PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Performance Analysis of OpenFlow Forwarders

Based on Routing Granularity in
OpenFlow 1.0 and 1.3

Viktor Suldk, Pavol Helebrandt, Ivan Kotuliak
STU in Bratislava
Bratislava, Slovakia
{viktor.sulak, pavol.helebrandt, ivan.kotuliak } @stuba.sk

Abstract—Software-defined  networking is  alternative
approach to traditional switched networks where each switch and
router makes its own forwarding decisions. Software-defined
networking uses centralized controller making decision with
multiple forwarders applying received rules. In this paper we
analyze the performance impact of using micro and macro flows
in software-defined networking and performance impact of
OpenFlow version used. Our results quantify overhead when
matching of flows on second to fourth layer of OSI model
compared to matching on second layer only.

I. INTRODUCTION

Software-defined networking (SDN) is a relatively new
approach to building medium to large networks. It replaces
distributed packet forwarding logic of every device in the
network with centralized one called network controller. This
creates two logical layers in topology — control plane and
forwarding plane. Control plane uses applications to make and
affect forwarding decisions of every device in forwarding
plane. Since the logic is centralized, controller (control plane
device) has complete overview of the network unlike devices in
traditional packet-switching networks [1]. Using this
advantage, network resources can be used more efficiently,
preventing jams and collisions if possible since a controller has
absolute overview over of the network [2].

OpenFlow is an open standard developed by non-profit
industry consortium called Open Networking Consortium
(ONF). OpenFlow defines a communication interface and
protocol between control and forwarding plane of network
devices, as seen in Fig. 1. It allows separation of control plane
and its centralized software implementation, thus being
considered to be a de facto SDN enabler.

Since SDN offers fine control over data flows, it is possible
to process data differently than using traditional OSI layer 2 or
even layer 3 aware switches. It is possible to process packets up
to OSI layer 7. The level of logic used depends solely on SDN
controller and its installed northbound applications [3]. This
allows us to turn SDN forwarders into more sophisticated
devices. First, incoming traffic sample is sent to controller
using “packet in” message when forwarder receives data flow
that does not match any rules installed in flow table. A
controller can make decision what to do — it can order
forwarder to send packet using specific port, drop the packet or
install new flow forwarding entry [4]. These rules may match

data flows on different OSI layers based on routing granularity
used. The finer granularity allows data flows to be matched
more specifically but introduces higher processing overhead
[5]. Our work quantifies the effect of routing granularity on
data flow performance. We use different SDN forwarders and
controllers to do so.

Additionally, we made a fork of POX OpenFlow controller
and upgraded it to use OpenFlow version 1.3 instead of 1.0 [6].
Using this controller, we are able to compare performance of
virtual SDN forwarders that are able to work with both versions
of OpenFlow. This allows us to compare performance of
different OpenFlow versions or at least performance of
implementations of libraries for different OpenFlow versions
for the same virtual SDN forwarders.

Our work is structured into introduction chapter offering
short introduction to SDN networking and comparing our work
to related ones, performance evaluation where we propose
testing setup, its implementation and present testing results.
Later there is conclusion of these results and the list of related
works cited.

Testing results compare latency and throughput on different
trivial SDN topologies using different forwarders and
controllers. Different test setups have different routing
granularities used.

II. RELATED WORK

Our work shares in most with work [7] in which authors
address the problem of efficient forwarding and simulate
performance impact of different routing granularity levels in
OpenFlow network. The main difference is that we use
virtualized network topology based on software forwarders,
instead of ns-2 network simulator.

Our work uses similar testing scenarios to [8] but we focus
on different things. Authors of related article compare a
performance of SDN architecture to traditional network under
various workloads. They also analyze if there SDN architecture
is ready to be used with more complex infrastructures. They do
not take into account different routing granularity levels.

Authors in [2] compare two routing paradigms, reactive and
proactive routing, and their influence on routing performance.
We use reactive routing only.
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Fig. 1. Main components of an OpenFlow switch [9]

Article [10] compares OSI layer 2 switching and layer 3
routing performance using similar network parameters in SDN
networks but authors compare it to tradition physical network.

None of mentioned articles measure real-life impact of SDN
routing rules granularity in virtualized networks like ones used
in production environment. Our work does this using some of
forwarders and controllers used nowadays.

We also did not find any relevant comparison of
performance differences between OpenFlow standard versions
1.0 and 1.3. This comparison is difficult to make since most of
OpenFlow controllers are built for version 1.0 or are built for
newer standards.

III. PERFORMANCE EVALUATION

We compared performance of forwarding using several
OpenFlow 1.3 compatible controllers and forwarders using
differently grained data flows. We also added OpenFlow 1.3
support to POX controller so we can better compare
performance of forwarders using different OpenFlow versions.

A. Design proposal

Testing of our solution was performed using Mininet testing
platform. It provides us a simple way to test all the changes on
OpenFlow virtual devices we make. It creates virtual instances
of devices that allow testing of connectivity between them and
tracing their communication. It enables multiple concurrent
developers to work on a single complex network topology.
Mininet contains a set of basic parameterized topologies for
quick start of testing and is usable as-is after initial installation
[11]. We used different topologies with several parameters sets
to test different scenarios.

Mininet uses process-based virtualization instead of full
virtualization. This provides much faster boot times, allows
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much larger number of virtual devices on single computer and
higher bandwidth. The biggest downside of Mininet is that it
supports Linux-based OpenFlow network devices only [10].

Assuming these characteristics, we consider Mininet to be
the best suiting tool for our testing. The only better alternative
for us is testing on real topology, but it was not possible
because we did not have access to SDN-enabled hardware.
Other platforms that we considered were OpenFlowVMS and
Noxrepo.org VM Environment. We did not choose them
because they are both deprecated and do not provide any
support for OpenFlow version 1.3.

Testing was performed on single computer with no other
user applications launched to provide results as relevant as
possible. All tests were carried out repeatedly, usually 5 times.

B. Controller implementation

We chose to enhance POX, the open source OpenFlow 1.0
network controller, and add the support of OpenFlow 1.3 to it.
Because of this, we develop the project in Python programming
language. We created the OpenFlow library used by POX
controller. It is the rewritten version of OpenFlow 1.0 library
implementing numerous changes between specification
versions. Also testing scenarios were rewritten to reflect wider
possibilities and some core libraries were updated to load
newer library rather than former one.

IV. RESULTS

A. Comparison of different controllers and forwarders on the
same topology

We started our proper testing with several available
combinations of forwarders and controllers and we tested
bandwidth between two hosts with four forwarders in linear
topology between them using iperf. We can see results in the
Table I and Fig. 2.

TABLE I. AVERAGE THROUGHPUT FOR LINEAR TOPOLOGY WITH
4 FORWARDERS

Controller and forwarder Average [Mbps]|

Pox 1.3 + CPqD ofsoftswitch13 23,00
Ryu + CPqD ofsoftswitch13 27,00
ovs-controller 1.9.0 + Open vSwitch 1.9.0 997,00
ovs-controller 1.9.0 + Open vSwitch 2.1.0 1010,00
Pox Carp + Open vSwitch 1.9.0 942,00
Pox Carp + Open vSwitch 2.1.0 966,00
Pox 1.3 + Open vSwitch 2.1.0 1020,00
Ryu + Open vSwitch 2.1.0 1030,00

We discovered several interesting things. The first that
everybody would notice is that ofsoftswitchl3 performs
significantly worse than Open vSwitch. This is because of their
different natures. Open vSwitch runs in the kernel space and
therefore has immediate access to the core of operating system.
Since the Mininet creates lightweight virtual machines for
every forwarder and host, we assume that it also instantiates
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core functionality of software forwarder. On the other side,
ofsoftswitch13 runs in the user-space and therefore has to
access the kernel as any other application through system
application interface [12]. These calls to the core slow down
every application but it is impossible to run every application in
kernel space.
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Fig. 2. Measured values for the first test on linear topology with 4 forwarders
with different controllers and forwarders

Second thing we observed is the fact that our controller
running OpenFlow 1.3 version of “I2_learning” behavior has
performance comparable to Ryu controller running
“simple_switch 13” behavior. Also, the controller performs
better than original version of POX running OpenFlow 1.0
version of “12_learning” behavior. We hoped for this result
from the beginning of the work on our POX controller
improvement. It means that we improved POX controller in
positive way.

A surprise for us was the ovs-controller from the makers of
Open vSwitch running inside the virtual machine. It performs
better than original POX controller does. It is possible that the
network bridge between VirtualBox-created virtual machine
and main operating system lowered the performance of Ryu
and both POX versions. We assume that the difference is not
big since we tested it on the computer equipped with four-
threaded CPU, fast memory with enough capacity and SSD
hard drive.

Next, we tested the two-way delay (round-time trip) of the
packets between endpoint hosts in the same topology. When
compared to the previous part of test, we omitted Open vSwitch
1.9.0 that we upgraded irreversibly to version 2.1.0. We can see
the results in Fig. 3 and Table II below.

We performed the second part of our test using ping
command between two endpoint hosts in the linear topology
with four forwarders between them. We measured the time of
the first communication separately from the next ten. This is
because the first communication needs to fill the MAC table of
the forwarders and ARP table of the hosts. Most importantly,
flow matching rules are also installed on forwarders. As we can
see on the Fig. 4, we found out that CPqD ofsoftswitch13
performs significantly better than Open vSwitch during the
connection setup. Since we used the same controllers with the
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same behavior and the same hardware and software setup, this
shows us real differences between forwarders.
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Fig. 3. Two-way delay of the first packet of new packet flow using linear
topology with 4 forwarders

TABLE II. AVERAGE TWO-WAY DELAY FOR LINEAR TOPOLOGY WITH
4 FORWARDERS

Controller and forwarder Average delay [ms]

first next 10
Pox 1.3 + ofsoftswitch13 (OF 1.3) 150,2 2,5
Ryu + ofsoftswitch13 (OF 1.3) 160,1 2,5
ovs-controller 1.9.0 + OVS 2.1.0 (OF 1.0) 359.4 0,2
Pox Carp + OVS 2.1.0 (OF 1.0) 5304 0,3
Pox 1.3+0VS 2.1.0 (OF 1.3) 487,5 0,3
Ryu+OVS 2.1.0 (OF 1.3) 382,6 0,3
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Fig. 4. Average two-way delay of the next 10 packets using linear topology with
4 forwarders

As we can see on the Fig. 4, things have changed after the
initial flow setup. Open vSwitch takes advantage of its direct
access to the system core and therefore fast access to the
switching ports. This advantage is significant for elephant
flows.
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B. Impact of the number of forwarders on their performance
in Mininet
As the next test, we measured the impact of the number of
forwarders between endpoint hosts in Mininet.

We presumed that the difference in performance is not large
and we tested it. Since Mininet creates the different number of
forwarders with the same total processing power available,
Mininet should divide available resources evenly between all of
the forwards created. We can see the results of measurements
in Table I1I and Fig. 5, Fig. 6, and Fig. 7.

TABLE III. IMPACT OF THE NUMBER OF FORWARDERS ON THEIR
PERFORMANCE IN MININET

TOPOLOGY | FORWARDERS | THROUGH- | TWO-WAY
END-TO-END PUT DELAY [MS)]
[MBPs] FIRST | NEXT

single, 2 1 111,66 63,50 0,55
linear, 2 2 56,23 8541 1,24
linear, 3 3 36,70 116,53 | 1,83
linear, 4 4 26,95 138,44 2,15
linear, 5 5 21,68 142,05 2.65
linear, 6 6 17,80 168,93 | 3,39
linear, 7 7 14,83 178,88 | 4,82
linear, 8 8 12,60 188,96 | 4,90

For the testing purposes, we used our modified controller
with “I2_learning” behavior and ofsoftswitchl13 forwarder.
Two different topologies were used — either single forwarder
with two hosts connected or linear topology with two hosts
with different number of forwarders in line between endpoint
hosts.

On the figure below, we can see that throughput measured
by iperf tool falls exponentially. When we look at the numbers
in table above, we can see that multiplication of throughput
measures by the number of forwarders results in similar
numbers every time. This confirms our assumption about
dividing the resources evenly among multiple forwarders.
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Fig. 5. End-to-end throughput dependency on the number of forwarders passed
in Mininet

The next parameter we followed was the two-way delay
measured using the ping command between endpoint hosts.
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This measurement did not deplete available resources so the
measured numbers are affected only by the forwarders and not
by the performance of underlying hardware. In this test, we
used Open vSwitch forwarder instances instead of
ofsoftswitch13.

We assumed that the round-trip delay would rise linearly
with the number of forwarders passed end-to-end. When we
look at the graphs on Fig. 6 and Fig. 7, we can see that we were
right. This proves that each forwarder performs the same
actions that take very similar time each time. Significantly
longer delay times on Fig. 6 are caused by populating of ARP
tables on each forwarder, by identifying of unmatched data
flows on forwarders, sending their parameters to controller and
installing of new rules on forwarders.
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Fig. 6. Two-way delay dependency on the number of forwarders of the first
communication
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Fig. 7. Two-way delay dependency on the number of forwarders of the
following 10 communications

C. Comparison of flow matching on OSI layer 2 and OSI
layers 2 to 4

In this test, we compared the performance of the OpenFlow
flow matching on OSI layer two and matching of OSI layers up
to four using different amount of OpenFlow extensible match
parameters sent. The wider the match is, the quicker it should
take to process the traffic. This can be useful in switched
environment with great amount of processed data.

These principles are similar to traditional route aggregation
principles that allows us to reduce routing tables size and
therefore increase scalability and reduce processing overhead.
Finer grained matching of data flows also introduces larger
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routing tables and higher performance requirements. This
processing overhead is even bigger since software forwarders
have to decapsulate packets, analyze them to higher degree,
process and encapsulate them using only CPU without any aid
from application specific integrated circuits. Unmatched data
flows also add communication overhead to controller and
processing there.

Three types of topologies were used — simple topology with
central forwarder and connected hosts, linear topology with
several forwarders connected serially with a host connected to
each of them and tree topology in the form of rooted binary tree
with multiple tiers of forwarders and hosts connected to bottom
leaves. The forwarders used are instances of ofsoftswitchl3.
All topologies used are parametrized topologies of Mininet
with two hosts communicating with maximal possible usage of
bandwidth to test throughput using iperftool.

This test is based on the usage of “I2_only” flag we added to
the “from_packet” method responsible for creating the flow
match from incoming packet. This flag limits the OXM fields
created to OSI layer two addresses only. If it is not used, our
testing environment uses addressing up to OSI layer four.

Summary throughput on all forwarders in the path is 96 to
116 Mbps with OSI layer 2 switching and is distributed on
forwarders since our tests were carried out on single piece of
hardware. Table IV and

Fig. 8 show improvement from 11% to 22% when the wider
matches are used in different topologies. This is caused by
lower communication overhead between SDN controller and
forwarders and by lower processing requirements with
decapsulating and encapsulating of network frames.

V. CONCLUSION

Our results show that usage of wider data flow matching in
OpenFlow offers better throughput in network compared to
finer grained matching. On the other hand, narrower matching
is necessary when using quality of service techniques. This
relates to traditional route aggregation benefits but software-
defined networks introduce their own specific performance
drawbacks that can be mitigated by data flow matching
optimization.

TABLE IV. IMPACT OF WIDER OXM MATCH ON SWITCHING

PERFORMANCE
Matched OSI layers / L2 L2-L4 Difference
Topology [Mbps] | [Mbps] [%]
Single forwarder, 109,00 98,03 11,19
4 hosts
Single forwarder, 108,50 9427 15,10
8 hosts
Line of 4 forwarders, 28.88 25,00 15,53
4 hosts
Line of 8 forwarders, 12,02 10,77 11,61
8 hosts
Tree of 3 forwarders, 38,67 31,47 22.88
2 tiers, 4 hosts
Tree of 7 forwarders, 21,22 18,12 17,11

3 tiers, 8 hosts
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Fig. 8. Impact of wider OXM match on switching performance

As we can see in previous chapter, performance impact of
narrower OpenFlow extensible matching is not dramatic but is
highly dependent on network topology.

Next step would be to perform our tests in real-life network
topology or simulate several topologies corresponding to
typical network setups.

We also compare OpenFlow versions 1.0 and 1.3 using
different controllers and forwarders. The most appropriate
comparison is between POX controller in carp revision (version
0.3.0) with Open vSwitch forwarder set to support OpenFlow
version 1.0 and our fork of POX controller with updated library
with Open vSwitch set to support OpenFlow version 1.3.
Results of this comparison shows us that OpenFlow 1.3 setup
performs slightly better. Difference can be caused by
implementation of OVS OpenFlow library but is closest
comparison possible since cores of both forwarder and
controller were the same and used only single different library.
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