology which is quite convenient
given the largely endorsed idea that a less complex application-
domain ontology provides more re-usability - making it easy
to be extend for more specific applications - and dynamism
[19]. The semantic introduced with the JSAP Ontology is
completely suitable for generating a JSON-LD context to
be included in a JSAP-LD file through the entities and the
properties, semantically and syntactically defined inside the
ontology. As soon as the extrapolation process into JSON-LD
context occurred, syntax provide by ontology was no longer
available inside the JSAP-LD. The aim of this work was not

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 381 ----------------------------------------------------------------------------



Fig. 4. JSAP Ontology classes and related object properties

developing a JSON-LD format of the JSAP Ontology itself
but we wanted to enrich the JSAP - in JSON format- with
a semantic enable capacity using the semantic features and a
controlled vocabulary expressed by an ontology. By providing
a formal specification and a structured semantic model to the
JSAP and turning it into a JSAP-LD, we enhanced its potential
via interoperability of services and applications.

B. JSON-LD Context

Starting from the JSAP Ontology, the extracted JSON-LD
context contains all the mapping of terms to URIs which can
than be used within a JSAP-LD document to define classes,
data properties, and objects properties. In addition, we have
defined a @vocab equal to the general URI of the JSAP
Ontology and with the slash symbol instead of the sharp
symbol as last character. The purpose of that @vocab is to
allow the existence of possible terms which are not strictly
defined in the context and it is mainly used as default prefix.
In the listing 1 there is an extract of the JSON-LD context of
JSAP.

Listing 1. JSAP context.
"@context" : {

"@vocab":"http://www.vaimee.it/ontology/jsap/",
"queries" : {
"@id" : "http://www.vaimee.it/ontology/jsap#queries",
"@container": "@set"

},
"versionInfo" : {
"@id" : "http://www.w3.org/2002/07/owl#versionInfo"

},
"sparql" : {
"@id" : "http://www.vaimee.it/ontology/jsap#sparql",
"@type" : "http://www.w3.org/2001/XMLSchema#string"

},
"reconnect" : {
"@id" : "http://www.vaimee.it/ontology/jsap#reconnect",
"@type" : "http://www.w3.org/2001/XMLSchema#boolean"

},
"protocol" : {

"@id" : "http://www.vaimee.it/ontology/jsap#protocol",
"@type" : "http://www.w3.org/2001/XMLSchema#string"

},
"graphs" : {

"@id" : "http://www.vaimee.it/ontology/jsap#graphs",
"@container": "@set"

},
"host" : {

"@id" : "http://www.vaimee.it/ontology/jsap#host",
"@type" : "http://www.w3.org/2000/01/rdf-schema#Literal"

},
"updates" : {

"@id" : "http://www.vaimee.it/ontology/jsap#updates",
"@container": "@set"

},
"path" : {

"@id" : "http://www.vaimee.it/ontology/jsap#path",
"@type" : "http://www.w3.org/2001/XMLSchema#string"

},
"enable" : {

"@id" : "http://www.vaimee.it/ontology/jsap#enable",
"@type" : "http://www.w3.org/2001/XMLSchema#boolean"

},
...

}

IV. USE CASE: A SIMPLE BUT COMPLETE EXAMPLE OF A

SEPA CHAT APPLICATION

The use case simulates a chat system in which the users
have a private chat with each other. A user can register herself
in the chat system (i.e., by means of the UserRegistration
producer), and then she can send and receive messages (i.e.,
by means of the ChatClient). As shown in Fig. 5, the chat
system also includes a consumer which maintains the list of
available users. A message is stored into the RDF store until
the sender will be notified of a successful reception. At this
point, the sender will remove the message from the RDF store.

Fig. 5. Components of the chat systems and their interactions through
the publish-subscribe mechanism of SEPA. Labels are symbolic identifiers
of updates and queries used by components

The JSAP-LD file describing the chat system has been
designed starting from the already available JSAP file in plain
JSON [20]. A fundamental part of the JSAP is to describe
how to connect to a specific broker, using the SPARQL 1.1
Protocol [3] and the extension provided by SEPA to implement
subscriptions [21] [22]. Listing 2 and listing 3 show this part
respectively as it was in the JSAP and as it is now in JSAP-
LD. The advantage of using JSAP-LD is twofold: on the

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 382 ----------------------------------------------------------------------------



one hand it enables interoperability, on the other hand it is
open to extensions. For example, if new protocols are defined
in the JSAP Ontology, these can be added to the JSAP-LD
protocols section just including a new ”@type”. The queries
and the updates will be referring to the right protocol using
the properly ”@id”.

Listing 2. JSAP protocols section in the Chat example.
"sparql11protocol": {

"protocol": "http",
"port": 8000,
"query": {

"path": "/query",
"method": "POST",
"format": "JSON"

},
"update": {

"path": "/update",
"method": "POST",
"format": "JSON"

}
},
"sparql11seprotocol": {

"protocol": "ws",
"reconnect" : true,
"availableProtocols": {
"ws": {

"port": 9000,
"path": "/subscribe"

},
"wss": {

"port": 9443,
"path": "/secure/subscribe"

}
}

}

Listing 3. JSAP-LD protocols section in the Chat example.
"protocols":[
{ "@id":"http://chat/protocol_01",
"@type":"sparql11protocol",
"protocol": "http",

"port": 8000,
"path": "/updateAndQuery",
"method": "POST",
"format": "JSON",

"host": "localhost"},
{ "@id":"http://chat/protocol_02",
"@type":"sparql11protocol-query",
"protocol": "http",

"port": 8000,
"path": "/query",
"method": "POST",
"format": "JSON",

"host": "localhost"},
{ "@id":"http://chat/protocol_03",
"@type":"sparql11protocol-update",
"protocol": "http",

"port": 8000,
"path": "/update",
"method": "POST",
"format": "JSON",

"host": "localhost" },
{ "@id":"http://chat/protocol_04",
"@type":"sparql11seprotocol",
"protocol": "ws",

"port": 9000,
"path": "/subscribe",
"reconnect" : true,

"host": "localhost" },
{ "@id":"http://chat/protocol_05",
"@type":"sparql11seprotocol",
"protocol": "wss",

"port": 9443,
"path": "/secure/subscribe",
"reconnect" : true,

"host": "localhost" }
]

Listing 4 shows the semantic description of the ”SEND”
SPARQL update. It is used by a chat user, the sender, to

send a message to another one, the receiver. That listing is
an example of how to define force bindings, which is an
important feature provided by the SEPA APIs. The force
binding allows to replace a SPARQL variable at run-time. If we
consider the following three forced bindings http://chat/fb/msg,
http://chat/fb/sender and http://chat/fb/receiver, they are se-
mantically described by the type, name, and if needed the
dataType. At any time the application can use them to replace
the corresponding SPARQL variable. All the semantic entities
in a JSAP-LD, such as the force bindings, the updates, and
the protocols, are referred by an ”@id”, which means they
are URIs. This allows a JSAP-LD to be split in different files
or locations. For example, a file may contain all the updates,
while another all the available protocols. A JSAP-LD or part
of it may also be stored as RDF into a SPARQL endpoint.
In such a way, the application can be modified at run-time
which could be a very interesting feature in some application
contexts.

Listing 4. An example of SPARQL Update in JSON-LD.
"updates": [
{
"@id":"http://chat/update/send",
"@type":"update",
"label":"visible name of the update",
"description":"description ...",
"sparql": "INSERT{ graph <http://chat> {

_:message rdf:type schema:Message;
schema:text ?text;
schema:sender ?sender;
schema:toRecipient ?receiver;
schema:dateSent ?time

}} WHERE {
?sender rdf:type schema:Person.
?receiver rdf:type schema:Person.
BIND(STR(now()) AS ?time)

}",
"hasProtocolUpdate":"http://chat/protocol_06",
"forcedBindings":[

{
"@id":"http://chat/fb/msg",
"@type": "LiteralForcedBinding",
"name": "text",
"default": "Ciao!",
"dataType" : "xs:string"

},
{
"@id":"http://chat/fb/sender",
"@type": "UriForcedBinding",
"name": "sender",
"default": "chat:IamASender"

},
{
"@id":"http://chat/fb/receiver",
"@type": "UriForcedBinding",
"name": "receiver",
"default": "chat:IamAReceiver"

}
]} ... ,

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a project supporting the de-
velopment of SEPA based applications. Thanks to JSAP-LD
it is possible to give a semantic description of an application
at different levels, starting from connection details to a set
of brokers, the SPARQL primitives used by the application
components, up to the description of how to compose and
deploy the application. The semantic is provided by the JSAP
Ontology from which the JSAP-LD context has been extracted
and that can be used by developers to design well-formed
JSAP-LD descriptions. At the current stage, the CORE part

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 383 ----------------------------------------------------------------------------



of the JSAP-LD has been implemented and the next step is
to start to rewrite the current parser based on the plain JSON
format, including also a validation of the semantic content. The
JSAP Ontology, the JSAP JSON-LD context as well the JSAP-
LD files of the use case are all available on Github [20]. We
are at an early stage of this work but we are getting one step
closer to allow the SEPA environment to be more and more
interoperable, modular, flexible and extensible as supplier of
services and applications in the IoT world.

REFERENCES

[1] W3C, “OWL Web Ontology Language Overview.” Web:https://www.
w3.org/TR/owl- features/.

[2] C. Aguzzi, F. Antoniazzi, L. Roffia, and F. V. Viola, “SPARQL Event Pro-
cessing Architecture (SEPA).” http://mml.arces.unibo.it/TR/ sepa.html,
2018.

[3] L. Feigenbaum, G. T. Williams, K. G. Clark, and E. Torres, “SPARQL
1.1 Protocol.” https://www.w3.org/TR/sparql11-protocol/, 2013.

[4] C. Aguzzi, F. Antoniazzi, L. Roffia, and F. Viola, “Producer-
Aggregator-Consumer design pattern.” http://mml.arces.unibo.it/TR/
jsap.htmlproducer-aggregator-consumer-design-pattern, 2018.

[5] “Schema.org.” https://schema.org/docs/developers.html.

[6] A. Haller, K. Janowicz, S. Cox, D. Le Phuoc, K. Taylor, and M. Lefra-
nois, “Semantic Sensor Network Ontology, SOSA (Sensor, Observation,
Sample, and Actuator).” https://www.w3.org/TR/vocab-ssn/, 2017.

[7] “JSON (JavaScript Object Notation).” https://www.json.org/json- en.
html.

[8] F. Viola, C. Aguzzi. F. Antoniazzi, L. Roffia, “JSON SPARQL Applica-
tion Profile (JSAP).” http://mml.arces.unibo.it/TR/jsap.html, 2018.

[9] L. Roffia, P. Azzoni, C. Aguzzi, F. Viola, F. Antoniazzi, and T. Salmon
Cinotti, “Dynamic Linked Data: A SPARQL Event Processing Architec-
ture,” Future Internet, vol. 10, no. 4, 2018.

[10] L. Roffia, F. Morandi, J. Kiljander, A. DElia, F. Vergari, F. Viola,
L. Bononi, and T. Salmon Cinotti, “A Semantic Publish-Subscribe
Architecture for the Internet of Things,” IEEE Internet of Things Journal,
vol. 3, no. 6, pp. 1274–1296, 2016.

[11] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and N. Lindstrm,
“JSON-LD, A JSON-based Serialization for Linked Data, W3C Rec-
ommendation 16 July 2020.” https://www.w3.org/TR/json-ld11/, 2019.

[12] M. Uschold and M. Grninger, “Ontologies: Principles, methods and
applications,” The Knowledge Engineering Review, vol. 11, 1996.

[13] M. Gru ninger and M. S. Fox, The Role of Competency Questions in
Enterprise Engineering, pp. 22–31. Springer US, 1995.

[14] N. F. Noy and D. L. Mcguinness, “Ontology development 101: A guide
to creating your first ontology,” Knowledge Systems Laboratory, vol. 32,
2001.

[15] R. Schtte and S. Zelewski, “Epistemological problems in work-
ing with ontologies.,” The 6th World Multiconference on Sys-
temics,Cybernetics,and Informatics, 2002.

[16] R. Ferrario, N. Guarino, C. Janiesch, T. Kiemes, D. Oberle, and F.
Probst, “Towards an ontological foundation of services science: The
general service model,” 10th International Conference on Wirtschaftsin-
formatik, 2011.

[17] N. Guarino, E. Bottazzi, R. Ferrario, and G. Sartor, “Open ontology-
driven sociotechnical systems: Transparency as a key for business re-
siliency,” in Information Systems: Crossroads for Organization, Man-
agement, Accounting and Engineering (M. De Marco, D. Te’eni, V.
Albano, and S. Za, eds.), (Heidelberg), pp. 535–542, Physica-Verlag HD,
2012.

[18] Stanford University, “Protegè.” https://protege.stanford.edu, 2016.

[19] D. Mcguinness, “Ontologies come of age,” Spinning the Semantic Web:
Bringing the World Wide Web to Its Full Potential, pp. 171–194, 01 2003.

[20] A. Ferrari, E. Riforgiato, and L. Roffia, “JSAP-LD Github repository.”
https://github.com/arces- wot/JSAP- LD.

[21] C. Aguzzi, F. Antoniazzi, L. Roffia, and F. Viola, “SPARQL 1.1
Subscribe Language,” 2018.

[22] C. Aguzzi, F. Antoniazzi, L. Roffia, and F. Viola, “SPARQL 1.1 Secure
Event Protocol, Unofficial Draft 12 October 2018,” 2018.

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 384 ----------------------------------------------------------------------------


