PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

The Construction of Syntax Trees Using External
Data for Partially Formalized Text Documents

Kirill Chuvilin
Institute of Computing for Physics and Technology, Protvino, Russia
Moscow Institute of Physics and Technology (State University), Moscow, Russia
kirill@chuvilin.pro

Abstract—This article investigates the possibility of logical
structure (abstract syntax tree) automatic construction for text
documents, the format of which is not fully defined by standards
or other rules common to all the documents. In contrast to the
syntax described by formal grammars, in such cases there is
no way to build the parser automatically. Text files in IHTX
format are the typical examples of such formatted documents
with not completely formalized syntax markup. They are used as
the resources for the implementation of the algorithms developed
in this work. The relevance of ¥IEX document analysis is due
to the fact that many scientific publishings and conferences use
ISTEX typesetting system, and this gives rise to important applied
task of automation for categorization, correction, comparison,
statistics collection, rendering for WEB, etc. The parsing of
documents in BTEX format requires additional information about
styles: symbols, commands and environments. A method to
describe them in JSON format is proposed in this work. It
allows to specify not only the information necessary to pars,
but also meta information that facilitates further data mining.
And it is really necessary, for example, for correct comparison
of documents, which arises in the solution of the automatic
correction problem. This approach is used for the first time.
The developed algorithms for constructing a syntax tree of a
document in I’TEX format, that use such information as an exter-
nal parameter are described. The results are successfully applied
in the tasks of comparison, auto-correction and categorization of
scientific papers. The implementation of the developed algorithms
is available as a set of libraries released under the LGPLv3. The
key features of the proposed approach are: flexibility (within
the framework of the problem) and simplicity of parameter
descriptions. The proposed approach allows to solve the problem
of parsing documents in IWTgX format. But it is required to form
the base of style element descriptions for widespread practical
use of the developed algorithms.

I. INTRODUCTION

A. Methods for the description and analysis of formatted text
documents

Text files are broadly applicable in the modern information
technologies: data storage and transmission (XML, JSON),
data viewing (HTML, CSS, Markdown, BBCode, Textile),
data processing (C/C++, Python, JavaScript, C# and many
other programming languages). The contents of such files is
structured with a special markup.

Files of each type are described by the own way of markup.
It is necessary to know the rules of such markup to understand
what information is contained in files. Usually these rules are
called the format or the (computer) language. Examples are
the programming languages, markup languages, specification
languages, etc. The format is responsible for the way of data

pieces are arranged and shaped and for the information of text
document source elements.

But the syntax (or grammar) of language must be some-
how described too. It often allows relatively large amount of
possible structures that nevertheless consist of repeating units.
Because of this specificity it is possible to describe structure of
some blocks via other using a valid recursion. This approach
is the basis for formal systems of syntax determination such
as Backus — Naur Form (BNF) [1], extended Backus — Naur
Form (EBNF) [2], the syntax diagrams [3]. The BNF and
the EBNF describe grammar using text structures, the syntax
diagrams are a visual interpretation of the EBNF.

The Table I is an example of grammar, with which you
can build arithmetic expressions. There is a set of terminal
(final) symbols: numbers, variables, operations, braces. The
other structures are defined through them and through each
other: digit, constant, variable, factor, term, expression.

TABLE 1. EXAMPLE OF GRAMMAR: SIMPLE ARITHMETIC

EXPRESSIONS

Terminal symbols: 0, 1, 2, 3, 4, 5,6, 7,8, 9, X, V, Z, (,), *, +

Symbol EBNF Syntax diagram
TP T N Q=
w3m | omgmo | owgwo
men | omgm | owgm | >
wgn >G>
>
constant digit , {digit} W
variable "x" o "y" | "z" ° ‘. °
€,
factor constant | 0 o
variable |
"(", expression, ")|" “ expression "
term factor | term, 0 o
"x" , factor
expression term |
expression, "+" , ° °
term

Formal grammars are described for the most popular
markup and programming languages. Examples of such de-
scriptions:

o C++ (ISO/MIEC 14882:1998(E)):
externsoft.ch/download/cpp-iso.html,

http://www.

ISSN 2305-7254

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

o C# 1.0/2.0/3.0/4.0:
download/csharp.html,

o ECMAScript (JavaScript):
1153976512034/ecmascriptA3.g,

e JSON: http://rfc7159.net/rfc7159,

e XML: https://www.w3.org/TR/REC-xml/
#sec-notation,

e HTML 5: https://gist.github.com/tkqubo/2842772.

http://www.externsoft.ch/

antlr3.org/grammar/

The presence of a formal grammar for a language allows
you to not only get a standardized file format, but also
automate the process of analyzing them.

In this work a text document is called structured text
document if an abstract syntax tree can be build for it. The
document analysis involves the construction of such a tree.
The algorithm, which builds a syntax tree for a structured text
document, is called parser.

It turns out that a formal grammar allows to automatically
build a parser [4]. There are two approaches to use formal
grammars in construction of syntax trees: the top-down parsing
and the bottom-up parsing. While the top-down parsing process
the formal grammar rules are applied beginning with the start
symbol until the desired consistency is obtained. This approach
is implemented by recursively descending parser and LL
parser. While the bottom-up parsing process the expressions
are restored to the starting symbol. Corresponding algorithms
are LR parser and GLR parser.

Thus, the problem of constructing a syntax tree for the
files described by the language with a formal grammar can be
considered as solved.

B. Problems with documents in the BIEX format

In general, the problem can be formulated as follows:
there is no a formal grammar for the documents in the IXTEX
format [5]. It means both the absence of strict standardization
and the inability to build a parser automatically by known
methods. The source of this problem are the following four
facts.

Firstly, the signature of IATEX commands and symbols isn’t
defined in general terms. The number of parameters and the
methods for separating parameters for different commands
may differ notably. In most of the commands the parameters
are bounded by curly brackets. But in some cases there are
optional parameters that could be in square brackets. Further-
more, it is possible to define a command in which parameters
are separated, for example, by a dot or any other sign.

Secondly, the signature and the set of commands and sym-
bols are both defined by the style files. ISIEX style files may
contain formatting and design rules, overdetermined symbols,
commands and environments. For example, there is a very
common command \author{author name} to specify the
author of the document. But some style files override it
so that there is an optional parameter: \author{author
name} [name for headers].

Third, the signature and the set of available commands and
symbols both are determined by context. For example, there is

17

a common dashes symbol: . It works regardless of the
used language, but is displayed with the spacings not accepted
in Russian typography. For correct spacings in the publication
it’s better to use the symbol *, but it is not available
if Russian language isn’t activated. The sets of commands and
symbols are also very different inside and outside of equations.

Fourthly, TgX does not imply that any syntax tree exists.
KX is the most popular package of macro extensions for
TEX and TEX is a computer typesetting system developed
by Donald Knuth [6], [7]. TgX provides tools for structuring
and decoration of texts, but only ITEX appends commands
and environments that together can form an abstract syntax
tree. IATEX-documents accept “pure” TgX fragments, but such
precedents are mostly exceptions and must be moved to the
style file if the markup is qualitative. In this study such
fragments of source code can be interpreted as a separate
terminal nodes of the syntax tree.

Thus, the problem of constructing a syntax tree for the
documents in the I4TEX format is solvable, but it requires a
separate research and algorithms.

C. The relevance of the BIEX documents analysis

Many scientific publishing houses and conferences use
IATX to prepare publications. As a consequence there are a
number of practical problems associated with the processing
of documents in such a format both at the stage of documents
preparation and for the intelligent processing of existing col-
lections: the automation of correction, statistical analysis, data
mining, format conversion.

Publishing house

Printing house

/ Final version™ printing)
__creation \\ ,,anmg//)

—— P
/~ Document ~
(\ - f"ea'i‘)fj/w?[’ec“" edus/

Author - Author edi)
I S—

Fig. 1. Business process of the scientific article redaction

The very first task the author worked with that requires the
parsing of ISIEX documents is the task of typographical error
correction automation. Such errors are related to indentations,
fonts, formulas, etc. At the current level of technology the
corrections are made by editors manually. It spawns problems
associated with the quality and processing time. The process
of scientific articles correction is shown in the Fig. 1. It
turned out that this problem can be solved by methods of
machine learning, where the training set is formed by the
syntax tree pairs of documents before and after the correction
by professional editors [8].

LaTeX HTML

‘ Articulus ‘

Business process of the pushing articles to RISC

i
000

Fig. 2.

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Published articles tend to land into one of citation systems.
Russian Science Citation Index was created for Russian-
language articles and is controlled by eLIBRARY. It is a na-
tional science citation bibliographic database that accumulates
more than nine million publications of Russian authors as
well as information about the citation of these publications
from more than 6,000 Russian journals [9]. The process of
uploading items to the Russian Science Citation Index database
is shown in the Fig. 2. At the moment one of the stages
is the manually edition in “Articulus” system which accepts
documents only in the HTML format. In this case, it is possible
to convert ISTEX to HTML code qualitatively only by analyzing
the syntax tree to allocate the logical blocks. Moreover, such
an analysis would provide an opportunity to kick the manual
processing of articles.

In fact, the format conversion problem arises not only in
the context of Russian Science Citation Index. HTML is also
handy for displaying articles on WEB-resources. It happens
that publishers require the document in DOC or DOCX format,
and materials, due to their scientific nature, are prepared only
in IATEX. XML is useful for the storage and processing of
structured information. In each case it is required to allocate
the correct logical blocks of documents, which can not be
achieved without a qualitative analysis of the syntax structure,
or, in other words, building a syntax tree.

The allocation of logical blocks and convenient their repre-
sentation is also useful in text mining tasks, such as gathering
of statistics on the authors and publishers, cataloging, sample
building for the topic model.

Thus, the problem of constructing a syntax tree for the
documents in the I£TgX format is relevant for the practical
use.

D. Known implementations and their limitations

The most common way of I&IEX documents processing is
the using of compilers: latex, pdflatex, tex4ht, etc.
This approach means the sequential analysis of the source
code according to the rules of the compiler. But this loses
information about the overall structure of a document, since
the TgX compiler does not imply that the syntax tree exists.

Some research related to the parsing of ISIEX documents
was already done and there are several implementations: on
Python — plasTeX [10], on Perl — LaTeX::Parser [11], on
Java — SnuggleTeX [12]. LaTeX::Parser and SnuggleTeX deal
only with the defined sets of macros so they can process only
special documents. This is not acceptable for the problems
stated in I-C since different publishers have different styles
and significantly different macro sets. Due to the peculiar
properties of the format analysis there is a need to external
resources. plasTeX does it. But, at the same time, it totally
ignores the logical sense of the syntax tree elements. For
example, it is impossible to determine whether a mathematical
symbol is an operator or a letter, and whether a command in the
text is a marking tag or a state change. These properties are not
only important for the correct analysis of the ETEX document
syntax structure, but also for the subsequent intelligent mining
in the syntax tree. The most simple example: if you don’t know
what characters are letters or digits you can not group them
in words or numbers respectively.

18

So, we have the following. The construction of syntax
trees for IAIEX documents is necessary to solve a number of
problems. This is the most fully illustrated in the research [8].
Existing projects can be divided into two types: the projects
that implement compiling or conversion without building a
syntax tree (which don’t solve the discussed problem at
all), and the projects that build the syntax tree without the
possibility of data mining. Thus, there was a need for a new
study, and this work focuses on satisfaction of this need.

II. IXTEX DOCUMENT STRUCTURE

This section describes how the documents in the format
IATEX are perceived in this paper. It is well established heuris-
tics allowing to formalize the syntax tree notion for such
documents.

It must be said separately that comments are allowed in
the IATEX source code. They are string parts starting with not
escaped %. It is assumed that the comments are removed during
the preprocessing to simplify the description of algorithms.

All the source code of a file consists of blocks, each block
may be a symbol, a command or an environment.

IfTEX symbol is a random set of consecutive characters.
A symbol could be a terminal or contain parameters. Typical
representatives_of terminal symbols are numbers and letters.
Dash symbol is also a terminal. An example of a

symbol with a parameter is equation in | $$#1$$ | notation.
Here #1 is the parameter meaning the equation body in this
case.

The space symbol should be noted separately. It is equiv-
alent to any number of contiguous space or tab characters
and, perhaps, a newline character. If the set of consecutive
whitespace characters have more than one newline characters,
this set is equivalent to a set of two line breaks and is perceived
as a symbol of the paragraph separator. It is well-known
specificity of IATEX publishing system.

IXTEX command is a character sequence of the form
\command_name pattern. Required command_name
part must be a sequence of letters, which can end with an
asterisk. Optional pattern part has the same format as IXIgX
symbol and can also contain parameters. An example of a
command that is used to highlight text in bold: \textbf#1.

ETEX environment is a sequence of characters of the form:
\begin{environment_name}begin_command_pattern
environment_body
\end{environment_name}end_command_pattern.
environment_name has the same format as command_name. It is
generally accepted for the documents in the IKTEX format
that all the input content is placed inside the document
environment.

Regardless of its nature (symbol, command or environ-
ment), each block has a purpose (logical sense), which is called
the lexeme type in this work. The allocated lexeme types are
presented in the Table II.

Taking the logical sense of elements in account is important
not only in the subsequent intellectual analysis of files, but also
is used for parsing. It allows to define the parameter context

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

TABLE II. IATEX LEXEME TYPES

Comment
binary mathematical operator

Lexeme type
BINARY_OPERATOR

BRACKETS logical brackets
CELL_SEPARATOR tabular cell separator
CHAR single char

DIGIT digit

DIRECTIVE I8TEX directive
DISPLAY_EQUATION separate equation
FILE_PATH file system path

FLOATING_BOX
HORIZONTAL_SKIP
INLINE_EQUATION

floating unit
horizontal interval
inline equation

LABEL label ID

LENGTH linear dimension
LETTER letter
LINE_BREAK line break
LIST_ITEM list item

LIST list of items
NUMBER sequence of digits
PARAGRAPH_SEPARATOR | paragraph spacer
PICTURE picture

POST_OPERATOR
PRE_OPERATOR

mathematical postoperator
mathematical preoperator

RAW not processing part of the source
SPACE space or analog
SUBSCRIPT subscript
SUPERSCRIPT superscript
TABLE tabular
TABULAR_PARAMETERS tabular arguments
TAG formatting tag
UNKNOWN unknown element
VERTICAL_SKIP vertical spacing
WORD sequence of letters
WRAPPER wrapper

of symbols and commands and limit the sorting options. This
approach is applied for the first time in the bounds of such
researches.

The context is also determined by the parser state. This
is similar to the behavior of the TgX compiler depending on
active modes. Supported modes are shown in the Table III.

TABLE IIL IATEX MODES
Mode Comment
LIST in a list of items
MATH in a mathematical expression
PICTURE in the description of an image
TABLE in a tabular
TEXT plain text (default)
VERTICAL | between paragraphs

Modes can be changed anywhere in the document indi-
vidually or in groups. In addition, a group of local mode
determination can be started. The modes will be restored to
the values before the group after the group is ended.

[II. DESCRIPTION OF I4TEX STYLE ELEMENTS

As mentioned earlier, the sets of available ISTEX characters,
commands and environments are defined by the style files. This
specificity leads to the need of the command descriptions for
the parser. The task of the information extraction from the
style files source code is extremely nontrivial and is compa-
rable, if not superior to, the complexity of the TgX compiler

19

implementation. Therefore, in this work we propose to use
externally generated descriptions of symbols, commands and
environments, which can then be transferred as a parameter for
the parser. The basic structures, using which the information
about the style files is formed, are presented below.

Operation is an operation on the ISIgX state.

e directive is the action directive: BEGIN or END.

e operand is KIEX mode or GROUP (group of local
mode definitions).

An operation describes the process of modes change. BEGIN
means the activation of a mode, END means deactivation.

Parameter is a symbol or a command parameter descrip-
tion.

e lexeme is the lexeme type (logical sense), optional.
e modes are the modes where the parameter is defined.

e operations are the operations performed before
the parameter.

Symbol is a KTEX symbol description.
e lexeme is the lexeme type (logical sense).
e modes are the modes where the symbol is defined.

e operations are the operations performed after the
symbol.

e parameters are the parameter descriptions.

e pattern is the X pattern.

Pattern describes the symbol signature, where
#parameter_index defines the parameter position,
and other characters correspond to the symbol characters in
the document source. A JSON example of the inline equation
symbol description:

"lexeme": "INLINE_EQUATION",
"modes": ["TEXT"],
"operations": [{
"directive": "END",
"operand": "MATH"
1,
"parameters": [{
"operations": [{
"directive": "BEGIN",
"operand": "MATH"
H]
I
"pattern": ll$#l$"

Command is a I£TgX command description.
e lexeme is the lexeme type (logical sense).
e modes are the modes where the command is defined.

e operations are the operations performed after the
command.

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

e parameters are the parameter descriptions.
e pattern is the KIEX pattern.

e name is the name of the command.

It differs from the symbol description only by the added
name property. A JSON examle of the two author information
commands with the same name but different parameters:

{
"lexeme": "TAG",
||modesﬂ . ["TEXT"] ,
"parameters": [{ }, { }I,
"pattern": "[#1]#2",
"name": "author"

by

{
"lexeme": "TAG",
"modes": ["TEXT"],
"parameters": [{ }1,
"pattern": "#1",
"name": "author"

b

Environment is a XTEX environment description.

e lexeme is the lexeme type (logical sense).

e modes are the modes where the environment is de-
fined.

e name is the name of the environment.

A JSON example of the horizontal center alignment environ-
ment:

{
"lexeme": "WRAPPER",
"modes": ["TEXT"],
"name": "center"

}.

The proposed way of describing the style elements is easy
to understand: it does not require programming skills or deep
knowledge of the formal language theory. The commands
descriptions can be prepared even by IATEX users having some
experience in markup using this system. The knowledge of the
valid syntax for symbols and commands and the understanding
of element logical senses are enough. At the same time, this
method is quite flexible, since it allows to describe not only
the syntax structures, but also to define the meta information
(I5TEX modes, lexeme types) to manage the context, and the
set of the descriptions is not fixed and can be modified on the
replacing or the adding of a style file.

IV. SYNTAX TREE OF IATEX DOCUMENT

The relative position of KIEX symbols, commands and
environments forms a tree structure, the root of which is the
document environment. The nodes of this structure are called
tokens. During the parsing of a KX document the source
code elements can produce certain types of tokens, depending
on the context and lexeme types. The token types are listed in
the Table IV.

20

TABLE IV. TOKEN TYPES OF IATEX SYNTAX TREE

Token type Source exmaple

begin{tabular}{c|c}

I4TEX environment body height & 1.2m

end{tabular}
\includegraphics |

[[width=10c
{l . /figure.eps
\begin{tabular} |{c Ic}
height & 1.2m
\end{tabular}
\ref{| equationl |}

\textwidth=| 10cm |

height | 1.2 |\,m
Paragraph
(]

I8TEX command

IATEX environment

Label

Linear dimension

Number

Paragraph separator
New paragraph
includegraphics

Filesystem path [width=10cm
{| ../figure.eps |}

Space heightO1.2\, m

height 1.2

\begin{tabular}{ clc [}
height & 1.2m
end{tabular}

|height| 1.2 \,m

Symbol

Tabular parameters

Word

Raw char sequence \verb || complex source ||

The resulting tree is useful to convert IATEX documents into
other formats by interpretation of the individual tokens. And
since each token has a lexeme type this structure is informative
in addition for data mining.

V. PARSING ALGORITHMS FOR IATEX DOCUMENT
ELEMENTS

This section describes the algorithms developed during the
research for parsing of KTEX source individual fragments:
pattern, symbol, command and environment. Cross recursive
calls are allowed for all the algorithms. This is because of,
generally speaking, there are no restrictions on the types and
depth of nested tokens, and the proposed method of parsing is
similar to the top-down recursive parser.

The algorithm 1 describes the parsing process of a I&TEX
symbol or command pattern. It has two main purposes: to
choose the applicable syntax and to obtain recursively the
set of parameter tokens. If the algorithm returns TRUE, the
proposed syntax is applicable, and parameterTokens will list
the obtained tokens for the parameters in the correct order. If
the algorithm returns FALSE, the symbol or the command with
the proposed signature cannot be used at the given position.

Algorithm 1 Parsing of a symbol or command pattern

Require:
W is the source string to parse,
pos is the current position in the source,
Wy is the _L\TEX pattern,
pos, = 0 is the current position in the pattern,

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

style is the description of the symbol of the command that
owns the pattern,
parameterTokens = |[| is the stack of the parameter
tokens.

Ensure:
TRUE, if the source corresponds to the pattern;
FALSE otherwise.

while pos, not in the end of W, do
if Wy [pos,] is a space then
if cannot read a space from W at pos then
return FALSE
end if
move pos the the space end
Posy = posp + 1
else if W, [posy] == # then
9: posy = posp + 1

AN AR

10: parameter index = W), [pos,]

11: get the parameter properties from style

12: if cannot read the parameter from W at pos then

13: clear parameterTokens

14: return FALSE

15: end if

16: push the readed parameter token in
parameterTokens

17: move pos to the parameter end

18: pos, = posp + 1

19: else

20: if Wipos|! = W, [pos,] then

21: return FALSE

22: end if

23: pos = pos + 1

24: posy = posp + 1

25: end if

26: end while

27: return TRUE

The subtleties that are not included in the description
of the algorithm: if a parameter has a special lexeme type
corresponding, for example, to a table settings or a file system
path, a special algorithm for parsing is used, which returns a
token of the appropriate type.

The algorithm 2 describes how to parse a I£TgX symbol.
The symbols with allowable patterns are selected according to
the source code at the current position and the active KTEX
modes. All of them are iterated until the suitable one is found.
If one of the allowable patterns proved to be applicable, the
corresponding symbol token is generated, and the stack of
the parameters, obtained during the pattern parsing process,
forms the child tokens list. If none of the allowable patterns
is applicable, a token symbol with an undefined description is
returned. Thus, the algorithm always returns a positive result.

Algorithm 2 Parsing of a symbol

Require:

W is the source string to parse,

pos is the current position in the source.
Ensure: a symbol token.

for the current state
3: for all the obtained symbol descriptions do

4. if W staring from pos corresponds to the symbol pattern
then

5: t = token of the symbol with the current description

6: child tokens of ¢= the parameter tokens stack obtained

by the pattern parsing

7: return ¢

8 end if

9: restore the backuped state

10: end for

11: return a symbol token with undefined description

The subtleties that are not included in the description of
the algorithm: if the returned token has the lexeme type of a
space, a paragraph separator, a letter or a digit, it is converted
into a token of the appropriate type.

The algorithm 3 describes the process of a IATEX command
parsing. It is logically practically the same as the algorithm 2,
except that the allowable commands are defined by name, and
if the source code at the current position doesn’t contain a
command, the algorithm doesn’t return a token.

Algorithm 3 Parsing of a command

Require:
W is the source string to parse,
pos is the current position in the source.

Ensure: a command token or nothing if there is no command
at the current position.

. if W at pos doesn’t start with \command_name then
exit

end if

. backup the current state

. get the command name

. get the descriptions of the commands with the obtained
name for the current state

. for all the obtained command descriptions do

if W staring from pos corresponds to the command

pattern then

9: t = token of the command with the current description

0 3

child tokens of ¢= the parameter tokens stack obtained
by the pattern parsing
return ¢

end if

restore the backuped state

: end for

: return a command token with undefined description

The algorithm 4 describes how to parse a KX envi-
ronment. If the source code at the current position does
not contain an environment beginning, nothing is returned.
Otherwise, it returns a token corresponding to the environment,
the description of which is obtained by the name.

Algorithm 4 Parsing of an environment

1: backup the current state
2: get the descriptions of the symbols starting with W [pos]

21

Require:
W is the source string to parse,

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

pos is the current position in the source.
Ensure: an environment token or nothing if there is no
environment at the current position.

if %14 at POS doesn’t start with
\begin{environment_name} then
exit
end if
get the environment name
t = the environment token that corresponds to the name at
the current state
6: move pos to the end of \begin{environment_name}

7: parse the pattern of the command with the name
“environment_name”

8: store the corresponding token as the token of ¢ begin
command

9: while W at pos doesn’t
\end{environment_name} do

10: parse a child token of ¢

11: end while

12: move POS to the end of
\end{endenvironment_name}

13: parse the pattern of the command with the name
“endenvironment_name”

14: store the corresponding token as the token of ¢ end
command

15: return ¢

correspond to

The subtleties that are not included in the description of
the algorithm: an incorrect ISEX document may not contain
any end command for an environment (in this case the end
command will be automatically generated at the source end),
and if there is no any description of the environment with
the given name, an environment token with an undefined
description is returned.

The algorithm 5 describes the general process of the next
token extraction. Is not known a priori which type of token is
at the current position of the source code. So the possible
options are iterated: a space, an environment, a command,
a symbol. A symbol token can always be returned, so each
iteration consumes a nonzero fragment of the source code.
Thus, the algorithm is realizable anyway.

Algorithm 5 Parsing of a I&TgX source code

Require:

W is the source string to parse,

pos = 0 is the current position in the source.
Ensure: tokens is the sequence of the parsed tokens.

1: while pos not in the end of W do

2: backup the current state

3: if can parse a space from W at pos then
4 push the space token to tokens

5: move pos to the space end

6: g0 to a new iteration

7. end if

8: restore the backuped state

9: if can parse an environment from W at pos then
10: push the environment token to tokens
11: move pos to the environment end

12: g0 to a new iteration

13: end if

14: restore the backuped state

15: if can parse a command from W at pos then

16: push the command token to tokens
17: move pos to the environment end
18: g0 to a new iteration

19: end if

20: restore the backuped state

21: parse a symbol from W at pos
22: push the symbol token to tokens
23: end while

The described algorithms in conjunction with the com-
ments about the subtleties cover all the possible situations in
the used IATEX syntax interpretation.

VI. IMPLEMENTATION

The ideas described in this article where implemented by
the author several times. The first time they have been success-
fully used for tasks of the document automatic correction [13]
and the construction of article XML descriptions for the topic
model. The implementation was done using Qt/C++, the source
code was not publicly distributed.

Since 2016 the author launched a project for the imple-
mentation of IATEX parser on JavaScript [14]. This is a set of
libraries released under the LGPLV3 license. Their main goal is
the transparent integration of ITEX document analyzing tools
for all the environments supporting JavaScript, including WEB.

The following libraries are available:

e Latex. js contains the basic definitions of the I5TgX
structures such as lexemes, modes and operations.

e LatexStyle.]js contains the definitions of the
KAIEX style structures: symbols, commands, environ-
ments. It also provides tools for working with collec-
tions of such structures in JSON format.

e LatexTree. js contains the definitions of the IXTEX
syntax tree structures: all the token types, the tree
itself.

e LatexParser.js provides the parser class that
receives style descriptions and allows build a syntax
tree for a IATEX document source.

The basic principle of the libraries is shown in the Fig. 3.

LaTeX
document
Style
descriptions

Fig. 3.

LaTeX
parser

Scheme of the parcing process

At the moment, the principles of all libraries are relevant
to the algorithms given in this work. A project for the viewing
of KTEX documents in browsers with HTML is under devel-
opment using this libraries.

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

VII. CONCLUSION

This article discusses the problem of parsing the structured
text documents, the format of which is not fully defined by
standards or other rules common to all the documents. The
documents in the ISIEX format are chosen as an example of
such files. It has been shown that their markup language has no
any formal grammar, therefore it requires a separate approach,
taking into account the external resources corresponding to
loadable style files. Existing solutions do not use logical sense
of syntax elements, therefore they can not be used for the
intelligent text analysis.

An approach that allows to describe KTRX style files
with simple constructions was proposed. The developed parser
algorithms working with such descriptions are listed. They are
implemented as a set of JavaScript libraries distributed by the
LGPLvV3 license.

Thus, we can assume that the problem of I£TgX documents
parsing is solved in the framework if syntax tree representation
discussed in this work.

But it remains an important issue, which prevents the
rapid implementation of the developed parser. There is a
need to manually describe the style elements: I£[[EX symbols,
commands and environments. It is simple but time consuming
process requiring typesetting skills of the performers. The
continue of the research on this topic may be given to the
automation of this process.

ACKNOWLEDGMENT

This work was supported by the RFBR grants: 16-37-
60049, 16-07-01267.

The author is deeply indebted to Prof. Konstantin
Vorontsov for the wise scientific supervision in the field of
machine learning and the statement of this research original
problem. Also I am grateful to Alexey Rozanov (the head
of the publishing house “Fizmatkniga”) for the extensive
proofreading experience with I£TEX.

23

[1]

[2]

[4]

[51

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

Saul Rosens, Programming Systems and Languages. McGraw Hill
Computer Science Series. New York/NY: McGraw Hill, 1967. ISBN
0070537089.

ISO/IEC 14977:1996. Information technology -- Syntactic metalan-
guage -- Extended BNF, Web: http://www.iso.org/iso/catalogue_detail?
csnumber=26153.

Syntax diagram — Wikipedia, Web: https://en.wikipedia.org/wiki/
Syntax_diagram.

Alfred Aho, Monica Lam, Ravi Sethi, Jeffrey Ullman, Compilers:
Principles, Techniques, and Tools (2nd Edition). Prentice Hall, 2006.

K. V. Chuvilin, “Parametric approach to the construction of syntax trees
for partially formalized text documents”, Machine Learning and Data
Analysis, vol. 2, issue 2, 2016.

Donald Ervin Knuth, The TgXbook. Computers and Typesetting, A.
Reading, MA: Addison-Wesley, 1984. ISBN 0-201-13448-9.

Leslie Lamport, BTEX: A document preparation system: User’s guide
and reference. illustrations by Duane Bibby (2nd ed.). Reading, Mass:
Addison-Wesley Professional, 1994. ISBN 0-201-52983-1.

K. V. Chuvilin, “Machine Learning Approach to Automated Correction
of IATEX Documents”, in Proceedings of the 18th FRUCT & ISPIT
Conference, 18-22 April 2016, Technopark of TTMO University, Saint-
Petersburg, Russia. FRUCT Oy, Finland. ISSN 2305-7254, ISBN 978-
952-68397-3-8, pp. 33—40. Web: http://fruct.org/publications/fruct18/
files/Chu.pdf.

eLIBRARY.RU — Rossijskij indeks nauchnogo citirovaniya [eLI-
BRARY.RU — Russian Science Citation Index]. Web: http://elibrary.
ru/project_risc.asp.

plasTeX A Python Framework for Processing LaTeX Documents. Web:
http://plastex.sourceforge.net/plastex/index.html.

Sven Heinicke LaTeX-Parser-0.01 - http://search.cpan.org. Web: http:
//search.cpan.org/~svenh/LaTeX-Parser-0.01/.

SnuggleTeX - Overview & Features. Web: http://www?2.ph.ed.ac.uk/
snuggletex/documentation/overview-and-features.html.

K. V. Chuvilin, Automatic synthesis of correction rules for text docu-
ments in the BIEX format. PhD dissertation. Dorodnicyn Computing
Centre of the Russian Academy of Sciences, Moscow, 2013. (in
Russian)

texnous latex-parser — Bitbucket. Web: https://bitbucket.org/texnous/
latex-parser/.

