PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Creation of a Static Analysis Algorithm Using Ad
Hoc Programming Languages

Dmitry Khalansky
ITMO University
Saint Petersburg, Russia
rouanth@gmail.com

Abstract—The complexity of software grows every year, and
while there are many programming techniques and new lan-
guages that accommodate the need to provide high abstractions,
still many languages that require attention to low-level details
are in use as of yet. In order to avoid tedious debugging which
needs time that could be spent on dealing with high-level logic,
static analysis of source code can be used to more efficiently find
common problems. We have studied the process of creation of
algorithms for static analysis tools by building a simple value
range analysis mechanism, that is, a way to detect some cases
of integers not matching a predicate involving arithmetic and
comparison operations. This algorithm provides means to detect
possible division by zero and integer overflow and is easily
extended to find cases of out-of-bounds addressing of containers.
While there is a multitude of value range analysis mechanisms
that are more sophisticated by orders of magnitude, the works in
which they are presented focus on the properties of the resulting
tools such as estimated amount of false positives, performance,
memory usage, or soundness. We, on the other hand, are going
to present the process of extension of static analysis algorithm
from ground up. An ad hoc programming language is developed
in multiple stages to separate the creation of algorithm from
numerous details of its implementation which would necessarily
arise were we to build it on a real-world language.

I. INTRODUCTION

There are many pitfalls awaiting those who wish to develop
a static code analyser. For example, one may try to work on
an existing and mature language, and this often leads nowhere
since too often languages, evolving over time, develop a large
set of corner cases which must all be accounted for during
analysis. This is a problem because algorithms used for static
analysis are often non-trivial and require rapid prototyping
which can often be hindered by necessity to view the algorithm
full context of the language.

One way to mitigate this is to work not with source code
directly but with some intermediate form used internally by ex-
isting tools for the language such as compilers or interpreters;
sometimes even libraries for building representations of source
code are provided, which can also be used. This allows one
to bypass parsing, which often is a complicated task itself.
The main drawback when compared to manual parsing is the
possible loss of information which is commonly stripped such
as comments, so it’s a step forward.

We, however, assert that even better approach is introduc-
tion of a language designed specifically to test a static analysis
algorithm. The main benefits as we see them are:

Arthur Lazdin
ITMO University
Saint Petersburg, Russia
lazdin@yandex.ru

Dmitry Mouromtsev
ITMO University
Saint Petersburg, Russia
d.muromtsev@gmail.com

e Iterative development. When using an existing lan-
guage infrastructure, even the first version of the
algorithm must take into account most of the language
constructs even if this support consists of just a vague
outline. Testing such an algorithm can be cumber-
some since it isn’t always obvious whether there’s
an error in the algorithm itself or its incompleteness
constitutes the problem. On the other hand, when
language accompanies algorithm, each construct can
be added after the existing ones have been thoroughly
tested, allowing the researcher to eliminate bugs more
quickly.

e Portability between languages. Often multiple lan-
guages have a common set of constructs with be-
haviour that’s more or less alike. If an algorithm
is language-agnostic, it can be applied to multiple
languages with little effort. If the algorithm is devel-
oped with a specific language in mind, however, it
can be more difficult to separate it from the details
not inherent to the semantics of the source code but
influenced by the design of the language.

e More deep insight. When developing an algorithm for
an existing language, one should conform completely
to its semantics. While the creation of algorithm itself
can be a very challenging and creative task, we firmly
believe that having the ability to modify the language
to check how these changes would influence the
algorithm significantly enhances the understanding of
numerous small details about the language semantics
and means to analyse it.

e [Easier formal verification. The semantics of most
mature languages are difficult to formalize in terms of
automated verification assistants, which limits the abil-
ity to reason about algorithms designed specifically
for them. On the other hand, the semantics of ad hoc
languages are often straightforward, which allows to
spend most of the effort on verification of algorithms
rather than description of the language.

With this in mind, we set out to show the process of
development of a simple value range analysis mechanism by
using a more sophisticated language at each step of the process,
enhancing it as the algorithm evolves.

ISSN 2305-7254

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

II. DEVELOPMENT OF STATIC ANALYSER
A. Type system

Before defining a set of constructions the language will
possess, we need to determine what kinds of data should it
operate on.

Since we’re only truly interested in numbers when
analysing the value ranges, it makes sense not to provide sum
types or product types, strings, hash maps and many other
types typical of languages used in the real world. We also don’t
treat boolean values as a separate type, instead using non-zero
and zero integers to represent truth and falsehood respectively.
As for arrays, since we’re only interested in them when they
are subject to possible out-of-bounds addressing, they can be
represented as a number n of elements in them, with insertion
and deletion being respectively the increment and decrement
of n, and their addressing stated as an assertion that the index
doesn’t exceed n.

Furthermore, we will only support integral numbers. Imple-
menting rational numbers as pairs of integers would make the
algorithm more cumbersome without adding much value since
relations between rational numbers are easily expressed with
operations on integers, which shall be covered. Introduction of
general floating-point types, one the other hand, would make
the algorithm significantly more complex. Due to the imprecise
nature of floating-point numbers, it’s difficult to reason about
them formally. Therefore, we declare them to be out of scope
of this work.

Now, we need two kinds of integral numbers. The first one
(hereafter infinite integers”) is just the type of numbers up
to infinity. For these, our goal shall be finding the maximal
value they may take in the course of program execution and
determining the machine type to be used as their representation
in memory. The second kind (hereafter "modular integers”) is
of integers modulo some power of 2. Their maximal value
shall also be checked in order to detect possible overflows.
While it’s true that they may be desirable in some cases, our
language doesn’t support them. We don’t see, however, how it
would be difficult to implement them since it would only take
one type parameter and a simple branching in the algorithm to
suppress the warning about possible overflow for a variable.

B. Operations on numbers

Given that the only two kinds of types in our language
are both numeric, it seems natural to proceed by defining the
operations on integers available in our language.

First and foremost, there is a well-defined conversion
between the two kinds. We can for the sake of this discussion
treat infinite integers as integers modulo infinity. Then conver-
sion from a number modulo n to modulo m is just changing
the type parameter if m > n and taking this number modulo
m otherwise.

Next, arithmetic operations of addition, subtraction, multi-
plication, and division, work as expected on infinite integers.
Modular integers have these operations as well, and division
doesn’t take modular inverse of its divisor— instead, modular
integers are treated exactly like infinite ones in this regard. This
is what we’re accustomed to and encounter in the overwhelm-
ing majority of programming languages supporting division,

73

even the ones that recognise that the numbers are stored in
memory in registers modulo some integer. Arithmetics between
integers of different types is impossible without explicit con-
version.

Next, another difference between the infinite and modular
integers is that we add to the latter support of bitwise op-
erations. It’s easy to see that in our case bitwise negation
of infinite numbers isn’t well defined. Despite the fact that
conjunction and disjunction, on the other hand, are, we don’t
see how these operations would be useful for infinite numbers.
We expect fixed-length numbers to be used when the need to
store option flags or binary structures arises, and there isn’t
much reason to perform bitwise operations on numbers of
arbitrary lengths.

Of course, we need to compare our numbers as well. We
introduce two operators for this, “equals” and “less”. When
comparing two numbers with different modules, we take the
lesser module and compare them using it. The result has type
of integer modulo 2.

Now, it would be tempting to create a language which
supports only the operations listed above and assignments of
variables. But there wouldn’t be much to analyse this way since
all presented operations are well-defined. Therefore, we need
to introduce some form of non-determinism, and so we add a
rand operator which returns an arbitrary integer in [0; 4+00).

Careful analysis reveals that there is a restriction we must
impose in order to make the system consistent. We can’t assign
rand to an infinite number directly because it would mean that
the number requires arbitrarily large representation in memory.
In order to have an infinite number with a random value, we
must first convert the result of rand to a modular number, and
only then convert it to an infinite one. Thus, we only support
random numbers modulo some power of two.

The special role of rand also allows us to speculate that it
mustn’t be considered a number at all. It’s obvious why it isn’t
a modular number. But there isn’t much sense in using it as an
infinite one as well. Consider division by an arbitrary number:
it doesn’t change the distribution of values except for possible
change of sign which, given that we have modular arithmetics,
is irrelevant. Dividing by 3, for example, still gives us the
equally possible values [0; 00). Next, addition and subtraction
do shift the distribution, but we still have to use the result
modulo some number. Multiplication does have a meaning,
but only in a handful of cases. kxz mod n has the same
distribution of values as x mod n if k and n are relatively
prime. If they aren’t, for example, if & is also a power of 2,
the difference is notable as it reduces the set of possible values
from [0;n) to {0} U{k}U{2k}--- {(% — 1) k}. It is easy to
verify that the same result can be achieved using operations
outside the initial conversion to modular numbers. The only
thing that could be done is division by the random number
which gives us a weighted distribution. But the expected value
of division by a random number in [0; 00) is zero. So without
loss of generality we assume that rand doesn’t support any
operation except for conversion and treat it as if it had a
separate type. If the need arises, it is easy even if cumbersome
to expand algorithms to account for arithmetics on random
values.

We shall use the familiar infix notations with the same

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

operator precedence as in C. Naturally, the precedence can be
overridden using placement of brackets. Type casting operators
have higher precedence then everything else, with conversion
to modular numbers having higher precedence then conversion
to infinite numbers.

With that out of the way, let’s build the ABNF grammar
of the language subset that we described.

(expr) ::= (expr) [SP] (infix-op) [SP] (expr)
(var-name)

(number)

= expr)

‘inf’ SP {expr)

{expr) SP ‘bits’ SP (mod-number)
" [SP] (expr) [SP])

‘rand’
(var-name) = ‘@ ALPHA [alnum]
(alnum) := ALPHA [alnum]

| DIGIT [alnum]

L]

(white) ::=
’\t,
7\n7
(infix-op) =
?:k’

o

?&’

L)

5
<
s_o

mod-number) ::= (non-zero-digit) [natural-number]

(digit) [natural-number]

a number from 1 to 9

{

(natural-number) ::=
(non-zero- dlglt)

{

digit) =
| <n0n zer()—digit)

An example of an expression matching the ‘<expr>’ rule
is:
inf ((32 & @x bits 6) = 0)

Here, we take the value of @x modulo 64 (because 20 =
64), perform bitwise conjunction with 32, thus taking its Sth
bit, compare it to zero, which gives us a number modulo 2,
invert, and convert it to an infinite number. The result is an
infinite number equalling to 1 if the 5th bit of @x is set and 0
otherwise.

C. Algorithm for arithmetics

This isn’t much of a language, but it’s enough to be
reasoned about.

Our goal is finding out which values expressions can take.

We don’t have a way to access variables yet, so we shall
ignore them for the time being.

74

The naive way to do this would be considering each opera-
tor separately, defining rules for various operations. While this
would work on the current stage, it would need a complete
rewriting later, when we introduce variables. For example,
consider the following expression:

@x — 1 x (@x + 2)
For any casual observer it’s obvious that for any value of

@x the result would be —2. But if @x has range [0; 15], then
the naive solution gives us

[0; 15] — [1] = ([0; 15] + [2])
[0; I5] — [1] = [2; 17] =

[0; 15] — [2; 17] =

[—15; 13

Obviously, a more clever solution is needed.

The only possible source of non-determinism is the rand
operator. Therefore, for each use of the operator, we introduce
a unique handler. All subsequent operations over the handlers
only modify their ranges but don’t discard the source. For our
previous example, let’s say that @x has its value as a result of
taking a random number R modulo 16. Then we have

mod 16} — {1} * ({R mod 16} + {2}) =
mod 16} — {1} * {R mod 16 + 2} =
mod 16} — {1 % (R mod 16 + 2)}
mod 16 — 1 * (R mod 16 + 2)}

Now checking all the possible values of R mod 16 gives
us the correct result, a single number 2.

This form also allows us to perform basic arithmetic
transformations. One of them is usage of distributivity of
multiplication and bitwise conjunction. It enables us to group
terms that are alike and eliminate them.

With that in mind, we can internally represent every
expression as a sum type with the following constructors:

e ARand— constructor representing rand operator,
with a single parameter being the modulus.

o AConst— constructor for numeric literals, having the
value as its single parameter.

e AVar— constructor for getting a value of a variable,
its parameter being the unique identifier of the vari-
able.

e Alnf— constructor for conversion operator to an infi-
nite number, accepts a single parameter— underlying
expression.

e AMod— conversion to a modular number, accepting
two parameters: the number of bits and the underlying
expression.

e APlus, AMinus, AMult, ADiv, AAnd, AOr, AEq,
ALt— infix operators, each accepting two expres-
sions.

o ANeg— prefix operator for bitwise negation, having
the underlying expression as a parameter.

This way, the example above can be represented as

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Alnf (ANeg
(AEq
(AAnd
(AConst 32)
(AMod 6 (AVar
(AConst 0)))

'X7)))

Now we can reason about how various constructs affect the
value ranges.

e ARand— as specified above, the result of rand can
be any number in [0;n), where n is a modulus.

o AConst— the range a constant can take is just its
value.

o AlInf— the range is unaffected.

o AMod— this conversion limits the range to the values

in [0;n) where n is the type parameter. Furthermore,
the value range of the underlying expression— let’s
call it [a;b]— is processed as follows. First, the
greatest multiple of n less than or equal to a is
determined using the formula L%J - n. Next, the least
multiple of n greater than b is found with [%1 n. Then
the range [[2| - n; [2] n) is split into chunks of size
n. For each chunk we create a vector of bits of length
n, setting each bit to true if the corresponding number
in this chunk is in the range and to false otherwise.
The value range after the conversion is determined by
analysis of bitwise disjunction of these vectors.
An example of this procedure is as follows: let’s say
we have an expression of range [5; 7]U{10} and wish
to find the range of its value modulo 4. First, we
find the minimal range which includes this one but
is delimited by multiples of 4, which is [4;12]. We
split it in chunks of four elements as follows: [4;8),
[8; 12). The corresponding vectors are 0111 and 0010.
Their disjunction is 0111. Thus, the value range we’re
looking for is [2;4].

o ANeg— for every part of value range, we find the

value of bitwise negation of its borders, swap them,
and take their union.
For example, if [5;7] U [10; 14] has type of integer
modulo 32, then in binary these ranges are repre-
sented as [00101;00111] U [01010;01110]. Negating
them gives us [00111; 00101] U [01110; 01010],
which is [11000; 11010] U[10001; 10101]. In decimal,
[24;26] U [17;21].

o AEq— the ranges of the operands are compared. If
the intersection of the ranges is non-empty, then their
AE(q can be 1, otherwise it’s always 0. If both ranges
consist of the same single element, then their AEq
can’t be 0 and is always 1.

e ALt— in a similar vein, if the greatest element in
range of the left operand is less than the least element
in range of the right operand, ALt is always 1; if the
least element in range of the left operand is greater
than the greatest element in range of the right operand,
ALt is always 0; otherwise, it can be both 0 and 1.

e APlus and AMinus— if subsets of value ranges are
represented as [aj; as] and [by; bo], then the range of

75

results of addition of the corresponding values is [a; +
b1; az + bg]. For subtraction it’s [a1 — ba; az — b1]. If
the addition or subtraction is performed on modulo
numbers, we need to behave like AMod wraps the
results, but see the discussion of possible overflows
below.

e All the other operations are binary arithmetic and
bitwise operations, and for them one should take the
Cartesian product of ranges of their operands and
apply the operator to each tuple.

Let’s see how these rules apply to our example if @x in
{0} U[100; 127] (for the sake of this discussion we ignore the
fact that we’ve decided to use random number handlers instead
of ranges).

inf 7 ((32 & @x bits 6) = 0)

inf ~ ((32 & {0}, [100; 127] bits 6) = 0)
inf = ((32 & {0}, [36; 63]) = 0)

inf = ({0}, {32}) = 0)

inf = [0; 1]

inf [0; 1]

[0; 1]

Why is this useful if we iterate through the possible values
of random numbers? The answer is that it isn’t uncommon
for expressions not to depend on a single random number in
multiple places. Thus, in many cases we can isolate the parts
where each random number is present, iterate over its values,
and then use the resulting ranges instead.

Consider the expression

(@x + 2) *x (@y — 5) < @z + @a

Here we assume that all the variables are independent from
each other in terms of used random handlers. Let’s say each
variable has a value range of [0; 23?). Then the approach using

random handlers would require us to iterate (232)4 times. On
the other hand, using the range-transforming rules we only
need to perform (232)2 + 232 4+ 232 which is approximately
a square of the time we would need using the aforementioned
approach.

Now we have to consider that, if an arithmetic operation
is performed on a modulo number, an overflow or division by
zero can occur. For such a case, we need to mark the resulting
set of values as being possibly invalid. Mechanisms of varying
complexity can be introduced to inform user about the possible
error. We shall simply store a boolean value denoting the
possible error an propagate it to the top of the tree representing
expression, that is, an error bit is set for a node if an invalid
operation can occur in it or any of its children.

The resulting algorithm is as follows:

1) Perform high-level optimisations such as reductions,
rewriting using distributivity and associativity, or
other similar operations on expressions. We omit
the details here for the sake of briefness since they
are rarely relevant and can introduce only marginal
improvements in terms of speed. While it’s possible
to write code such as subtraction of a variable from
itself, this capability is rarely used in real programs.

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

When the same random handler occurs multiple times
in the expression, usually it isn’t subject to trivial
optimisations.

Build a list of all the random number handlers used in
the expression, counting the number of occurrences
of each one.

For each handler, traverse the expression and mark
the subtrees in which it is present. Then, starting
from the top, descend the tree once again using these
marks and replace either the first binary operator both
operands of which are marked, or if it doesn’t exist,
the random number itself with the corresponding
ranges, possibly in terms of other random numbers.
If an overflow or division by zero possibly occurs
during the traversal, set the error bit on these ranges.
Once all the handlers are purged, use the more
efficient algorithm to find the value range of the
whole expression. If an error possibly occurs, set the
error bit of the result.

2)

4)

D. Imperative assignments

Now that we have expressions, let’s put them to use and
write a language that allows us to chain assignment operations.
An example program in such a language could be as follows:

@x = rand mod 16;
@y = @x * 2;
@z = @x & @y

The first question that arises is of storage: how are we
going to represent the state of the variables? A partial answer
has been proposed in the previous section: we have to store
the expressions in terms of random number handlers.

For this, we need to replace all the variable reads with their
underlying expressions while preserving their type, otherwise
on the next write to a variable all the values of variables using
it would invalidate. And, as we’ve mentioned before, rand
operators aren’t substituted as-is. Rather, they’re replaced by a
unique identifier on their use, and then variable substitutions
operate on these.

So for variable value storage we can use the same type
as the one for describing expressions with the exception that
ARand must accept a parameter which is its unique identifier.
Our solution is to make ARand parametric in the original def-
inition, too, but to provide arbitrary parameter during parsing
and ignore it until it’s replaced by the identifier on the stage
of analysis.

It is straightforward now to specify the language constructs.

e CAsgn— assignment operation. Accepts two param-
eters: the unique identifier of the variable and the
expression assigned to it.

e (CSeq— chaining of assignments. Accepts two param-
eters which are the expressions being chained.

For example, the example above could be expressed using
these terms as follows:

CSeq (CAsgn ’x’ (AMod ARand 10))
(CSeq (CAsgn 'y’

76

(AMult (AVar ’x’)
(AConst 2)))

(CAsgn ’z’
(AAnd (AVar ’x’)

(AVar "y ’))))

It may be difficult to see at first why would we need to
introduce a separate construct for chaining when we could
have a simple list of assignments. But expanding the language
with flow control structures should allow a unified treatment
of single statements and chains of them. We could, of course,
instead of building trees of CSeq use a constructor accepting
not two arguments but a single list of them. But brief consid-
eration reveals that CSeq is actually a linked list itself.

Now, let’s formalise the operational semantics of the new
language.

First, we introduce an environment which is a mapping
from variable identifiers to their values. At first, the environ-
ment is empty. What shall we do if the program accesses a
variable that hasn’t been set yet? The choice is arbitrary for
our discussion, so we just claim that such programs are invalid.
We don’t have a way to express the incorrectness of a program;
more robust system is required for this. We assume that our
algorithm deals only with well-formed programs.

Next, we need to have a list of possible ranges for each
variable at each point of execution in order to determine the
maximal and minimal values that it takes. This leads to another
restriction: it’s prohibited to assign to a variable values that
have different types. For example, if a variable x has been
an integer modulo 256, it can’t at a later point become an
integer modulo 16 or an infinite integer. We consider only the
programs that are correct in this regard.

We define an evaluation function which takes a tree
representing the program, an environment, and calls itself
recursively, traversing the tree using the following principles:

e CAsgn
1)

2)

Replace each ARand with one having a cor-
rect unique identifier.

Traverse the expression being assigned, re-
placing occurrences of AVar with contents of
environment for the respective identifiers.
Perform the algorithm discussed in the pre-
vious section on the result. Add the range to
the list of possible values corresponding to the
variable.

Check the error bit; if it’s set, notify user.
Put the result into the environment with the
name of the variable being assigned.

3)

4)
5)

o (CSeq
1) Take its first subtree, run the evaluation func-

tion with the same environment— say, e;—

on it. Take the resulting environment and call

it es.

Take the second subtree, run the evaluation

function on it with environment es. The re-

sulting environment is e3.

Return e3 as the new environment.

2)

3)

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

It’s easy to see that CSeq is an associative operation, that
is, for all statements a, b, ¢, we have CSeq a (CSeq b ¢)
CSeq (CSeq a b) c. Because of this, we can build the tree
representing a program by nesting CSeq arbitrarily.

The ABNF of the resulting language is just the previous
one with an additional rule:

(statement) ::= (var-name) [SP] ’=" [SP] (expr)
| (statement) [SP] ;" [SP] (statement)

E. Introducing conditionals

While this language could have its use, we shall see that it
isn’t difficult to add conditionals to it, making it a little closer
to what we’re used to see.

First, we define a new statement called CIf with three
parameters: the conditional expression and two statements. Its
operational semantics is as follows:

1) Evaluate the conditional expression with the current
environment.
2) If the result is 0, evaluate the second statement with

the same environment. Otherwise, evaluate the first.
The result of evaluating CIf is the same as the
resulting environment of the chosen statement.

An example of a program based on CIf is:

@a = rand mod 16;
@b = rand mod 32;

if (@b mod 16 == @a) then
@c = @a mod 32 * 2
else
@c = @a mod 32 + 1
fi;
@ = @ == 0

As is evident, we don’t have a separate scope for variables
initialized in the statements inside of CIf. This could lead to a
problem. If a variable hasn’t been assigned to before CIf but
is initialized in one of the branches but not the other, we’re
left with a program that could be correct in one set of cases
but not the other. We need to keep this in mind and prohibit
programs that perform initialization in just a single branch of
CIf.

With this out of the way, we define the following mecha-
nism for reasoning about CIf:

1) For each statement, find all the variables that are set
in it.

2) For each variable in both sets, consider the following
cases:

e It is being set in both branches and has values
¢y and c. respectively. Then the resulting
value of the branch is a - ¢; + (a = 0) - ¢,
where a is the condition.

e It is being set in the first branch but not the
second. Then its value is set to a - ¢; + (a =
0) - ¢, where ¢, is the value of the variable in
the initial environment.

e It is being set in the second branch but not
the first, then it’s value is a- ¢, + (@ = 0) - c,.

77

3) Put the resulting ranges for each variables into the
resulting environment.
4) Merge the lists of possible value ranges obtained

during traversal of both branches for each variable.

For example, assuming the presence of variables @a and
@b in the environment, consider a simple implementation of
max operation which is defined as follows:

if (@a < @b) then
@c = @b
else
@c = @a
fi

Our analysis reveals the value of @c to be (a < b)-b+(a >
- a.

b)
We extend the grammar of the language as follows:

(statement) ::= (var-name) [SP] '=" [SP] (expr)
| (statement) [SP] *;’ [SP] (statement)
| if” SP ’(’ [SP] (expr) [SP]°)’ SP ’then’ SP (statement)
SP ’else’ SP (statement) SP *fi’

FE. Terminating loops

It is important to support loops to express the majority of
useful programs. However, loops introduce the possibility of
programs that never terminate. Even more, it’s been proven[2]
that there can’t exist an algorithm which discerns in general
case the programs that never halt. All we can do is reason
about separate programs.

For now we shall ignore the existence of loops that may
never terminate and instead use the imperative equivalent of
total functional programming[3]. The main point is that we
can analyse data (as specified in the category theory) in a
predetermined number of steps. This allows us to express many
useful concepts using only the loops that are guaranteed to
terminate.

With that, we introduce the CFor statement with three
parameters: the name for the counter variable, the expression
to represent a number of steps to perform, and a loop body.

The semantics are as follows:

1) Assign 1 to the variable used as a counter.

2) If the variable is greater than the number of steps,
exit the loop.

3) Get the environment of the loop body.

4) Assign to the counter variable the current step num-
ber.

5) Repeat starting from step 2.

An evident difference from the way counter variables are
commonly used is that modifying the variable inside the loop
body doesn’t change the flow of the program: the number of
steps is stored internally and is assigned to the counter each
time a new iteration is started. This allows us to be confident
that all our programs always terminate.

An example of program using this kind of loop follows:

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

@j = 0;

for @i to (@n) do
@ = @ + @i

done

This program calculates the sum of the first @n numbers.

Loops can be reasoned about, but it’s nontrivial. Our subset
of loops corresponds to recursive definitions, and some of them
have the so-called closed forms, that is, arithmetic expressions
which, when evaluated, give the same result as the final
assignment in the loop. For example, for the loop presented
above the closed form is this:

@i = @n;
@ = @ *x (@ + 1) / 2

There are many techniques to find the closed forms of
recursive definitions (see “Concrete Mathematics“[5] for con-
crete examples), but none of them are automatic. The best we
can do is to store a library of common closed forms, simplify
the expressions in loop bodies and try to find a match. This is
out of scope of this work.

So in order to analyse loops, we perform the following:

1) Determine the value range for number of steps (here-
after n).

2) Iterate the loop at least for the number of times
corresponding to the least value of n.

3) Calculate the values of all the variables assigned in
loop bodies after this iteration. Store them in a list in
form of a tuple (z,1,e), where z is the name of the
variable assigned, ¢ is the iteration number, and e is
the value of the variable at this point.

4) If this iteration has been the last, halt and, for
each variable assigned at the loop body, generate an
expression of the form Y, (¢ = n) - ¢; using the data
from the list generated in the previous step where e;
is the value of the variable at iteration <.

5) Repeat from step 2.

To define an ABNF of the resulting language, we only need
to modify one rule:

(statement) ::= (var-name) [SP] *=" [SP] (expr)
(statement) [SP] ’;’ [SP] (statement)
| if” SP (" [SP] (expr) [SP] °)’ SP ’then’ SP (statement)
SP ’else’ SP (statement) SP 'fi’
| ’for’ SP (var-name) SP ’to’ SP (" SP {expr) SP ’)’ SP
’do’ (statement) *done’

III. FURTHER EXTENSIONS

One could add weighted probabilities to different values
in the value ranges so that user of the algorithm would know
which branches would be taken more often.

It is also possible to define a partial order on the set of
possible values with comparison operation being the proximity
of value ranges to zero. This would make it possible to reason
about a wider class of loops and determine their termination.

Functions could be defined as separate programs with some
initial variable values and specific types. Functions can be used
as expressions.

78

Complex structures can be built and stored internally as
sets of variables, that is, they can be treated as simple syntactic
sugar.

Sign bits could be added to modular numbers, rendering
them signed. Modifications to arithmetics would need to be
implemented, but we don’t see how it could be difficult.

General case for loops could be considered by determining
variables that change with a fixed period and analysing them:
it would suffice to determine the ranges on one period and take
their union. This reasoning can be extended to whole groups
of variables that form a strongly connected component with
regard to mutual modification. All the variables for which a
period can’t be found should be discarded by saying that they
can take any value at all.

IV. CONCLUSION

In the course of this work, we’ve used an ad hoc language
to reason about simple value range analysis algorithm. The it-
erative nature of the process has allowed us to highlight several
key points which can be applied to value range analysis without
the need to consider the semantics of a whole language.

The outline of our discussion has been as follows:

e Decide which sorts of data structures need to be
analysed by the algorithm. Reflect this in type system
of the language.

e Determine the primary operation that needs to be
analysed. Reason about it. Formalize the language
semantics involving this operation.

e Gradually add the other desirable parts of the language
to increase the resemblance between the experimental
language and languages that are targets for the algo-
rithm.

We believe that this approach allows one to efficiently
develop static analysis algorithms.

ACKNOWLEDGEMENT

We thank Igor Zhirkov, IntelliJ Labs, for providing invalu-
able advice and literature references throughout the course of
this research.

REFERENCES

[1] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino,
Marco Gaboardi, Michael Greenberg, Catalin Hritcu, Vilhelm Sjberg,
and Brent Yorgey, “Software Foundations“. Electronic textbook, 2016.
Version 4.0. Web: http://www.cis.upenn.edu/ bepierce/sf.

[2] Alan Turing, On “computable numbers, with an application to the
Entscheidungsproblem®. Proceedings of the London Mathematical So-
ciety, Series 2, Volume 42 (1937), pp 230265, doi:10.1112/plms/s2-
42.1.230.

[3] Turner, D.A. (2004-07-28), “Total Functional Programming®, Journal of
Universal Computer Science, 10 (7): 751768, doi:10.3217/jucs-010-07-
0751.

[4] Birch, Johnnie; van Engelen, Robert; Gallivan, Kyle, “Value Range
Analysis of Conditionally Updated Variables and Pointers”. Web:
http://www.cs.fsu.edu/ engelen/cpcpaper.pdf

[51 Ronald L. Graham, Donald E. Knuth, Oren Patashnik, “Concrete Math-
ematics: A Foundation for Computer Science“. 2nd edition. Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1994.
ISBN:0201558025

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

[6] Patrick Cousot, Nicolas Halbwachs, “Automatic discovery of linear Programming Languages, pages 84-97, Tucson, Arizona, 1978. ACM

restraints among variables of a program®. In Conference Record of the Press, New York.
Fifth Annual ACM SIGPLAN-SIGACT Symposium on Principles of [7] Ilya Sergey, “Programs and Proofs“. Web: http:/ilyasergey.net/pnp/

79

