PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Multi-Leveled Hierarchical Control to Optimize
Workload of a Service-Oriented Platform

Dmitrii A. Zubok, Aleksandr V. Maiatin, Maksim V. Khegai, Tatiana V. Kharchenko

ITMO University
St. Petersburg, Russia
{Zubok, Kharchenko} @mail.ifmo.ru, {mavr.mkk, MaksimKhegai}@gmail.com

Abstract— nowadays, one of the directions of development of
cloud systems is a creation of open platforms, providing resources
for deploying third-party services. Users of such resources may
deploy their own services, implemented with a wide range of
technologies, receiving guaranteed performance and availability.
To provide high availability and optimal utilization of hardware
resources such platforms are built with a complex hierarchical
infrastructure. As complexity of such systems increased, due to
inability of control methods on different levels of hierarchy
becoming ineffective, an issue with performance appeared. A
complex approach to control is needed. This work is focused on
researching the probability of making a hierarchical control
system that allows choosing optimal methods and influence
different system’s elements on different levels, depending on
current state of the system. A prediction of a probable workload
of the system is also taken into consideration. The testing
platform allowed conducting simulation experiments to
determine threshold values that will influence system’s state and
to evaluate cost of control methods at certain levels of hierarchy.
The received results show that it is highly probable to use the
multi-leveled hierarchical control to achieve optimal performance
level.

1. INTRODUCTION

A performance control has been and will always be a very
important part of every computing system. Especially this is
crucial for systems that provide services to a lot of clients and
even a small decrease in performance may, potentially, lead to
short, almost uncontrollable, bursts of downtimes. For
example, this is a common issue in cloud computing systems.

Modern cloud systems nowadays utilize complex system
architecture and as a result have a lot of parameters for
performance control. Multi-tenant systems are one of many
applications of a cloud based architecture. A typical
architecture for such systems has different services
(applications) deployed in virtual machines. Those virtual
machines in their turn are deployed in physical nodes. The
architecture also contains performance optimizers that
distribute incoming jobs to different services.

A lot of researches are centered around means of
controlling different parameters of such systems. Virtual
machines migration, for example, was researched in [1] and
[2]. Even though they don't look at migration in scope of
service-oriented architecture their ideas provide good
foundation for further researches. In the first paper G. Sun, D.
Liao, V. Anand, D. Zhao, and H. Yu describe a way to

optimize (not always minimize) time of live migration of
multiple virtual machines. In the second paper T. Franco et al.
present a research on seamless live migration of virtual
machines over the Wide Area Network. As a result of their
experiments a virtual machine was migrated between two
countries with very low downtime.

Work [3] researched a way of paralleling the processing of
several jobs without decrease in performance. In [4] a solution
to multi-level scheduling is presented. Also, in [7] we
described a way of controlling jobs distribution with use of
threshold disciplines.

While all these works may help to significantly increase the
overall performance, they focus on only one single parameter.
And in each case there are areas definite areas for optimal
usage of those methods. For example, threshold disciplines are
effective only if jobs intensity doesn't exceed total
performance of each processing application. Virtual machines
migration supposes an existence of a time period when jobs
intensity is constant after a few peaks. Simultaneous use of
different optimization methods was not as widely
researched [5].

An important area where a complex approach to
performance control would be useful is service-oriented
platforms with interacting services. The main and important
distinction of such systems are unpredictable traffic changes:
small and mostly insignificant changes in jobs stream intensity
may lead to very significant changes in system's performance.
This is due to complex distribution of secondary jobs while
processing an original job by a sequence of applications.

I1. BASIC ARCHITECTURE OF A SYSTEM

Though every system that was researched in papers,
mentioned before, is different, we can still base our
architecture on their findings. In [8] we presented a typical
model of a service-oriented system. This is our basis for the
present work.

The system itself may be separated into few different parts
(levels). There are five of them:

1) Physical level

2) Virtual level

3) Applications level
4) Jobs queuing level

ISSN 2305-7254

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

5) Supplementary level

They compose a hierarchy of levels with only
Supplementary level being outside of it. This level describes a
set of additional applications that may be deployed on
different levels themselves. The levels are represented on Fig.
L.

A. The Physical level

The Physical level is on the top of the hierarchy. This level is
basically just a physical server that contains virtual machines
hypervisors with virtual machines and applications.

B. Virtual level

Virtual level is the first step to jobs distribution. This level
describes all virtual machines that have been deployed in it.
These virtual machines may come with preinstalled software or
they may be clean for an administrator or even user to install
needed software manually. Virtual machines and applications
storage is also included in this level.

C. Applications level

Applications level contains every application that was
installed in a virtual machine. Each virtual machine has its own
application level, making it a second step to jobs distribution.

D. Jobs queuing level

Jobs queuing level is the last step to jobs distribution. Every
application has a jobs queue where jobs are being put when
arriving to an application. This level also contains a common
jobs queue. This queue holds every job that arrived before
redistributing them to appropriate applications.

E. Supplementary level

Supplementary level holds monitoring agents, controllers and
a knowledge base. Monitoring agents, depending on their
purpose, may be put inside of an application, virtual machine or
even physical server. That's why it is impossible to put this level
in the hierarchy. Some elements from this level were researched
in [9] as well as their use in real cloud systems. Thus, this level
is crucial for proper functioning of optimization algorithm.

The controlling node always has a knowledge base and a
monitoring agent inside. Since this node is a virtual machine
itself, meaning that it lies in the Virtual level, it also has
applications. Those are service applications that have no use in
computational virtual nodes, and may not be deployed in those.

The service applications monitor the performance of the
system and also hold common jobs queue and send a job to
appropriate application. In general there may be a lot of such
applications and their scope is not limited to just those two
tasks.

Other two virtual machines are computational ones. They
contain an application (or a few applications) that process
incoming jobs and a monitoring agent. There is nothing else to
prevent performance from degrading with time.

Every virtual machine, even the controlling one, has a
controller inside. This controller takes next tasks:

Receiving a job

280

Deciding on which path a job must take
Sending data to application
Receiving data from application

Sending a result

Physical Level
Physical Server
Virtual Level
Virtual Machine Virtual Applications
Machines Storage
Storage
Applications Level
Application
Jobs Queuing Level
Jobs Queue

Supplementary Level

Controller Knowledge Base Monitoring Agent

Fig. 1. Levels of the basic system

Those controllers are the only way for virtual machines to
interact with each other. This was made to keep loose coupling
of nodes and provide higher scalability.

Controllers are connecting with each other through a virtual
switch.

The knowledge base is required for keeping information
about existing virtual machines, applications and every other
component of the system. To provide efficient update of
information about system's elements, it holds data as RDF
triplets and connects it into one ontology. However this is not
the scope of this paper, so it will not be presented here. Detailed
explanation of this approach is presented in [8].

III. JOBS QUEUES AND PATH FINDING

Since a virtual server may contain several applications, that
means it can process different types of jobs at the same time.
However doing so will significantly decrease the performance.
That is the main reason a controller must choose the correct
path for a job. Choosing the correct path is a non-trivial task
that takes into consideration a lot of parameters such as current

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

performance of the node, current performance of a physical
server, allocated node resources, allocated physical resources
etc.

The performance, however, may change with time. That
happens because of two main reasons: number of processed
jobs may vary with time very drastically; placement of
applications in virtual machines may not be optimal as well as
placement of virtual machines in physical servers. As a result
performance optimization is a complex process that is
composed of a multiple tasks. In order to optimize
performance we, according to [8] need:

1) Monitor performance and available resources of each
server, virtual machine and application.

2) Quickly search for a path of job processing that will
include a set of instances of applications.

3) Store knowledge about systems’ objects and efficiency
of decisions made earlier.

These tasks were solved in [7] and [8], but separately.
Consolidating solutions of these tasks will give us a working
algorithm for performance optimization and will increase the
overall performance of the system.

The first task was solved by integrating intellectual agents
into applications and virtual machines. They monitor
performance of machines and send the data to the main
controlling node. In order to keep performance on a proper
level, those agents only send data when the changes were
significant.

The second task was solved by implementing complex jobs.
Those are jobs that may require several applications to process
them in an order. Thanks to that we can try finding an optimal
route for a job to take which will give the smallest decrease in
performance.

The third and the last task provides us with information on
which routes a job took earlier and for how long has it been
processed. As a result we don’t need to recalculate a path each
time: we can assume that in a short period of time there were
no significant changes and just use the same route.

IV. ARCHITECTURE OF THE SYSTEM

To find an optimal path for a job the system has to be in a
stationary state for some time. However even slightest changes
in jobs stream intensity may lead to big changes in
performance and may demand some reconfiguration of the
system to avoid downtime. Since the design is hierarchical,
this process can happen on each level an can demand different
complexity of algorithms for each of them.

As was said in section 2 the basic model of a system
consists of five levels: Physical level, Virtual Ievel,
Applications level, Jobs queuing level, Supplementary level.
All of them are necessary for system functioning.

We have our system as two physical servers with virtual
machines hypervisors on it. These hypervisors deploy at least
three virtual machines, with one of them being a controlling
one and having the connection controller that transfers data.

281

One of these two physical servers is the main one that holds
database, knowledge base, and storages. It also has a main
controller. Applications are sets of interpretators or runtimes
and are deployed to different virtual machines. In our case a
virtual machine with applications is a service.

Each virtual machine has an intellectual agent placed
inside. These agents monitor the performance of a virtual
machine and send this data to the main controller. As a
connection controller computing virtual machines use Jobs
Distributing Controllers that handle data transferring. All data
is transferred through a virtual switch that connects every node
and virtual machine into one local network.

The whole system is based on Xen Virtual Hypervisor. That
means that machines use less processor time since they all use
the same kernel of a host. We also use AMQP protocol to
transfer data, as a part of the RabbitMQ framework.

The architecture is presented on Fig. 2.

V. THE ALGORITHM

The optimization itself may be separated into four different
steps:

1) Jobs queuing step. During processing application have
performance that changes with time. Having several copies of
an application and monitoring its performance allows to
achieve optimal average response time.

Advantages of this step are in low overhead costs and quick
response to performance or jobs stream intensity change.
However, the step is effective only when total performance of
all applications is comparable to jobs stream intensity.

If we can predict when jobs stream exceeds the total
performance and the period is long, we need to get to the next
step.

2) Applications redistributing step. We can deploy another
application in a virtual machine. Applications may also be
redeployed to other virtual machines to decrease workload of a
highly loaded virtual machine.

There are some limitations to this. Web-applications that
process jobs may be developed using different technologies.
For example a web-application may be a PHP script, a Python
program or even a Java program. Those applications may also
need a working database to keep track of used data. This
restricts some virtual machines to use of only some certain
applications by software versions, necessary dependencies,
operating system.

The advantages are in ability to change total performance of
applications and in a little higher that in the previous step but
reasonable overhead costs. This step also has a quick
response time, provided that there is applications
storage.

There are disadvantages though. This step will be effective
only if virtual machines can afford providing resources for all
applications to work. It also demands a storage and
preliminary creation of applications templates.

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Physical Server 1

Computing Virtual Machine (OS 1

Application 1 Application 4

Computing Virtual Machine (OS 2)
Execution

% Application 2 % Application 3 %
Performance

Database 1 % Application 5
Monitoring
Agent

AMQP

Execution
Environment 1

AHE

Jobs Distributing
Controller

Jobs Distributing
Controller

Performance
WMonitoring
Agent

AHh dHh dHK

Main Virtual Machine

I:I,:I Connection
I:;:I Controller

Virtual
Switch

Performance
Monitoring
Agent

I:'IZI Main Controller

=

AMQP

Queue Controller

O

Knowledge
Base

AMQP

Physical Server 2 AVMQP AMQP AMQP

Controlling Virtual Machine

=

Computing Virtual Machine (OS 1)

SE
= &

Fig. 2. Architecture of the system

Computing Virtual Machine (OS 2)

Performance
Monitoring
Agent

Performance
Monitoring
Agent

Connection
Controller

Jobs Distributing
Controller

2

r

Execution Application 9

Database 2 Application 8

Application 7

Performance
Monitoring
Agent

Jobs Distributing
Controller 1T

AHh dHh ({Hh
dHh dHK

Execution
Environment 3

3) Migration and creation of virtual machines. A migration
to another physical server or a creation of a new virtual
machine is required when all available resources are allocated
and there is not enough of them to keep total performance on a
reasonable level. This is mainly used when it is not possible to
redeploy applications due to the limitations.

Overhead cost is significantly higher than before and the
performance will always be a little lower due to another virtual
machine getting processor time (this is not the case when a
virtual machine is migrated to another server). However this
step drastically increases ability to control performance level
by providing additional resources and is limited only by
physical resources of a system.

4) Starting or stopping physical servers. When no other step
helps a last attempt to control performance is to start a new
server or to stop a server that doesn't do anything at the
moment. This will either use free physical resources to
increase total performance of applications or free resources for
other servers to use.

The activity diagram of all four steps is presented on Fig. 3.

282

;‘ Distribute jobs

Check the performance

[No] [Yes]

[Threshold value
is exceeded]

[Threshold value
is exceeded]

Check the performance

Reallocate
applications

Reallocate
virtual
machines

Check the performance

[Threshold value
is exceeded]

Check for free
resources

Fig. 3. Activity diagram of the applications reallocating algorithm

Start a new
server

[There are free
resources]

Again, the first step already was researched by us in [7] and
has shown that in most situations it increases the overall
performance. The third step is too complex to include it in this
work, so instead we focus on consolidating steps one and two.
We already have a threshold discipline from [7] and in this
work we will describe an algorithm to find an effective new
placements for applications.

This time, however, the first step is updated and extended
with use of the second step and composite jobs. Here, we have
a jobs queue that is filled with jobs, coming from users. This
queue is used in jobs distribution: the system decides which
applications may process any jobs and sends them there. But it
does so only if a certain threshold value was not exceeded by
response time.

The second step demands another threshold value. In our
previous work the system just stopped sending jobs to one
application when a certain value was exceeded and began
sending them to another. This time, when the last threshold
value is exceeded, applications redistributing begins. Search
for an appropriate application is decomposed into these
steps:

Determine an application with lowest performance.

Determine virtual machine with

performance.

a highest

Determine a virtual machine with maximum free
resources.

If those virtual machines are the same machine: check
if there are enough resources to reallocate application
and if this virtual machine can run the application. If it
doesn't then do steps 2 through 4 for virtual machine
with second to highest performance and with second to
maximum amount of free resources.

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

If an appropriate virtual machine was found: reallocate
the application.

The activity diagram of this algorithm is presented on
Fig. 4.

V1. EXPERIMENTS

To check the efficiency of the algorithm we conducted
three types of experiments. The first is similar to one we
already did in [7]: we checked the performance of the system
when using the first step of the optimization. This is needed to
compare results of the next experiments. The gathered values
represent response time changes at each iteration.

The second type of experiments is experiment where we
only reallocate applications to optimize the performance. The
gathered values should have peaks at times of reallocation but
essentially should be the same as at the previous step. The jobs
queuing in this case is disabled: as soon as a job is received,
it’s sent to a first free application that can process it.

The last type consolidates two other. To implement a
change from one step to another, we have a threshold value.
When this value is exceeded, the optimization step is changed
to applications reallocating.

!

Find appropriate
applications

Determine application
with most free resources

_)[] Reallocate applications

Check the threshold
value

[

[Virtual machine:
are the same]

Determine application 1
with highest performance

[Threshold valug
is exceeded]

Distribute jobs

Fig. 4. Activity diagram of the applications reallocating algorithm

To be able to compare the experiments, all three of them
had the same parameters: each experiment was conducted 100
times. During the experiments 1000 jobs was sent to the
system with 3 seconds intervals. Then we smoothened up the
values by using Moving Average Method, using all 100
iterations. The number of iterations should give us good
smoothened values since there are a lot of input values. In [10]
we used 10 and even then the averaged value was showing the
dynamics of the chart without too many fluctuations. Having
more iterations will only further smoothen the
values.

As we can see at Fig. 5, with threshold discipline the
response time slowly grows as there is not enough resources
for all jobs to be processed (here N is the number of a job).
However the performance is optimized to the point where this
growth is not as fast as it could be with conservative discipline

283

or no disciplines at all. At this point the response time grows
up to almost 1 millisecond.

mS
1,6

Response
— time fy)

0,81

i vy

06

04

02

N
500 750 1000

Fig. 5. Experiment results with threshold discipline

On Fig. 6 we can see that as soon as response time exceeds
the threshold value reallocating of applications begins. There
are two peaks but after those the performance increases for a
while, before slowly decreasing again. These short peaks
occur at the moment when applications are being reallocated
since this process demands additional resources. The response
time is seen to be quite high at the end of the experiment:
about 0.6 millisecond.

02

N
500 750 1000

Fig. 6. Experiment results with application reallocating

Fig. 7 shows improved performance when using both
methods. At the end of experiment the response time was
much lower: about 0,5 milliseconds. There are still peaks
when applications are being reallocated, however, the
performance does not decreases so fast. During the experiment
it was smooth and response time increased very
slowly.

CONCLUSION

Control of an open cloud platform to provide optimal
performance level is a complex task. Such system has a multi-
leveled hierarchical architecture: elements on different levels
contest for common resources, and that influences other
elements that may not need additional resources at the
moment.

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

m$

0,8

| 'I'\“h ' e ﬁ “ —

0,4

0,2

500 750 1000

Fig. 7. Experiment result with threshold discipline and applications
reallocating

In this work we updated our existing algorithm for
performance optimization in such systems by adding another
step. The resulting algorithm was tested in simulation
experiments and has improved system's performance
compared to the use of jobs queuing exclusively. An example
of architecture for use with the algorithm was also presented.

The future researches lie in implementing two last steps of
optimization, further increasing performance in cases of high
jobs stream intensity. However even now the proposed
algorithm shows its potential.

ACKNOWLEDGMENT

This work was partially financially supported by the
Government of Russian Federation, Grant 074-U01. The
presented result is also a part of the research carried out within
the project funded by grant #15-07-09229 A of the Russian
Foundation for Basic Research.

284

(1]

[2]

3]

[4]

[5]

[6]

(7

(8]

[9]

[10]

REFERENCES

G. Sun, D. Liao, V. Anand, D. Zhao, and H. Yu, “A new technique
for efficient live migration of multiple virtual machines”, Future
Generation Computer Systems, vol.55, Feb.2016, pp. 74-86.

F. Travostinoa, P. Daspitb, L. Gommansc, C. Joga, C. de Laatc, J.
Mambrettid, I. Mongaa, B. van Oudenaardec, S. Raghunatha, and P.
Y. Wange, “Seamless live migration of virtual machines over the
MAN/WAN”, Future Generation Computer Systems, vol.22,
Oct.2006, pp. 901-907.

X. Liu, Y. Zha, Q. Yin, Y. Peng, and L. Qin, “Scheduling parallel
jobs with tentative runs and consolidation in the cloud”, Journal of
Systems and Software, vol.104, Jun.2015, pp. 141-151.

A.J. Rubio-Montero, E. Huedo, F. Castejon, and R. Mayo-Garcia,
“GWpilot: Enabling multi-level scheduling in distributed
infrastructures with GridWay and pilot jobs”, Future Generation
Computer Systems, vol 45, Apr.2015, pp. 25-52.

L. Chunlin, and L. Layuan, “An agent-oriented and service-oriented
environment for deploying dynamic distributed systems”, Computer
Standards & Interfaces, vol 24, Sep.2002, pp. 323-336.

D. A. Zubok, T. V. Kharchenko, A.V. Maiatin, and M. V. Khegai,
“Ontology-based approach in the scheduling of jobs processed by
applications running in virtual environments”, Knowledge
Engineering and the Semantic Web, vol.518, 2015, pp. 273-282.

D. A. Zubok, T. V. Kharchenko, A.V. Maiatin, and M. V. Khegai,
“Functional model of a software system with random time horizon”,
in Proc. FRUCT Conf., 2015, pp. 259-266.

D. A. Zubok, T. V. Kharchenko, A.V. Maiatin, and M. V. Khegai,
“Ontology for Performance Control in Service-Oriented System with
Composite Services”, Knowledge Engineering and the Semantic Web,
vol.519, 2016, pp. 42-55.

G. Katsaros, G. Kousiouris, S. V. Gogouvitis, D. Kyriazis, A.
Menychtas, T. Varvarigou, “A Self-adaptive hierarchical monitoring
mechanism for Clouds”, The Journal of Systems and Software,
vol.85,2012, pp. 1029-1041.

D. A. Zubok, T. V. Kharchenko, A.V. Maiatin, and M. V. Khegai, “A
Multi-Agent Approach to Monitoring of Cloud Computing System
With Dynamically Changing Configuration”, in Proc. FRUCT Conf.,
2016, pp. 410-416.

