PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Cross-Platform Development for Sailfish OS and
Android: Architectural Patterns and “Dictionary
Trainer” Application Case Study

Denis Laure, Andrey Vasilyev, Ilya Paramonov, Natalia Kasatkina
P.G. Demidov Yaroslavl State University
Yaroslavl, Russia
{den.laure, ilya.paramonov, andrey.vasilyev} @fruct.org, ninet75@mail.ru

Abstract—With the widespread use of mobile devices, the
role of mobile applications increases. Nevertheless, the variety
of mobile platforms and the differences between them make
the development of applications for multiple mobile platforms
a highly resource-intensive and time-consuming task. The reason
for this is the need for development of separate native applications
for each platform. This issue can be overcome by developing
cross-platform applications that, once created, can be launched
on multiple platforms without any changes in source codes.
In this paper, we present an approach for developing native
cross-platform mobile applications for Android and Sailfish OS
platforms, with the use of Qt Framework and Qt Quick based
on the Flux architecture. Such applications have a native look
and experience on each platform. The paper also presents the
“Dictionary Trainer” application, that was developed using the
described approach.

I. INTRODUCTION

Nowadays, mobile devices of different types have become
an integral part of people’s everyday lives [1]. Thus, the
development of applications for mobile platforms becomes
a highly essential task. Moreover, for a product to become
successful, it is highly important and crucial for it to be
released on multiple mobile platforms in order to cover a
larger number of audience [2]. Notwithstanding, developing
native applications for each platform can be a highly resource-
intensive and time-consuming task, due to the fact that each
platform requires to use its own tools for development and
even different programming languages. This fact leads to the
inability to reuse the source codes of an application from
one platform and to the need to develop the application from
scratch for each mobile platform [3].

Cross-platform development can be an adequate answer to
meet this challenge, since it allows to create one application
that can be launched on several platforms [4]. Therefore, such
approach significantly reduces the amount of time needed to
develop one cross-platform application, instead of having to
develop several separate applications for each platform.

The development should be at first concentrated on most
popular platforms. Currently, they are iOS and Android—
two mobile platforms that almost completely share the mobile
market [5]. Nevertheless, new platforms still appear aiming
to receive a piece of market share. One of such platforms is
Sailfish OS (https://sailfishos.org). The advantages of this plat-
form are that it is open sourced and Linux-based. Moreover,
it allows to launch native Android applications without any
changes being made to them, thus bringing a lot of different

applications to this platform and its users. Therefore, there are
high chances of Sailfish OS breaking into the mobile market.
However, because Sailfish OS is a relatively young platform,
there are not as many native applications developed for it.
Therefore, creating applications for this platform may allow
developers to fill a niche on the market and gather a significant
number of users for their product.

In this paper we describe an approach to creating native
cross-platform mobile applications for two platforms: Android
and Sailfish OS. For this purpose, Qt framework and Qt Quick
are used. The applications are also follow Flux architecture.

The rest of the paper is organized as follows. In Section II
we present and briefly describe possible architectures of cross-
platform mobile applications developed with Qt framework
and Qt Quick. Section III provides a thorough description of
Flux architecture and describes how it can be implemented
within the QML application. The approach for creating cross-
platform mobile applications for Android and Sailfish OS is
outlined in Sections IV. Section V presents the Dictionary
Trainer application that was developed with the use of the
described approach. Section VI concludes the paper.

II. POSSIBLE ARCHITECTURE MODELS FOR QML
APPLICATIONS

The architecture of the application plays a significant
role in the whole development process. It determines quality
attributes of the application, its high-level structure and be-
haviour, and the way it is going to evolve. Therefore, the choice
of the architecture is one of the main aspects that determines
the future success of the application [6].

Since there are no standard architecture guideline for the
QML and Qt Quick applications, it needs to be chosen before
starting the development process. The possibilities are: Model-
View-Controller (MVC), Model-View-ViewModel (MVVM)
and Flux.

The main idea of the MVC architecture is to separate the
application into three components: Model, View and Controller
[71, [8]. Model represents the data of the application and
interfaces to manipulate it. View represents the visual part of
the application, it presents the model in a user-friendly way
and provides visual components to manipulate with it. Lastly,
controller processes the user’s actions, allowing the user to
manipulate the view.

ISSN 2305-7254

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

The MVVM architecture is an evolution of the traditional
MVC architecture. It modifies MVC and its approach to satisfy
modern UI development platforms [9], [10]. Model in MVVM
is the same as in MVC, while view takes the responsibilities
of both view and controller of MVC, defining the GUI of
the application. The viewmodel part of MVVM architecture
represents a bridge between model and view, whose main aim
is to convert data from model so that it can be easily managed
by View.

The MVVM architecture is more suitable for QML appli-
cations, because it allows to logically separate the model and
view. Following this architecture, view is declared in QML
code, while model is defined with C++ code. Viewmodel
can be described in QML code, as well as in C++ code.
Nonetheless, spreading it between C++ and QML code leads to
inconsistency and code fragmentation, which makes it difficult
to maintain the application as it starts to grow [11]. On the
other hand, implementing viewmodel in only one language
may lead to an unnecessarily complicated code, because some
functions are easier to be done in another language.

Moreover, MVVM has the same problem as MVC. The
architecture works well for relatively small applications. Nev-
ertheless, as the application grows, its architecture becomes
increasingly complex and confusing. The growth may lead
to a situation where the application has multiple views and
models that are all inter-connected with each other. Making a
small action in one view may result into a chain of changes
in several other views and models that is difficult to track.
Sometimes, these chain reactions may even result in an infinite
loop. Maintaining such applications becomes an unnecessarily
wasteful task [12].

Flux architecture was initially developed by Facebook for
their JavaScript library React [13]. The main difference and
advantage of such an architecture, compared to the traditional
MVC architecture, is the well-structured unidirectional data
flow. Such an approach allows to avoid the complexity of
data flows in big applications that use the MVC or MVVM
architectures.

Unlike MVVM and MVC, Flux architecture does not have
the aforementioned issues and has additional benefits to these
architectures, that were significant for our approach. Therefore,
Flux was chosen as the core architecture for the approach.

III. FLUX ARCHITECTURE IN DEPTH

There are four crucial components in Flux: action, dis-
patcher, store and view. View has the same meaning as in
MVVM—it represents the user interface of the application
and its responsibility is to display information to the user.
Whenever the user interacts with the view, it generates an
action, which is just a message, containing the type and
payload, i.e., some meaningful information. For example, if
a user clicks on an item in a list, view may send an action of
type list_item_clicked and a payload containing information
about which item was clicked.

Store represents the state of the application and its logic.
All actions are sent to dispatcher—the central hub of the
application. There should be only one instance of dispatcher
in the application. At the same time, stores can subscribe for

146

Dispatcher

Fig. 1. The data flow in an application written with the use of Flux
architecture

particular actions in dispatcher, registering the callback that
should be called whenever the action occurs. Each time an
action comes to dispatcher, it notifics all stores subscribed for
this action by calling the registered callbacks. A Store may
then change its state and notify the corresponding views about
this change, so that they may change themselves accordingly.

Such behaviour draws a clear unidirectional data flow that
is shown in the Fig. 1. It can only start with an action going
directly to dispatcher. Dispatcher then triggers all callbacks of
the stores registered for this action that afterwards notify views
about state changes. Views can then generate new actions
according to the changes that go to dispatcher and start a new
flow.

Flux architecture may be very helpful for applications with
dynamic data, because it structures the data flow and, thus
allowing to put connections between models and views in order
[12].

Recently, Flux was implemented for QML as QuickFlux li-
brary (https://github.com/benlau/quickflux). The library allows
to easily develop Qt Quick applications with Flux architecture.
The main components of this library are: AppDispatcher,
AppListener, and ActionCreator. AppDispatcher implements
the dispatcher component of the Flux architecture. It is a
singleton object that allows to add and remove listeners for
particular actions. AppDispatcher is implemented in such a
way, that it works with any actions that are created with the
use of QuickFlux library tools. Therefore, there is no need for
customization or modification of this component.

ActionCreator is a component that allows to create actions.
The action is implemented by defining a signal within this
component. The action is emitted by directly calling the
corresponding signal implemented in ActionCreator passing
the action payroll as a signal parameters. The component will
then automatically process this action to AppDispatcher, which
in turn informs stores that were subscribed for this action.

Finally, the AppListener component should be implemented
by stores and is used to subscribe a store for a certain action
and define the callback for this action.

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Using QuickFlux library allows to easily and quickly create
QML applications that follows Flux architecture. Thus, it was
used for the approach described in the following section.

IV. APPROACH TO DEVELOPMENT OF CROSS-PLATFORM
APPLICATIONS

This section describes a common approach for creating
cross-platform applications for Android and Sailfish OS plat-
forms with Qt Framework. The main idea is to separate
the application sources for both mobile platforms into the
following parts: C++ files, QML files, and other files. The
approach describes the method of the organization for all of
these groups of files. Its detailed explanation is presented
below.

A. C++ files

In most cases, C++ sources are identical for both platforms,
and therefore can be used without any platform-dependent
differences. This is due to the fact that C++ sources are related
to the non-visual parts of the application (until we do not create
our own components, which is rare), that are already made
platform-independent inside the Qt Framework. For instance,
once the QuickFlux library is included in the project, it works
on both Android and Sailfish OS platforms in the same way
and without any changes.

Nonetheless, there are some parts of the the C++ code
that should be compiled for only one platform. For instance,
the initialization of the QML application differs on different
platforms. The reason for that is that Sailfish OS uses lib-
sailfishapp: Sailfish Application Library (https://github.com/
sailfish-sdk/libsailfishapp), which is part of Sailfish SDK to
initialize the application. It has application() and createView()
methods that return instances of classes which are already
prepared and boosted for Sailfish OS QGuiApplication and
QQuickView. The simple example of the initialization code is
presented below:

#if defined(Q_OS_ANDROID)
// Android—specific code
#else
// Sailfish OS—specific code
#endif

QGuiApplication* app = SailfishApp::application(argc, argv);

QQuickViewsx view = SailfishApp::createView();

view—>setSource(SailfishApp::pathTo(
”qml/sailfish/main.qml”));

view—>showFullScreen();

QObject::connect(view —>engine(), &QQmlEngine::quit, app,
&QGuiApplication::quit);

return app—>exec();

The Android platform is supported by the Qt Framework
without a need for any additional components. Therefore, the
initialization of the QML application for Android is done in a
way common for QML applications. The example of such an
initialization is presented below:

QGuiApplication app(argc, argv);
QQmlApplicationEngine engine;
engine.load(QUrl(”qrc:/qml/android/main.qml”));
return app.exec();

Since such parts of the code should be separated depending
on the platform, they can be framed with the #ifdef pre-
processor directive, as presented below:

147

B. QML files

Since the native look and feel of applications on Android
and Sailfish OS platform are completely different, QML files
that describe views should be implemented separately for these
platforms. The choice of the needed files is done while the
application initializes, as described in the previous subsection.
On this step, different main QML files are set for different
platforms. These files represent the main application window
and contain different information and components depending
on the platform.

Sailfish SDK contains the Sailfish Silica framework that
contains all common visual components of the application
for Sailfish OS that ensure that the application looks natively
on this platform. The main window is implemented as the
ApplicationWindow component and, among other functions,
also defines the initial page or screen of the application that
is also defined separately for both platforms. The other pages
are implemented separately as well.

Nevertheless, it is not only the look of the application that
is different for both platforms. The behaviour of the application
and its components also differs. Sailfish OS follows gesture-
oriented interfaces, where the user mainly uses swipes to
navigate through an application, show menus, etc. Components
defined in the Sailfish Silica framework already implement
these gestures. Moreover, the PageStack component in the
Sailfish Silica framework allows to switch between application
pages programmatically or by using common gestures.

Unlike Sailfish OS, there is no special library that pro-
vides natively looking Android components for Qt Framework.
Therefore, one should use some external (for instance, Qt
Quick Controls with Material theme) or a self-written library
to attain the native look on this platform. The main window
is implemented in the same way as for a regular QML
application—using a Window component. To switch between
the pages of the application, the StackView component Qt
Quick Controls module from should be used.

Using different components to switch between the pages
of the application (PageStack on Sailfish OS and StackView on
Android) allows to ensure that particular pages will be shown
only on the platform they were created for. In their turn, the
pages are created with the use of particular components that
are native for each platform, thus ensuring that every page
looks and behaves natively for the platform it was created for.

The non-visual QML components (for instance, stores in
terms of Flux architecture) can be used on both platforms with-
out any changes, since they determine the internal application
states and behaviour, such as data flows, that are common for
the application, regardless of the platform it is running on.

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

°© & ® = 4l #0%] 16117 o ®

Dictionary trainer

< Question 1

Puzzle

TEST ALL WORDS

Misuse of a word due to the false folk etymology or

wrong application of a term in a sense that does not
belong to the word. This sort of misuse is mostly
based on similarity in sound.

TEST LESS STUDIED WORDS

= 4l #70%] 16:18 [SION- N] = 4l #0700 16:18
< Question 1
v Correct
Puzzle

CHOOSE

All sorts of omission in a sentence.

A statement that requires thinking

WORDLIST over a confusing or difficult
CHOOSE problem that needs to be solved.
"How many blocks of stone did it
0% A statement that requires thinking over a confusing
or difficult problem that needs to be solved. take tq corlpplete one of the
pyramids?
Words learned 0 out of 53 CHOOSE
A reversal in the order of words in one of two parallel
PITESEE NEXT QUESTION
CHOOSE
SKIP QUESTION

(a) Main screen

Fig. 2. Screens of the Android version of Dictionary Trainer

C. Other files

The .pro project file is shared between the platforms and
contains the information needed to build the QML application.
The application also shares its resource file between platforms
that contains translation files, icons and other resources that
are needed for the application (for instance, images).

Finally, there should be platform-dependent files, needed
to compile the application for the particular platform. For
Android it is the manifest file, gradle files, keystore that
is needed to sign the application package. For Sailfish OS
these files are: .desktop file, containing information for the
application shortcut on the device’s list of applications, and
.spec and .yaml files that contain context information about
the rpm package to be built. All of them should be included
into the project.

V. CASE STUDY: DICTIONARY TRAINER

One of the applications that we developed using the
aforementioned approach and one that clearly illustrates it, is
Dictionary Trainer. Its purpose is to help its users to learn
new terms and enrich their vocabulary. The learning process
consists of passing a test. There are three types of questions
available in the test. The first one gives a definition of a term
and the user has to choose an appropriate term for it. The
second one gives a term and requires the user to choose the
right definition. The last type of questions requires the answer
to be entered manually. Additionally, the application provides
a built-in dictionary which contains definitions and example
sentences for every term. The progress of the user is tracked
automatically as they advance in tests and learning.

(b) Test question screen

148

(c) Answer result screen

The main screen of the application allows to start the
testing or to go to the list of the words. The testing consists
of showing one of the described above types of questions to
the user one by one. After the user answers the question, the
result page is shown, informing the user whether the answer
was right or not. The list of the words represents all words in
the application dictionary. By clicking on a particular word,
the detailed information about the term is shown, including its
definition, pronunciation and usage examples.

The user interface of Dictionary Trainer differs, depending
on the platform that the application is running on. On Android
it follows the Material design. Fig. 2 shows screens of the
Android version of Dictionary Trainer. On Sailfish OS it looks
native for this platform and uses swipes for navigation, which
is common for this platform. The screens of the Sailfish OS
version of the Dictionary Trainer are shown in Fig. 3.

C++ files are represented by the sources of the QuickFlux
library, the Settings class, and the dictionary_trainer.cpp file
that serves as the initialization point of the application. The
first one is not customized for any of the platforms and
is used as it is, as described in Section IIl. The Sertings
class is used to provide access to the standard Qt QSettings
class from QML code allowing to call QSettings’ methods
from QML components. This class is used to save, store
and retrieve application settings, and it works on Android
and SailfisOS without any platform-specific code. Finally, the
dictionary_trainer.cpp file consists of two blocks of code,
where the initialization of the application is done separately
for each platform. The initialization process looks the same for
both platforms and follows the same steps: create instance of
QGuiApplication, create instance of Sertings class and register

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Dictionary Trainer

Test all words

Test less studied words

Catachresis

Wordlist

Epenalepsis

Periphrasis

Enjambment

Skip question

(a) Main screen

Fig. 3. Screens of the Sailfish OS version of Dictionary Trainer

it for use within the QML code, set localization files depending
on the default system locale, set the main QML file, and
launch the application. Nonetheless, the applications uses the
SailfishApp library to initialize on the Sailfish OS, which does
not exist for the Android platform. Therefore, the initialization
needs to be separate for both platforms, as it is explained in
Section IV-A.

QML files that describe the pages and view components
of the application are separated according to platforms, since
these components look absolutely different on both platforms
and use different frameworks and libraries. Moreover, the main
QML file is also separated according to platform, because it is
used as the starting point of the QML application and describes
what page should be shown first.

In addition, there are some QML components that exist
only on one of the platforms. For Android they are the special
view components and the StackView component that manages
the opened pages of the application. The example of the special
component is the material card component. It is used, for
instance, to display the results of the user’s answer (Fig. 2c).
The StackView component is not needed on the Sailfish OS,
since such a component is already implemented in the Sailfish
Silica library. Nevertheless, the Sailfish OS-only QML files
include the description of the cover page of the application,
which is not needed for Android, since this platform does not
have such kinds of components. This cover page displays the
current progress of the user and is shown in Fig. 4.

At the same time, source codes of the Dictionary Trainer
contain QML files that can be used on both platforms with-
out crucial changes, because they do not describe how the
application should look, but how it should behave and the

Running on of one thought into the next
line, couplet or stanza without brea
the syntactical pattern.

(b) Test question screen

149

Question 4 Question 4

Enjambment [1n
dzaeemmant]

- Running on of one thought into the
next line, couplet or stanza without
breaking the syntactical pattern.

“Athing of beauty is a joy forever: Its
loveliness increases; it will never Pass
into nothingness but still will keep...”

Next question

(c) Answer result screen

Words

Fig. 4. Cover page of Dictionary Trainer

behaviour is equal on both platforms. These files can be
described as stores, actions, and dispatcher in Flux architecture
terminology. TermInformationStore and TestStore components
represent stores for information about currently chosen term
and current test question correspondingly and contain functions
that are needed to work with this data. ActionTypes and

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

AppActions components describe all actions available within
the application. Lastly, PageOpenerScript describes the actions
of the application (mostly switches between the pages).

In some cases, in these components there might be a
need to perform different actions on different platforms. For
example, to manipulate the page stack, since this component is
implemented separately on both platforms. In these cases, the
QOt.platform.os property can be used to determine the current
platform. For instance, PageOpenerScript contains a script to
proceed to the given page that looks as follows:

if(Qt.platform.os === "linux”) {
pageStack.push(Qt.resolvedUrl(
. Jsailfish—only/views/pages/” + message.url));
} else if(Qt.platform.os === “android”) {
AppActions.stackViewPush(”../pages/” + message.url);

In this piece of code, the application on the Sailfish OS
platform will use a standard page stack component from
Sailfish Silica framework to navigate to the given page, while
on Android the stackViewPush() action will be emitted that
is handled by StackView component, defined only for this
platform.

The resource file is shared between both platforms and
contains all files needed for both platforms: icons, xml file
with data about terms, localization files. The localization files
are also shared between the platforms, since the Qt localization
mechanism is working as it is on both platforms.

The application sources also contain a manifest file, a file
required for gradle to build the application, and a keystore. All
of them are needed to build the application for Android and
were generated by the Qt SDK.

To build the application for Sailfish OS the follow-
ing files are required: harbor-dictionary-trainer.yaml, harbor-
dictionary-trainer.spec, and harbor-dictionary-trainer.desktop.
They are also included into the project.

VI. CONCLUSION

The paper describes the approach for developing cross-
platform mobile applications for Android and Sailfish OS plat-
forms that follows Flux architecture and uses Qt Framework
and QML. The approach allows to quickly and easily develop
applications that look and behave natively on each platform.
Additionally, the paper provides an example of the application
that was successfully developed for both platforms with the
use of the described approach.

Alternatively, Sailfish OS allows launching native Android
applications without making any changes to the code. How-
ever, since these applications were developed only for the
Android platform, they look and behave as native Android
applications that differs from native Sailfish OS applications.
This fact leads to a poor user experience when launching
applications in this way.

Unlike launching native Android applications on Sailfish
OS, using the Qt framework and approach described in the

150

paper allows to develop an application that will keep the native
look and feel on all platforms. Moreover, the choice of the
framework allows to easily compile the created application, not
only for two selected mobile platforms, but for some others as
well, such as iOS. Therefore, the approach may be extended
to support more platforms.

ACKNOWLEDGMENT

The article was published with financial support by the
project No. 549 of P.G. Demidov Yaroslavl State University
within State Assignment for Research.

REFERENCES

[1] H. Heitkoétter, T. A. Majchrzak, and H. Kuchen, “Cross-platform model-
driven development of mobile applications with md 2,” in Proceedings
of the 28th Annual ACM Symposium on Applied Computing. ACM,
2013, pp. 526-533.

[2] L. Corral, A. Janes, and T. Remencius, “Potential advantages and
disadvantages of multiplatform development frameworks—a vision on
mobile environments,” Procedia Computer Science, vol. 10, pp. 1202—
1207, 2012.

[3] S. Xanthopoulos and S. Xinogalos, “A comparative analysis of cross-
platform development approaches for mobile applications,” in Proceed-
ings of the 6th Balkan Conference in Informatics. ~ACM, 2013, pp.
213-220.

[4] H. Heitkotter, S. Hanschke, and T. A. Majchrzak, “Evaluating cross-
platform development approaches for mobile applications,” in Inter-
national Conference on Web Information Systems and Technologies.
Springer, 2012, pp. 120-138.

[5] I Dalmasso, S. K. Datta, C. Bonnet, and N. Nikaein, “Survey, compar-
ison and evaluation of cross platform mobile application development
tools,” in 2013 9th International Wireless Communications and Mobile
Computing Conference (IWCMC). 1EEE, 2013, pp. 323-328.

[6] H. P. Breivold, I. Crnkovic, and M. Larsson, “A systematic review
of software architecture evolution research,” Information and Software
Technology, vol. 54, no. 1, pp. 1640, 2012.

[71 T. Iulia-Maria and H. Ciocarlie, “Best practices in iPhone program-
ming: Model-view-controller architecture—Carousel component devel-
opment,” in EUROCON-International Conference on Computer as a
Tool (EUROCON), 2011 IEEE. IEEE, 2011, pp. 14.

[8] V. Kumar, A. Kumar, A. Sharma, and D. Singh, “Implementation
of MVC (Model-View-Controller) design architecture to develop web
based institutional repositories: A tool for information and knowledge
sharing,” Indian Research Journal of Extension Education, vol. 16,

no. 3, pp. 1-9, 2016.

[91 J. Smith, “Patterns-wpf apps with the model-view-viewmodel design
pattern,” MSDN magazine, p. 72, 2009.

[10] R. Francese, M. Risi, G. Tortora, and G. Scanniello, “Supporting the
development of multi-platform mobile applications,” in 2013 15th IEEE
International Symposium on Web Systems Evolution (WSE). 1EEE,
2013, pp. 87-90.

[11] B. Lau. (2016, March) QML application architecture guide
with Flux. [Online]. Available: https:/medium.com/@benlaud/
gml-application-architecture-guide-with-flux-b4e970374635#
.pka6a48w8

[12] L. Clark. (2015, September) A cartoon guide
to Flux. [Online]. Available: https://code-cartoons.com/
a-cartoon-guide-to-flux-6157355ab207#.ate2re92a

[13] A.Paul and A. Nalwaya, React Native for iOS Development. Springer,
2016.

