
Multi-Leveled Hierarchical Control to Optimize
Workload of a Service-Oriented Platform

Dmitrii A. Zubok, Aleksandr V. Maiatin, Maksim V. Khegai, Tatiana V. Kharchenko
ITMO University

St. Petersburg, Russia
{Zubok, Kharchenko}@mail.ifmo.ru, {mavr.mkk, MaksimKhegai}@gmail.com

Abstract— nowadays, one of the directions of development of
cloud systems is a creation of open platforms, providing resources
for deploying third-party services. Users of such resources may
deploy their own services, implemented with a wide range of
technologies, receiving guaranteed performance and availability.
To provide high availability and optimal utilization of hardware
resources such platforms are built with a complex hierarchical
infrastructure. As complexity of such systems increased, due to
inability of control methods on different levels of hierarchy
becoming ineffective, an issue with performance appeared. A
complex approach to control is needed. This work is focused on
researching the probability of making a hierarchical control
system that allows choosing optimal methods and influence
different system’s elements on different levels, depending on
current state of the system. A prediction of a probable workload
of the system is also taken into consideration. The testing
platform allowed conducting simulation experiments to
determine threshold values that will influence system’s state and
to evaluate cost of control methods at certain levels of hierarchy.
The received results show that it is highly probable to use the
multi-leveled hierarchical control to achieve optimal performance
level.

I. INTRODUCTION

A performance control has been and will always be a very
important part of every computing system. Especially this is
crucial for systems that provide services to a lot of clients and
even a small decrease in performance may, potentially, lead to
short, almost uncontrollable, bursts of downtimes. For
example, this is a common issue in cloud computing systems.

Modern cloud systems nowadays utilize complex system
architecture and as a result have a lot of parameters for
performance control. Multi-tenant systems are one of many
applications of a cloud based architecture. A typical
architecture for such systems has different services
(applications) deployed in virtual machines. Those virtual
machines in their turn are deployed in physical nodes. The
architecture also contains performance optimizers that
distribute incoming jobs to different services.

 A lot of researches are centered around means of
controlling different parameters of such systems. Virtual
machines migration, for example, was researched in [1] and
[2]. Even though they don't look at migration in scope of
service-oriented architecture their ideas provide good
foundation for further researches. In the first paper G. Sun, D.
Liao, V. Anand, D. Zhao, and H. Yu describe a way to

optimize (not always minimize) time of live migration of
multiple virtual machines. In the second paper T. Franco et al.
present a research on seamless live migration of virtual
machines over the Wide Area Network. As a result of their
experiments a virtual machine was migrated between two
countries with very low downtime.

Work [3] researched a way of paralleling the processing of
several jobs without decrease in performance. In [4] a solution
to multi-level scheduling is presented. Also, in [7] we
described a way of controlling jobs distribution with use of
threshold disciplines.

While all these works may help to significantly increase the
overall performance, they focus on only one single parameter.
And in each case there are areas definite areas for optimal
usage of those methods. For example, threshold disciplines are
effective only if jobs intensity doesn't exceed total
performance of each processing application. Virtual machines
migration supposes an existence of a time period when jobs
intensity is constant after a few peaks. Simultaneous use of
different optimization methods was not as widely
researched [5].

An important area where a complex approach to
performance control would be useful is service-oriented
platforms with interacting services. The main and important
distinction of such systems are unpredictable traffic changes:
small and mostly insignificant changes in jobs stream intensity
may lead to very significant changes in system's performance.
This is due to complex distribution of secondary jobs while
processing an original job by a sequence of applications.

II. BASIC ARCHITECTURE OF A SYSTEM

Though every system that was researched in papers,
mentioned before, is different, we can still base our
architecture on their findings. In [8] we presented a typical
model of a service-oriented system. This is our basis for the
present work.

The system itself may be separated into few different parts
(levels). There are five of them:

1) Physical level
2) Virtual level
3) Applications level
4) Jobs queuing level

__PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

5) Supplementary level

They compose a hierarchy of levels with only
Supplementary level being outside of it. This level describes a
set of additional applications that may be deployed on
different levels themselves. The levels are represented on Fig.
1.

A. The Physical level
The Physical level is on the top of the hierarchy. This level is

basically just a physical server that contains virtual machines
hypervisors with virtual machines and applications.

B. Virtual level
Virtual level is the first step to jobs distribution. This level

describes all virtual machines that have been deployed in it.
These virtual machines may come with preinstalled software or
they may be clean for an administrator or even user to install
needed software manually. Virtual machines and applications
storage is also included in this level.

C. Applications level
Applications level contains every application that was

installed in a virtual machine. Each virtual machine has its own
application level, making it a second step to jobs distribution.

D. Jobs queuing level
Jobs queuing level is the last step to jobs distribution. Every

application has a jobs queue where jobs are being put when
arriving to an application. This level also contains a common
jobs queue. This queue holds every job that arrived before
redistributing them to appropriate applications.

E. Supplementary level
Supplementary level holds monitoring agents, controllers and

a knowledge base. Monitoring agents, depending on their
purpose, may be put inside of an application, virtual machine or
even physical server. That's why it is impossible to put this level
in the hierarchy. Some elements from this level were researched
in [9] as well as their use in real cloud systems. Thus, this level
is crucial for proper functioning of optimization algorithm.

The controlling node always has a knowledge base and a
monitoring agent inside. Since this node is a virtual machine
itself, meaning that it lies in the Virtual level, it also has
applications. Those are service applications that have no use in
computational virtual nodes, and may not be deployed in those.

The service applications monitor the performance of the
system and also hold common jobs queue and send a job to
appropriate application. In general there may be a lot of such
applications and their scope is not limited to just those two
tasks.

Other two virtual machines are computational ones. They
contain an application (or a few applications) that process
incoming jobs and a monitoring agent. There is nothing else to
prevent performance from degrading with time.

Every virtual machine, even the controlling one, has a
controller inside. This controller takes next tasks:

• Receiving a job

• Deciding on which path a job must take

• Sending data to application

• Receiving data from application

• Sending a result

Fig. 1. Levels of the basic system

Those controllers are the only way for virtual machines to
interact with each other. This was made to keep loose coupling
of nodes and provide higher scalability.

Controllers are connecting with each other through a virtual
switch.

The knowledge base is required for keeping information
about existing virtual machines, applications and every other
component of the system. To provide efficient update of
information about system's elements, it holds data as RDF
triplets and connects it into one ontology. However this is not
the scope of this paper, so it will not be presented here. Detailed
explanation of this approach is presented in [8].

III. JOBS QUEUES AND PATH FINDING

Since a virtual server may contain several applications, that
means it can process different types of jobs at the same time.
However doing so will significantly decrease the performance.
That is the main reason a controller must choose the correct
path for a job. Choosing the correct path is a non-trivial task
that takes into consideration a lot of parameters such as current

__PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

-- 280 --

__PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

-- 281 --

__PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

-- 282 --

__PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

-- 283 --

__PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

-- 284 --

