PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Approaches to the SoC IP-Blocks’ Design With
Errors’ Mitigation

Valentin Rozanov, Elena Suvorova
Saint-Petersburg State University of Aerospace Instrumentation
Saint-Petersburg, Russia
valentin.rozanov(@guap.ru, suvorova@aanet.ru

Abstract— Developing of failsafe systems is the problem
solving in different sectors. Hardware design is not an exception.
This sector imposes additional requirements constructing failover
controllers, such as chip area and energy consumption. This
article provides types and causes of errors to define their effect
on SoC and offers the general idea of errors resilient SoC that
consists of error detecting, error fixing and error mitigating
mechanism. Also in the paper reconfiguration is considered as the
error mitigation mechanism and methods used in practice to
implement reconfiguration are presented. Before producing
controller or other IP-block with error mitigation, first of all it is
necessary to assess possible variants of failure and ways to
improve its failsafe. Therefore methods of failure assessments
are presented. As the result — Markov chain is chosen as the
assessment tool and example of constructing of Markov chain for
not reconfigurable and reconfigurable controller of transport
layer protocol is presented. Comparative analyses of the results
are carried out.

1. INTRODUCTION

Failures can appear on different stages of controller’s or
other IP-block lifetime from developing till exploitation. On
developing stages failures can be detected by verification and
then removed. In the manufacturing process can appear failures
also, that can be detected during test commissioning. These
failures can be fixed (Fig. 1). However on the stage of using it
is impossible to repair failure of memory or other blocks, or
interconnections between blocks inside the IP-block performed
on technology FPGA or ASIC.

Compilation
Design of SoC for Manufacturing Exploitation
manufacturing
) Compilation Manufacturing External
Design errors A
errors errors influence

Detects on the

Checks by testing before exploitation fact of failure

Sometimes

can be fixed Can't be fixed

Can be fixed if error is detected

Fig.1. Errors on different stages of hardware controller or other IP-block
lifetime

To wunderstand the difference of errors in hardware
controller or other IP-block part IT consider types of errors and
faults that can appear in the exploitation stage of controller
lifetime. As the main aim is to make fault tolerant controller,
part III describes construction of errors resilient SoC. In this
paper was decided to explore problem of Hard-error mitigation.
As a method of mitigation reconfiguration was chosen. So part
IV considers practical variants of reconfiguration that are
available in FPGA and ASIC technologies.

Before constructing reconfigurable system it’s needed to
assess how useful it’s going to be. To understand which
method is better a comparative analysis was done in part V. As
the result of comparison Markov Chain was chosen to assess if
reconfiguration is useful or not. For clarity the example
transport layer protocol controller is used to make numerical
evaluation of the reconfiguration results. Part VI describes the
logic of controllers’ work and the results of Markov Chain
constructing for this protocol and the results of calculations.

II. TYPES AND CAUSES OF ERRORS

The main cause of faults and failures in SoCs for aerospace
applications are space radiation, mesons and alpha particles. The
main types of errors that are caused by these factors:

o Transient faults (Soft errors);
e Permanent faults (Hard errors).

Soft errors are:

e Single event upset (SEU) — changing a value stored in
the flip-plop (SRAM cell) to the opposite value;

e Multiple cell upset (MCU) — changing the values of
several neighboring memory cells;

e Single event transient (SET) — occurrence of a glitch at
a transistor output;

e Single event functional interrupt (SEFI) — a soft error in
a component that has an impact on functionality of the
whole system; for example, an error that occurred in the
processor program counter.

Single event upset (SEU) also known as Upset or bit-flip. In
this case as a result of exposure to the active particles the value
in the trigger (SRAM) changes in the .opposite. Error refers to
a class of short-term, if in the future it is possible to write a
trigger the correct value. If between the time when value of the

ISSN 2305-7254

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

trigger was damaged and new value was written there was no
reading operation from this trigger, error will have no affect the
operation of the system. In some cases, the trigger is no longer
possible to write another value - this error can be referred to a
class of constants.

Multiple error (MCU) can occur in two cases:

e Dbefore undergoing SRAM cell in SEU, was overwritten

correct value, one of the neighbor cells also subjected to
SEU effects;

One active particle had an impact on neighboring cells
SRAM (the likelihood of this situation depends on the
energy of the particle and the density of the memory
cells of placement).

In both cases, there are two simultaneous system errors, i.e.
correction coding single mistake will not be enough to restore
the situation.

Single event transient (SET) occurs as the result of active
particles impact on transistor. On the output of it forms a short
voltage drop (glitch). So during correct value of voltage
corresponding to the logical “0”, for a short time high level
voltage occurs that corresponds to the logical “1” (positive);
during correct value of voltage corresponding to the logical
“1”, for a short time voltage level occurs that corresponds to
the logical “0” (negative).

Hard errors are:

o Single event latch-up (SEL) — dramatically increases the

leakage current;

Single event gate rupture (SEGR) — the breakdown of
the transistor’s insulating layer by the active particle.

In the event of short-term errors, after some time the correct
functioning can be restored. Constant errors occur as a result of
irreparable damage.

Defined types of errors, consider the construction of a
controller that can mitigate the consequences of these
errors.

111

The controller or other IP-block that is able to mitigate the
consequences of errors should be provided with a system that
detects and eliminate errors, which should be a part of the
developed IP-block. The scheme of such system is shown in
Fig. 2. In the state 1, the system is functioning properly. Status
D- is parallel wist state 1 operates and monitors the output
parameters of the system. If an error is detected at the output of
the system, the error is fixing if it's possible, or a decision is
making that it is impossible to correct the error. In the latter
case - we believe that there is a hard error in the controller
(SoC). One way to eliminate the hard error is constructing of
reconfigurable systems.

CONSTRUCTION OF ERRORS RESILIENT SOC

State 2 is error fixing state — so it can be said that it’s soft
error state. State 3 — reconfiguring of the system — it can be said
that it’s hard error state. After each of these states system
moves to state 1 and becomes able to work. However after
error fixing (state 2) in state 1 returns initially working system,
and after reconfiguration (state 3) in state 1 returns new system.

197

So this changes need to be taken into account in the detection
system

Let’s define the concept of reconfiguration as a way to
eliminate the consequences of Hard Error and options for its
implementation.

Error fixing

b

Reconfiguring

Fig. 2. Scheme of SoC with error detection and fault mitigation

IV. RECONFIGURATION AS A FAULT MITIGATION METHODS

When hard error happens and when the IP-block is
implemented NOT reconfigurable, failure of individual
elements (memory or communication lines inside the IP-block),
leads to the complete failure of the unit

If IP-block is implemented with reconfiguration ability,
fault element can be turned off, or other connection lines can be
used (if they are connected with fault block) to keep controllers
or other IP-block functionality [1].

Dynamically reconfiguring SoC can be implemented with
using of technologies of FPGA and ASIC.

When FPGA technology is used dynamical reconfiguration
is achieved by partial replacement of the firmware. In many
modern FPGA, for example, FPGA Xilinx Virtex possibility of
dynamic reconfiguration is provided.

The area where CLB are situated is divided into frames — as
usual vertical columns width of several CLBs (it depends of
FPGA'’s type) and with length from top to the bottom border of
CLB zone [1], [2], [3]. For each of these columns during
system processing reload of firmware can be used individually.
For reloading “partial” bitfile is used. It includes configuration
only for selected one or several frames. Reloading of “partial
firmware” can be made through dedicated configuration port
ICAP.

In many cases there is no necessity to reconfigure all parts
of SoC. When system is reconfigured, new element need to be
placed on the area where uploaded components were situated.
According to this, designing new controller, FPGA on the
logical level is divided into areas (zones) for which is possible
dynamic reconfiguration and for which dynamic
reconfiguration is prohibited. Zones can be marked using
different approaches. In a number of existing projects dynamic
reconfiguration is used only for communication systems [4],

(5], [6].

When ASIC technology is used dynamic configuration can
be can be achieved by the following means:

e switching on and off different elements, in this case
redundancy at the level of components and connections

is used;

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

using of look-up tables;

using of logical elements libraries, that allows
reconfiguration of logic (logical element can perform
various functions depending on configuration for
example NAND, NOR, NOT).

Regardless of the chosen manufacturing IP-block is
necessary to determine whether the reconfiguration be practical
technology to increase the reliability of the controller
(or other IP-block) or not. To do this, use mathematical
methods.

V. METHODS OF FAILURE ASSESSMENT

Controllers (or other IP-block) projecting process needs to
assess advantages and disadvantages of creating reconfigurable
NoC and assess probability of failure certain elements
separately and as a whole the entire NoC.

First of all projecting the system we need to analyze
possible errors or failures during exploitation. There are three
main methods to analyze faults of system:

1) Logical block-diagram method.
2) Fault tree method.
3) Markov chain method.

Each of the methods starts with analyzing possible faults of
the system and detecting failure rates or probability of failure
for every element of considering system. Unfortunately getting
this information may be very difficult because this information
can appear secret. In this case calculations presented in this
paper are made with imagined values of elements failure
probability that helps to see the result of calculations in a short
time.

Logical block-diagram (1) methods second step is
combining (logical addition and multiplication) of separate
components failure probability’s. However this method can
appear very complex if analyzing chain consists of several
logical devices, sensors and execution units connected in a
single logical sequence.

The second step of fault tree method (2) will be creating of
tree diagram of faults. Fault tree analyze is a special technique
that is used to analyze and identify conditions and factors that
causes appearing of certain unlikely event.

Fault tree has one unlike event - accident or incident which
is caused by a set of lower-level events - errors and failures.
These causal chain called scenarios.

For communication between the events operations "AND"
and "OR" are used in the tree nodes. Operation "AND" means
that the higher-level event occurs while necessary events
happens in the same time. Operation "OR" means that the any
of necessary event can occur. Actually tree analysis consists of
determining the causes and their combinations that leads to the
header event.

Method 3 also needs to build the tree, but this tree includes
all possible states of system and ways to transfer between them.
A system of differential equations can be formed based on this

198

diagram. The result of solving them is probability to stay in
each state at chosen time or discrete time. So Markov chain
method can be «called most accurate of presented
methods.

The second step of Markov chains method is to consider the
process of the device, as a Markov process. A state graph is
constructed, that shows states in which device can be during his
operation (or group of devices when they are connected) and
the transitions between them. The graph includes all possible
states of the devices, which may arise due to failure of any of
the components, including the full stop state, due to repair and
diagnostics (if they are provided).The intensity of the transition
(or transition probabilities) between states are set. Based on the
graph a system of equations is constructed, probability of being
in the states is seen as a complete group of events. If graph is
considered in continuous time the intensity of transition is used,
and the system of differential equations is solved. In the case of
the discrete time consideration, the system of equations is
solved with the transition probabilities. In continuous-time
probability of being able to be in a state will be considered as a
function of time, and the discrete-time, the probability of being
in state will be probability to be in considered state on the
current step [7].

Taking into account all the factors affecting the reliability,
using Markov chains allows numerically evaluate the possible
probability of considered variant of device configuration
failure. But this method of analyzing the reliability of the
system is difficult and time consuming from a mathematical
point of view.

System level of the controller was chosen to consider. At
this level, the controller is a set of memory blocks and logic
blocks for data processing.

VI. EXAMPLE OF USING MARKOV CHAIN METHOD FOR
NON-RECONFIGURABLE AND RECONFIGURABLE
CONTROLLERS

Consider the example of using Markov chain to assess
controller’s probability to fail. Fig. 3 presents scheme of
protocol for transferring and receiving data controller without
acknowledgment. Data come in and out through the “Network
Interface”. When receiving data “Reception control unit”,
“Reception memory unit” and “Received data processing unit”
forms “Receiving branch”. These blocks are used to receive data
and put it into memory unit to store for further processing and
transmitting to the upper layers through “Data exchange
interface”. On the other side “Transmitting branch” is situated.
It consists of “Sending data processing unit” block for preparing
data from upper layers to transmit, “Sending memory unit”
block for storing data waiting for transition and “Sending
control unit” block for transferring stored data through the
“Network Interface”.

Failure of one element leads to a failure of the entire branch.
For example “Sending memory unit” break down with
probability p,,=0.002 and “Reception memory unit” fails with
probability p,~=0.002. For reconfigurable controller
“Arbitrator” block is used. If one of the “Memory unit” blocks
fails “Arbitrator” starts using memory block of the other
branch.

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Reception control Reception Received data w
— + + = _F-
- unit > memaory unit processing unit i<
5 2
=]] o=
- 2 = o
= g g &
= & £ £
=) < =
g) 4
o . o . s o
' r Sending control Sending memory Sending data ¢ =
unit -t unit <t processing unit A

Fig. 3. Scheme of transport layer protocol controller

Pr2z
()

o
p n 1/2/ / \\\? n2d

.,

-

Vs p1.4 s,
Pl o o) Pnaa
M Y E A
o /
pnls‘\\‘@/’/pnaa
/
|

.\H_/.l
P33

Fig. 4.Graph of controller states without reconfiguration

Fig. 4 presents graphs for non-reconfigurable (a) and
reconfigurable (b) variants of controller. These graphs are
Markov chains. Graph describes the following states:

1 — All works correct

2 — Receiving branch fails, transmitting branch works
3 - Transmitting branch fails, receiving branch works
4 for graph au 6 for graph b — Both of branches fails

4 and 5 for graph b) — reconfigured state after states 2 and 3
(respectively)

The arcs of the graph are signed by the transition
probabilities. Graphs are transient and absorbing [8]. Consider
discrete time and using Chapman-Kolmogorov equation [9] the
controller values of probability finding in each of the state were
calculated for values of memory blocks failure p,,=0.001, and
Pm=0.002.

B =F Bt (1)
Based on [7,8,10] to calculate possibilities of system to be in
one of'the states can be used equation (1)

Where:

P*(t) — probability of system to be in each state at the
moment t, T.e. Py (t)=[Pn 1, Po*%, Py3...., Py's], s>0 and is
defined by the number of system’s states. P make a complete
group of independent events, in this way P, 1 + P,2 + P,"3 +
P, 4=1;

t — discrete time value;

P — matrix of transition probabilities from a state i to
state j.

Probability matrix for the graph that describes the states of
presented controller is a square matrix 4X4 (2)

Pni1 Pniz Pniz Pnis
0 Pn22 0 Pn2a
= 2
b 0 0 Pn33 Pnsa @)
0 0 0 Pras

Probabilities pui1, Pro2s Prss and pnas shows the probability of
system to be in one of the states on the current step (t).

At the moment t=0 probabilities are distributed as follows —
Pn*(O):[] ,0,0,0], it means that system is in state 1 at the initial
time.

To calculate the transition probabilities, addition and
multiplication rules are used. Values of p,, and p,, were
defined earlier. As the result following values of the transition
probabilities from the state 1 received (3-5)

Priz = Pmr(1 = D) 3)
Pniz = pmt(l - pmr) (4)
Pnis = Pmt " Pmr)

As ftransition probabilities forms a complete group of
independent events the equation for p;; is (6)

Pni1 = 1= (Pniz + Pras + Pnia) (6)

Transfer probabilities for states 2 and 3 to get state 2 will
be equal probabilities of faults of the last working memory
block in the current state (7-10)

Pn24 = Pmt (7
Pnza =1 = Pnas ®
Pn3a = Pmr C)]
Pn3z =1 = Dnaa (10)

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Considered graph is transient and absorbing because after
finite number of steps states are left and getting new state
system can’t get to the previous one, and there is the state at
which the process is terminated (state 4 — controller full fault).
With absorbing state we assume that the probability of being
in this state when hit is equal to 1, p,=1 [10].

Let’s

calculate

transfer

probabilities

assuming that

Pm=0.001, and p,=0.002. With the values of the transition
probabilities, and value of the initial probabilities P’(0)
becomes possible to define number of steps (the value of t), that
is needed the system to get probablllty to be in states
P, (t)=[P,1<0.1, P, 2<0.1, P, 3<0.1, P,'4>0.99]

0.9

08

=] =] o =]
B o > ~

The probability to be in stage 1-4

=]
w

0.1

T T T T T
State 1

, mEEE Stte 2
— - State 3 |

f W State 4

*
% -
-5
"’l;‘-w.
LR L

Discrete time

Fig. 5. Dependence of probability value to stay in state 1-4 from the step (t) value (non-reconfigurable controller)

Fig. 5 presents the graph of probability changing depending
on the value of “t” (number of step) for non-reconfigurable
controller.

As the result the number of steps to get probability equal
0.99 to stay in state 4 is t,=5009.

with

controller

Now let’s explore
mechanism (Fig.6).

reconfiguration

Reception Control
Unit

Arbitrator

Metwork Interface

Sending Control
: Unit

Fig. 6. Scheme of transport layer protocol controller

Reception

- Memory Unit

Sending Memory
Unit

200

The controller operates similarly not reconfigurable.
However, in case of one of the memory units faults system will
reconfigure itself to work with one healthy memory unit. It will
be used for both brunches. In this case systems the system is
able to receive and transmit data even with one failed memory
unit. To implement this scheme units “Arbitrator” are used.
They controls and rule memory access for reading and writing
from each of the brunches.

Received Data
Processing Unit

Arbitrator

Sending Data
Processing Unit

Data Exchange Interface

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Prae

Fig. 7.Graph of controller states with reconfiguration in states 2 or 3

In the resulting state graph (fig. 7) sates 1,2,3,6 are the same
as state 1,2,3,4 in state graph for not reconfigurable controller
respectively.

State 4 is reconfiguration state for using transmitting
memory unit for both brunches and state 5 — reconfiguration
state for using receiving memory unit for both branches. The
system is expected that if unit fails reconfiguration takes place
immediately, so situation when system stays in state 4 or 5 for
some time (for some number of steps for discrete time) is not
considered. For the presented graph transition probabilities
matrix will look (11)

Pri1 Priz Pri3 0 0 Prie
0 0 0 DPraa 0 Pre
0 0 0 0 p 14
P — r35 r36]]
0 0 0 Praa 0 Pras (1
0 0 0 0 Drss Prse
0 0 0 0 0 Do

Transferring probabilities from state 1 can be defined as
presented in equations 3-5 (12-15).

Priz = Pnr(1 = Ppne) (12)

Pr1z = Pme(1 = Pr) (13)

Pri6e = Pmt " Pmr (14)

Pri1 = 1= Pr12 + Pr1z + Prie) (15)

Because in case of failure is supposed to move in the
reconfigured condition, and given that the graph is seen in a
discrete form, the probability of stay for some time (some
steps) in states 2 and 3 are not considered, and considered
options for the transition from these states into the state 6 (total
failure of all devices) (16, 17) or state 4 and 5 respectively
(reconfigured condition).

Pr26 = Pr12 "Pmt

(16)

a7

Pr3e = Pr13 " Pmr

201

As transition probabilities from 2 to 4 and 6 (as from 3 to 5
and 6) forms a complete group of independent events the
equation for p,»4 and p;35 are (18,19)

(13)

Pras = 1 — D36 (19)

Similarly, the justification of the formulas 7-10 obtain the
probability of transition from state 4 and 5 in state 6 and
probabilities to stay in the current state on the next step (20-23)

Proa = 1= D26

DPrac = Pmt (20)
Pras =1 — Drag (21
Prse = Pmr (22)
Prss = 1 — Drse (23)

State 6 is absorbing state, so probability to stay in this state
is equal 1.

As in equation (1) let’s use equation (23) to calculate
probability to stay in states 1-6. Calculate vall;les of this
probabilities considering that (24), and until P, =0.9 with

sta}Frting probabilities distribution (at moment t=0)
P (0)=(1.,0,0,0,0,0].

RO = B P 4)

P+ Py +P5+ P, +Ps+P=1 (25)

Values of probabilities pmr U pue are the same, used for not
reconfigurable controller. Fig. 8 presents the graph of
probability P’y changing depending on the value of “t”
(number of step) for reconfigurable controller.

Number of steps to get probability equal 0.99 to stay in
state 6 is tr=4551 fo reconfigurable controller. Comparing
results of calculating it’s easy to see that non-reconfigurable
model worked on 10% longer time (steps) than reconfigurable.
However the first model worked partially (only one of branches
was working). In the second situation controller worked with
both branches, so it can be said that it was “completely
serviceable”.

VIL

It should be noted that important role of receiving results of
probability distribution plays form of the graph, values of the
transition probabilities and starting conditions. Besides that in
the presented model discrete time was used that can’t take into
account time of reconfiguration and time of fail detection
which may vary according to complicity of controller and
operating conditions.

CONCLUSION

The other notice that can be made is that if controller uses
one memory block for two branches (to receive and transmit)
he needs more time for data processing. In this case it’s needed
to understand how it will effect on the speed of data
transferring, as we are talking about transport layer protocol
controller.

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

0.9

0.8

= =] o o
£ n @ ~

The probability to be in stage 1-6

=]
w

0.2

01

0
100

State 1
. State 2
—— State 3
— Stale 4

mmmm Stale 5
State 6

Discrete time

Fig. 8. Dependence of probability value to stay in state 1-6 from the step (t) value (reconfigurable controller)

Answering this question relatively to the presented
controller it can be said, that if speed of data transferring will
not be very high and controller will process data faster than
transferring speed there will be no delays in the network.
However if data transferring speed will be higher than data
processing one, there will be a delay. The length of this delay
depends on difference between transferring and processing
speeds. But projecting controller it’s better to know possible
variants of delay before controller’s implementing. Considering
of'this problem is planned as future work.

Talking about disadvantages of presented variant of
protocol and its reconfiguration, it could be said:

e After reconfiguration speed of data receiving and
transmitting will be lower, because of using one

memory unit for two directions;

If the last memory unit breaks down, controller
becomes faulty in a moment.

Advantages of this variant are:

e Ensure full operability of the controller even in the
event of failure of one of the memories that will
probably be more important than the preservation of the

processing speed;

Maintaining the required space occupied by NoC in
terms of memory elements.

Presented variant of protocol is used as an example only
and explains variant of reconfiguration. Each variant of
reconfigurable system needs to be considered accordance with
the purpose of wuse, chip area, power consumption
requirements.

Summing up further conclusions could be made:

e Configuration of Markov chain depends on the systems

number of states. These states rely on configuration
specific controller implementation;

202

When configurable controller is considered chain
becomes more complicated

The best way to consider reconfigurable systems is to
construct and count Markov chain with continuous time.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the Ministry of Education and Science of the Russian
Federation according to the base part of the state funding
assignment in 2016, project Ne 1810.

REFERENCES
[1]

R.N.Pittman, Partial Reconfiguration: A Simple Tutorial Technical
Report. 2012. pp. 158 —235.

W.Lie, W.Fengyan, Dynamic partial reconfiguration in FPGAs,
Third International ~ Symposium on Intelligent Information
Technology Application. 2009. pp. 445 - 448.

Partial Reconfiguration Design with Plan Ahead, Web: http://www.
xilinx.com.

V.Rana, D.AtienzaMarco, D.Santambrogio, A4 Reconfigurable
Network-on-Chip Architecture for Optimal Multi-Processor SoC
Communication, IFIP AICT 313. 2010. p. 232-250.

[2]

[3]
[4]

[5] E.Suvorova, Y.Sheynin, N.Matveeva, Reconfigurable NoC
Development with Fault Mitigation, FRUCT 18, 2016
[6] E.Suvorova,, Y.Sheynin, N.Matveeva. Fault Mitigation in

reconfigurable NoC routers with thin design rules, International
Journal of Embedded and Real-Time Communication Systems,
Volume 6, Issue 1, January-March 2015, Pages 28-46

M.YaKelbert and JuM.Sukhova Probability and statistics in
examples and problems. Vol. IT Markov chain as the starting point of
the theory of random processes and their applications Moscow, 2009
UN.Fedorov Engineer Manual: Design and development.
Educational and practical guide. Infra-Engineering. 2008.
V.I1.Tihonov and M.A.Mironov, Markov process, 1977, p. 238

Ricky W. Butler and Sally C. Johnson, Techniques for Modeling the
Reliability of Fault-Tolerant Systems With the Markov State-Space
Approach, NASA Reference Publication, Langley Research Center ¢
Hampton, Virginia

[7

(8]

[9]
[10]

[11]

T.E.Aliev Basics of discrete systems modeling, Saint-Petersburg,
2009. p.168.

