PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Full Automated Continuous Integration and Testing
Infrastructure for Maxscale and MariaDB

Mark Zaslavskiy'”, Alexander Kaluzhniy'?, Tatyana Berlenko'?,

IIfat Kinyaev'?, Kirill Krinkin'*
'FRUCT LLC

*Saint-Petersburg State Electrotechnical University « LETI»

IITMO University
Saint-Petersburg, Russia

Timofey Turenko

MariaDB Corporation Ab
Finland, Espoo
timofey.turenko@mariadb.com

{mark.zaslavskiy, tatyana.berlenko, kirill.krinkin } @fruct.org,

{galiafl 995, kinyaevilfat} @gmail.com

Abstract—This article describes design and development of
MariaDb Maxscale robust and easy extendable test automation
tool - MariaDB Continuous Integration (MDBCI). For
determining optimal architecture a comparison of analogs and a
detailed review of existing solution is given. Developed
instrument is described and discussed in details in order to
determine its extendability level. For proving robustness the
comparison on a specific use case between MDBCI and Vagrant
as a base of an existing solution was performed.

I. INTRODUCTION

Nowadays databases technologies are developed with
tremendous speed. NoSQL Market Forecast [1] shows that
market of only NoSQL products will reach $3.4 Billion in
2020. In this case user expectations and requirements for
traditional SQL solutions will grow with similar speed.
However, each modern relational database is a very
complicated solution that combines high availability features
with sophisticated information security and consistency
mechanism [2]. Also, there are a number of different use cases
and different environment options for each product. This two
facts make quality assurance procedure time and resource
consuming. Virtualization technologies [3] and configuration
management [4] instruments can overcome this problems but
such solutions will lead to number of unavoidable adaptations
to existing development process due to individual aspects of
each product, team and use cases.

This paper aims to provide solution for automating quality
assurance and environment management for particular product
— Maxscale [5], database proxy for the MariaDb [6]. This
solution wraps popular virtualization and configuration
management instruments and reorganizes their behavior and
configuration languages in order to simplify typical testing use
cases of the Maxscale team.

II. EXISTING INFRASTRUCTURE

A. Testing tasks
For understanding necessity and possible improvements of

Maxscale test automation infrastructure the first version of it
should be described in details. The instrument was created for
solving three basic tasks: Build, Run and Test, Upgrade Test.
Before describing action sequences it should be clarified that
all tasks are performed inside virtual machines (VM) and
therefore include VMs start and stop procedures. Due to
simplicity the description of these procedures will be omitted.

Build task is aimed to perform quality assurance of the
Maxscale packaging and publishing procedures. The task
contains of build dependency setup inside of VM, building
RPM or DEB packages depending on used OS, collection of
packages into debug repositories.

“Run and Test” task main goal is an integration testing of
Maxscale packages created during “Build”. The task includes
installation and setting up of the given product version and DB
cluster with ability to chose particular cluster type:
MariaDb/MySql Master/Slave or Galera cluster [7]. Testing is
performed by Maxscale-System-Test [8] package which
contains integration tests written using CTest [9] framework.
After testing is completed test results are gathered for further
analysis.

“Upgrade Test” task is actions sequence for integration
testing of existing Maxscale installation upgrade. This task
differs from the “Run and Test” only by adding additional
repo and running package upgrade procedure.

For performing typical tasks described above there were
two solutions implemented: libvirt/QEMU-based [10], [11]
and AWS-based [12]. Two separate sets of scripts were
created.

B. libvirt/ QEMU automation

Test setup is created by set of scripts which executes
'qemu’ command line tool directly. Linux distribution have to
be installed manually to QEMU machine image. This machine
is configured to wuse hard-coded IP address (e.g.
192.168.121.2). In order to create multi-machine setup
following process was implemented:

ISSN 2305-7254

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

1) Script copies images file 9 times (one machine for
Maxscale, 4 for Master/Slave replication setup, 4 for
Galera cluster setup).

Script brings up machines one by one and replaces
network configuration files to re-configure machines
for different IP addresses and the reboot each
machine.

Script brings up all machines again and configure
Master/Slave and Galera.

The process described above has following disadvantages:

2)

3)

e all IP are hardcoded, script is able to create a limited
number of VM sets (e.g one uses IP from
192.168.121.110 until 192.168.121.118, another from

192.168.121.120 until 192.168.121.128);
anumber of VM is hardcoded;

the number of simultaneously running sets of VMs is
limited due to limited number of sets of IPs;

scripts do very limited 'gemu' command error
processing (due to complexity of such error
processing);

VMs bringing up process is slow due to need of
replacing network configuration files and lack of
parallel execution of the process for different VMs;

solution is not secure: all VM uses one single
embedded ssh key.

C. AWS automation

The second set of scripts uses AWS command line interface
to bring up 9 VMs in Amazon cloud. Scripts use AWS
command line tool to control VMs in the cloud. Scripts are
specific for AWS and can not be used for other clouds. Script
sends 'start-instances' commands to AWS and then gets
information about IPs, SSH keys using 'describe-instances'.
This process has disadvantages similar to QEMU case:

Amazon machine image (AMI),
parameters are hardcoded in the scripts;

anumber of VM is hardcoded;

VM

. region,

scripts do very limited AWS cli error processing and
can not automatically re-create failed VMs;

created VMs have to be managed manually after the
test.

The fact that scripts are VM-provider specific makes hard
to create sophisticated control tool for VMs: e.g. implement a
good error processing, define VM parameters in the
convenient and flexible way, keep all information about VMs
in centralized way and make such information easily available
for clients, etc

II1. PROBLEM STATEMENT

According to description of the first version of Maxscale
testing system three fundamental requirements can be

274

formulated in order to improve stability and decrease support
cost.

The first and the most important requirement is a full
automation of a variable VM configuration support. The
configuration term stands for the set of machines where each
machine can have different parameters: OS type, product type,
product version, network configuration. Because of big
support cost of several different scripts which control VM
work such solution should be replaced by special tool with
single entry point.

The second requirement is a usage of a single configuration
file format for VM configurations with simple syntax. Existing
solution fully relies on embedded constants in Bash scripts and
Vagrant files which provide unclear and ambiguous way to
configure VMs. Replacement of this mechanism with one
domain-specific format will lead to increasing stability of test
tool and will decrease its support cost because of more clear
and obvious interface for configuration.

The third requirement is a support of automated VM errors
processing algorithms. Current solution does not provide any
safe way to re-run failed configurations in case of errors which
causes need of human interaction with test automation.
However, most of errors which disappear after VM restart are
related to AWS and therefore following solution with
automatic re-run can improve stability of test tasks execution.

V. EXISTING INSTRUMENTS COMPARISON

For building replacement for Maxscale test automation
existing instruments for configuration management and
virtualization should be compared using requirements stated
above. This should be done in order to determine architecture
of the solution and instruments that can be used inside the
solution.

A. Criterions

Before comparison requirements from “Problem
statement™ subchapter should be decomposed because they are
very general and does not allow to compare several
instruments without implementing high level solution.

Variable VM configuration support requirement stands for
variable number and type of VMs that can be used
simultaneously. This can be decomposed to following
criterion:

e simple replacement of VM images;

e support of different virtualization providers with

ability to change it;

arbitrary number of VMs;

e support of various products deployment.

Single configuration file with simple syntax requirement
can be not related to particular instruments because each
instrument use its own configuration format, usually
applicable for general tasks. Due to necessity of Maxscale-
related use cases support in the solution it is unlikely that there
are any instruments already designed for this domain.

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Therefore, single configuration file requirement can be only
satisfied by creation of a custom wrapper for different
instruments configuration files formats.

Automated error processing algorithms requirement is
related not only to approaches for automatic error handling.
For enabling ability to research new and rarely appearing
errors in tested products there also should be interfaces for
transparent control and debug of launched configurations:

e transparent access to VMs;

e configuration cloning interfaces;

e several test round can be executed in parallel;

locally tool deploy.

B. Comparison

For the comparison the following instruments for VM
configurations and provisioning were selected: OpenStack
[13], Vagrant [14], Ansible [15], Chef [16], Puppet [17].

OpenStack is a collection of open source software project
that developers and cloud computing technologist can use to
setup and run their cloud compute and storage infrastructure.
Its services are available through Amazon EC2/S3 compatible
APIs and hence the client tools written for AWS can also be
used with OpenStack. It consist of three core software
projects:

e OpenStack Compute Infrastructure also called Nova;

OpenStack Object Storage Infrastructure also called
Swift;

OpenStack Image Service Infrastructure also called
Glance.

Nova is the main part of Infrastructure as a service and it
also is the computing Fabric controller for the OpenStack
cloud. Enterprises/Organization can use Nova to host and
manage their cloud computing systems. Nova manages all the
activities that are needed to support life cycle of instances
within the Open Stack. Swift offers a distributed,consistent
virtual object containers in which lots of data can be store and
from which data can be retrieve. It is capable of storing large
number of object distributed across nodes. Glance is a lookup
and retrieval system for VM images.

Vagrant is used to manage the creation and configuration
of VMs for testing environments. Vagrant is a software tool
that provides a simple and consistent configuration and
command line interface for developers to manage VMs. For
each project, a “Vagrantfile” is created within the root
directory of the software project and can be included within
the source control system. After this, developers can simply
run “vagrant up” to have all of the VMs required for local
testing made available, with networking and local file
synchronization set up automatically.

Ansible is an IT automation tool that provides provision,
orchestration, and configuration management features. Unlike
with Puppet and Chef, Ansible doesn't require any software to
be preinstalled on the server, other than an SSH service, as the

275

heavy lifting is done by own computer that connects to our
Ansible-managed servers and instructs the server on how it
needs to change.

Chef is a provisioning tool that can be used to set up a
server for use for a project. The configuration, which
determines how the server needs to be set up, can be stored
within our Vagrant project and can be shared with teammates
through version control, ensuring that everyone gets an up-to-
date copy of the required development environment.
Information about how a server should be configured, that is,
its software, files, users, and groups, is written into files
known as Chef recipes. These recipes are written as Ruby
files. Chef takes this information and matches it to providers
that are used to execute the configuration on the machine in a
compatible way.

Puppet is a provisioning tool that can be used to set up a
server for use for a project. The configuration that determines
how the server needs to be set up can be stored within our
Vagrant project and can be shared with teammates through a
version control, ensuring everyone gets an up-to-date copy of
the required development environment.

TABLE I. COMPARISON OF EXISTING INSTRUMENTS

Criteria | Openstack | Vagrant | Ansible | Chef | Puppet

Different
VM
providers

Transparent
access to
VM

Simple
replacement
of VM
images

Cloning

Local tool
deploy

Arbitrary
number of
VMs

The results of the comparison by criterion at Table I show
that two the most applicable instruments are Vagrant and Chef
because they satisfy. Therefore the solution which should
replace previous Maxscale test automation must be a single
script virtualization provider-agnostic wrapper around these
tools.

VI. PROPOSED SOLUTION

For solving task of MariaDb stack test automation with
requirements stated above the MariaDB Continuous Interface
(MDBCI) [18] middleware scripts were developed.

A. Use case

General MDBCI use case is a test run with different
versions of MariaDb stack products and various VMs
containing following steps:

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

1) Developer creates configuration file with
configuration parameters: provider, OS type and
version, machines counts, RAM, product type and
version.

2) Developer downloads needed Vagrant boxes.

3) Developer generates Vagrant config by MDBCI
configuration file.

4) Developer launches Vagrant file using MDBCIL.

5) After the configuration have successfully launched
developer can aquire connection information using
MDBCI and execute tests from Maxscale-System-
Test repository.

6) For further configuration control MDBCI and

Vagrant can be combined.

MDBCI also supports use cases of cloning and creating a
snapshot for already launched configurations. Configuration
clone is an independent and persistent copy of an existing
running configuration. Configuration snapshot is a temporary
backup of current state for given configuration which can be
restored in any time. Cloning and snapshot use cases have
similar action sequences with following components:

1)

2)

Developer launches a configuration as in test run use
case.

Developer starts cloning or create snapshot operation
for a running configuration using MDBCI.

In case of cloning developer start to use configuration
clone.

In case of snapshot developer may continue to use
configuration with ability to restore its state in any
time to snapshot created previously.

3)

4)

A. Architecture

AWS (o]
Libvirt/QEMU |+
— Configuration file
c (provider)
o
Docker o o))
(0] Node1 (OS,
> product, RAM)
VirtualBox [
NodeN (OS,
PPC - product, RAM)
_ MDBCI
Chef recipies
Galera Commands
MariaDB up clons
show network
Maxscale
create/restore
MySQL snapshot

Fig. 1. MDBCI architecture

276

MDBCI was developed as a set of Ruby command-line
non-interactive scripts strictly dependent from Linux
environment. Such limitation was approved because target
platforms of Maxscale project are only Linux-based OS. Ruby
was chosen because it is a base programming language for
Vagrant and its plugins and this allows to achieve deep
integration with MDBCI sources.

Due to requirements of task and existing instruments
comparison MDBCI architecture (Fig. 1) is a wrapper around
Vagrant and Chef utilities. The application uses single
configuration file as a base for a Vagrantfile generation.
MDBCI configuration file format is based on a JSON with
simple rules for the cluster nodes declaration:

Nodes declaration

0:{

1: "galera3":

2: {

3. "hostname': "galera3",

4: "box":"ubuntu_trusty libvirt",

5: "memory size":"1024",

6: '"product”: {

7: "name": "galera",

8: "version': "5.5",

9: "enf template” : "galera_serverd.cnf",

10: "cnf template_path": "~/build-scripts/test-
setup-scripts/cnf"

11: 3}

12: 3},

13: "maxscale” :

14: {

15: "hostname" : "maxscale",

16: "box": "ubuntu_trusty libvirt",

17: "product”: {

18: "name" : "maxscale"

19: 3},

20: "memory_size": "1024"

21: }

22:}

Generation process also includes substitution of product-
dependent Chef recipes into Vagrantfile in order to install and
configure each node properly. When Vagrantfile is generated
MDBCI can launch it just by wrapping actual “vagrant up”
command inside Ruby script. However this wrapping allows to
perform continuous Vagrant and Chef error monitoring with
ability to non-interactive repair by node relaunch or
reprovision [19].

Launched configuration can be managed using MDBCI in
following ways:

e Collect network information for establishing ssh

connection to nodes.

Install products.

Clone configurations.

Create and restore snapshots.

Execute commands by SSH.

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

All actions described above except cloning and snapshots
are available for all virtualization providers. For the current
moment MDBCI supports VirtualBox [20], Docker, AWS,
Libvirt, PPC [21] and any remote machines with SSH access.
Cloning and snapshots are unavailable for AWS, VirtualBox
and PPC due to rare usage of this platforms in Maxscale
development use cases.

MDBCI was designed to be deeply integrated with
Maxscale testing. For simplification of routine actions the
solution contains a set of Bash scripts which performs
collecting Maxscale-System-Test results. Scripts perform
parsing of tests output and store results together with particular
test run parameters to special DB in order to do further
analysis of regression testing statistics.

MDBCI also contains scripts for performing and analyzing
results of Maxscale Sysbench [22] testing. This data contains
benchmarking measurements for different performance checks
on a various set of Maxscale configuration. Scripts allows to
generate special performance test configurations, execute
Sysbench on a launched MDBCI VMs cluster, extract results
and store it in the same manner as in case of regression testing.

Due to proposed architecture MDBCI has several
limitations:

MDBCI do not have support of plugins.

e Configuration file do not have support for all of

machines specifications.

Chef recipes can be changed or added only in source
code which complicates new products support.

These limitations makes MDBCI extension a difficult task
which is caused by MDBCI orientation for very narrow set of
use-cases and products. However in order to keep required
level of integration between MDBCI and Maxscale
development process this issue will exist.

VIII. EVALUATION

Robustness and safe error handling are key requirements
for MDBCI. In order to prove their existence in developed
solution the check on the typical use-case was performed.
According to existing Maxscale experience Vagrant may face
several not running machines during launch of the big AWS
configuration in case of high load on the server. This problem
can be simply repaired by performing relaunch of dead
machines but Vagrant instead of MDBCI does not contain any
tools for such fix. The goal of this experiment was to measure
percentage of fails during use-case described below and to
measure time needed to fully launch the given VM
configuration for both instruments.

The experiment included following steps:
e Launch of test configuration using MDBCI command

generate.

N sequential launches of the generated configuration
using “vagrant up” command.

277

N sequential launches of the generated configuration
using “mdbci up” command.

Calculation of failed launches percentage for each
instrument usage.

Calculation of launch time in minutes for each

instrument usage.

Configuration which was used for measurements contained
seven MariaDb nodes, one Galera node and one Maxscale
node. The experiment was performed on the Maxscale
continuous integration server in order to maximize realism of
network load. Steps of experiment were done by several
execution of script [25] which also collected results for further
analysis.

10
=

Q

=

[

5 o9

E

[75]

2

5 5 T MDBCI
£ W Vagrant
=

£

£ 7

1 2 3 4 5 6 7 8 9 10
Launch number

Fig 2. Number of successfully running machines after per test configuration
launch

100

40 MDECI

20 —g—\/agrant

0
1

Launch time, minutes

il e i

i - s i i .
i . g d - v v

2 3 4 5 6

Launch number

7 8 9 10

Fig 3. Time of test configuration launches

Fig. 2 shows that MDBCI had successfully launched all
machines from test configuration in all cases instead. For the
same configuration Vagrant launches contain 3 failed
machines which means that MDBCI is a more robust
instrument. At the same time MDBCI experienced
deceleration of configuration launch process during the
experiment. Fig. 3 shows that average MDBCI time equals to
84 minutes which is more than ninefold bigger than Vagrant
average launch time for the same configuration. However such
speed degradation can be acceptable for most of Maxscale
development use-cases due to big duration of test sets -
particular tests from Maxscale-System-Test can take several
hours to finish.

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

VII. CONCLUSION

Development of the test automation instrument can be a
very difficult task in order to support of a specific software
product. One of the possible solutions is an integration of the
existing low-level tools using a domain dictionary of a
particular development process. For the MariaDB product
stack the problem was solving by creating MDBCI - a Ruby
middle-ware which wraps Vagrant and Chef. The
implemented solution allowed to overcome limitations of the
existing test automation: nontransparent debug interfaces,
limited support of virtualization providers and high cost of
support due to plenty of different configuration file formats.

For proving quality of MDBCI the comparison between
imitation of previous test automation (Vagrant) and a current
solution was done. Evaluation showed that despite higher level
of robustness MDBCI is almost ten times slower that Vagrant
based solution, however such slowdown is acceptable because
typical Maxscale testing use-cases can take incomparably
much time.

Future development of MDBCI includes embedding new
virtualization providers and performance benchmarks support
in order to provide interfaces to more sophisticated testing of
MariaDB stack products. Also, simplification of new provider
addition and interfaces for multi provider configurations are
planned.

ACKNOWLEDGMENT

This project was done with financial support of MariaDB
Corporation.

REFERENCES

Market Research Media site, NoSQL Market Forecast 2015-2020,
Web: https://www.marketresearchmedia.com/?p=568

(1
[2] C Coronel and S. Morris, Database systems: design, implementation,
& management. Cengage Learning, 2016.

[3] T. Anderson et al, Overcoming the Internet impasse through
virtualization. Computer 38.4, 2005, pp. 34-41.

278

[4] S.SM. Fauzi, PL. Bannerman, and M. Staples, Software
Configuration Management in Global Software Development: A
Systematic Map. Asia Pacific Software Engineering Conference.
IEEE, 2010.

[5]

ariaDB Corporation Ab site, MariaDB MaxScale,
https://mariadb.com/products/mariadb-maxscale

D. Bartholomew, MariaDB Cookbook. Packt Publishing Ltd, 2014.

Galera Cluster for MySQL
http://galeracluster.com/products/

web:

[6]
[7

site, web:

[8] Github repository, Maxscale-System-Test: System level tests for
MaxScale, web: https://github.com/mariadb-corporation/maxscale-
system-test/

CMake Documentation, ctest(1),
https://cmake.org/cmake/help/v3.0/manual/ctest. 1. html.

web:

[9]

[10] M. Bolte et al, Non-intrusive virtualization management using libvirt.

In Proceedings of the Conference on Design, Automation and Test in

Europe. European Design and Automation Association, 2010, pp.

574-579.

[11] C. Guillon, Program instrumentation with gemu. 1st International
QEMU Users’ Forum, 2011, Vol. 1, pp. 15-18.

[12] K.R. Jackson et al, Performance analysis of high performance
computing applications on the amazon web services cloud. Cloud
Computing Technology and Science (CloudCom), 2010, IEEE
Second International Conference on 2010, pp. 159-168.

[13] S. Omar, M. Aissaoui, and M. Eleuldj, OpenStack: toward an open-
source solution for cloud computing. International Journal of
Computer Applications 55.3, 2012.

[14] M. Hashimoto,
2013.

[15] J. Keating, Mastering Ansible. Packt Publishing Ltd, 2015.

[16] M. Taylor, S. Vargo, Learning Chef: A Guide to Configuration
Management and Automation, O'Reilly Media, Inc., 2014.

[17] J. Rhett, Instant Puppet 3 Starter, Packt Publishing Ltd, 2013.

[18] Github repository, ~ OSLL mdbci: MariaDBCI,
https://github.com/OSLL/mdbci

[19] A. V. Romero, VirtualBox 3.1: Beginner's Guide. Packt Publishing
Ltd, 2010.

[20] Biallas S. et al, PearPC-About. 2007.

[21] A. Kopytov, SysBench manual. MySQL AB, 2012, pp. 2-3

[22] Github repository, OSLL mdbci: MariaDBCI, source code, web:
https://github.com/OSLL/mdbci/blob/integration/scripts/paper/check
vagrant_on_heavy_aws_config.sh

Vagrant: Up and Running. O'Reilly Media, Inc.,

web:

