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Abstract—This paper presents a method of creating a 
neurocontroller based on a multilayer perceptron for an 
unmanned aerial vehicle. We show how a neural network can 
effectively emulate dynamic characteristics of an aerial craft. 
Another network learns to control the emulator, using 
backpropagation algorithm to calculate the error in its control 
signal. A set of parameters is used to analyze the efficiency of the 
stabilization and the weights of the neurocontroller are adjusted 
accordingly. It is shown that the system meets stabilization 
requirements with sufficient number of iterations. Described 
method can be used to remotely control unmanned aerial vehicles 
operating in changing environment. 

I. INTRODUCTION

An ability to solve a wide array of tasks is one of the 
distinct advantages of small scale multirotor unmanned aerial 
vehicles (UAV). Applications of UAVs range from aerial 
reconnaissance to warfare operations. Because of this, UAVs 
have to deal with different kinds of environments and, as a 
result, with unpredictable turbulences. Such conditions, even 
despite the possible geometrical simplicity of the craft, make it 
difficult to properly control and stabilize a flying vehicle [1], 
[2].

One of the most popular ways of stabilizing a multirotor 
UAV is a Proportional-Integral-Derivative (PID) controller. 
However, even with proper tuning a PID controller is unable 
to account for all non-linearities that influence the behavior of 
the craft. 

A promising way to address these problems is to use 
artificial neural networks (ANN) [2], [3]. Replacing a 
traditional PID controller with a neural network makes it 
possible for the system to adapt to changing conditions, as 
well as optimize the performance of a control scheme in a way 
that is not achievable for a conventional controller. 

One of the feasible applications of artificial neural 
networks is using the network to tune the coefficients of a PID 
controller [11]. However, such systems are inherently limited 
by the abilities of the controller itself. Another downside to 
this approach is the inability to change the target’s 
performance parameters. For example, a quick, responsive 
craft requires a different set of coefficients compared to a 
more stable, but slower one. Usually, these qualities are only 
empirically described. 

These and other problems can be solved by using artificial 
neural networks. Generally, neurocontrol is used in two 
distinct ways: direct and indirect. Direct control includes 
inverse neural emulators, predictive control techniques and 
adaptive critics [4], [5], [6]. Indirect control involves hybrid 
methods and parallel neurocontrol [7]. 

We propose a method of emulating the object and using it 
to teach an adaptive neurocontroller, which satisfies a set of 
requirements such as overshoot, settling time, steady-state 
error and rise time. The results show an increase in the quality 
of control and reduction of the amplitude of damped 
oscillations compared to a conventional PID controller. 

The remainder of this paper is structured as follows. 
Section 2 describes the aerial vehicle and the control loop. 
Section 3 presents the design of neuroemulator, learning 
algorithm and neurocontroller application scheme. In section 4 
we present the results of training experiments. 

II. CONTROL LOOP AND STABILIZATION OBJECT

PID control is the most common control algorithm used in 
industry. It is applicable to a wide range of operating 
conditions. 

A control system functions in a loop, in which it acquires 
sensor data and calculates the error between current state and a 
set point. Based on that error it computes control signal and 
applies it to the system. This type of control system is known 
as a closed-loop system, or a feedback control system.  A PID 
controller takes sensor data and computes the desired actuator 
output by calculating proportional, integral, and derivative 
responses and summing those three components to compute 
the output. All computations required are linear, can be 
optimized and do not take significant processing power. 

We experimented with a small four rotor UAV of our own 
design [1]. Its layout is shown in Fig. 1. 

Fig. 1. Quadcopter layout 
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This aerial craft uses a gyroscope, accelerometer and 
magnetometer to determine its position in a 3 dimensional 
space. It does so by computing roll, pitch and yaw angles. The 
movement of quadcopter is controlled by changing the rotation 
speed of rotors.  

Stabilizing an aerial vehicle with PID controller requires 
several variables – current angle error (difference between an 
actual and a desired tilt angle of UAV), angular speed and 
accumulated error. Each variable is processed with its own 
coefficient and has a different impact on the controller's 
output. Controller that is used for stabilization by roll angle 
(roll controller) is identical to pitch controller and they often 
are configured simultaneously and share coefficients, 
however, coefficients for yaw controller generally differ. 

Tuning a PID controller involves changing coefficients of 
proportional, integral and derivative parts of the controller. 
There are multiple methods of tuning the PID-controller 
coefficients [10]. However, a number of these requires a 
precise mathematical model of the control object; methods that 
do not use a model have their own disadvantages, such as still 
needing a manual tuning after the algorithm adjusted the initial 
values. Thus, PID tuning is often done manually by changing 
the coefficient's value for each component and observing the 
UAV's response to the change.  

Without any external disturbance, a well tuned PID-
controller can stabilize a UAV while avoiding using excessive 
resources. However, in a real world scenario the system needs 
to be more agile and able to adapt to ever changing conditions. 
Any change in the external (temperature, wind, atmospheric 
pressure), or internal (weight, geometry) environment might 
cause a set of coefficients to be sub-optimal. Additional tuning 
will be required, which is difficult to do on the fly. 

III. NEURAL NETWORK ARCHITECTURE 

An artificial neural network is a computational system 
inspired by the way biological organisms, such as the human 
brain, process information. A neural network does not follow a 
linear path; instead, any input data is processed in parallel 
through a set of nodes. These nodes are called “neurons”. 

The most important aspect of a neural network is its ability 
to adjust the way it processes the information through a 
learning algorithm, thus changing the output. This is achieved 
through modification of “weights” (which regulate the impact 
of each connection on the final result) and “biases”. 

It is known that neural networks are effective in 
approximating an unknown non-linear function, if some 
information about the function is provided [3]. They are 
capable of finding patterns and trends within complicated or 
imprecise data. 

There are several ways of incorporating ANNs in neural 
control: linear neurocontrollers, multilayer perceptrons, 
recurrent neural networks [3], [4], [7]. 

Their qualities make it possible to use neural networks in 
different ways: 

pattern recognition; 

adaptive control; 

object emulation; 

anomaly detection; 

time series prediction. 

In this work we use several multilayer perceptrons for two 
distinct goals: 

1) Emulating the control object 

2) Creating a neurocontroller 

A. Basic neural network structure 

Fig. 2. Neural network scheme 

Neural networks used in this work are feed-forward 
networks, which means the signal travels in one direction – 
from input to output. The output of any layer does not affect 
that same layer. 

Networks consist of several layers: input, output and one or 
several “hidden” layers. 

The input layer represents the raw information that is fed 
into the network. 

Second, "hidden", layer allows network's behavior to be 
non-linear. The number of neurons within that layer and the 
number of hidden layers itself can be chosen with different 
techniques in mind and depends on the conditions of the task, 
however, for relatively simple tasks one layer is usually 
enough [9]. The number of neurons can be calculated as an 
average between input and output neurons, but might be 
increased.

Third layer is an output layer with one or several output 
neurons, as per the task upon the network. 

Each neuron in the hidden layer has an activation function 
for producing non-linear output and propagating it forwards 
through the network. We experimented with a number of 
activation functions and found most activation functions 
producing similar results in the rate of convergence and 
computational load with small differences in the derivative 
calculation and storage. 

A sigmoid function was chosen:  
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where x is a sum of inputs xi with weights i and bias b:

Fig. 3. Sigmoid function 

This function is bounded, easily differentiable, monotonic, 
and produces a smooth output (Fig. 2). Small changes in input 
coefficients (weights and bias) result in small changes in the 
output of the function. Its output lies in [0;1] range, which 
makes it useful in classification cases. 

Another great quality of this function is that its derivative: 

can be easily computed since we can save the result of the 
function while propagating the input signal through the 
network. The derivative of the sigmoid function is used later in 
backpropagation, and storing it reduces processing time.  

For the output layer we use a linear activation function, 
since the output of the network lies outside of the sigmoid’s 
function range. A linear activation function is equal to its 
input. As a result, it is not bound and can produce any value.  

B. Network learning algorithm 

One of the most common training algorithms for artificial 
neural networks is backpropagation [8]. This algorithm can 
optimize weights and biases in a multilayer network. 

The backpropagation algorithm uses gradient descent  
method to look for the minimum of the error function. A 
solution is thus the combination of weights that minimizes the 
error. 

First, the input information is presented to the network and 
propagated forward until it reaches the output layer. Then the 
desired and actual outputs are compared and the error for each 
output neuron is calculated. This error is propagated backward 
through the network, thus giving the error for each neuron in 
all hidden layers. Using these values, a backpropagation 
algorithm can update weights and biases. 

In order to use this method, we need a training set 
consisting of n ordered pairs of multidimensional vectors 

, in other words – input and output 
patterns. This dataset maps several inputs to outputs, 
establishing a pattern for the neural network to learn. 

Initial weights  and  of the network are selected at 
random. When input xi is presented to the network, it is 

propagated through the network, producing an output oi. The 
goal of the training algorithm is to make the output oi close or 
identical to the desired output ti for each input. This is done by 
minimizing the error function: 

First, the error signal in the output layer k is calculated: 

(1)

where  is a derivative of the activation function. For 
the output layer this derivative equals 1. 

The weights of the output layer are adjusted according to: 

(2)

where  is the input from a neuron in the previous layer 
(i.e. the output of the relative neuron in the hidden layer),  is 
the learning rate. This learning rate is typically a small number 
(eg. 0.004), regulating the speed at which the weights are 
adjusted. Higher learning rate values may cause the network’s 
outputs to oscillate around the target, thus never converging on 
a solution; small values might cause the learning process to be 
very slow. 

It is worth noting that the gradient descend method has a 
downside in that it might get “stuck” at the local minimum of 
the error function. In order to get over the “small hill” and 
continue moving toward a global minimum, we can modify 
the equation (2) as follows: 

where  is a momentum factor. The introduction of the 
momentum accelerates the learning process by keeping track 
of the previous changes, thus allowing the algorithm to move 
in larger steps. The faster movement prevents the network 
from settling in a local minimum by helping it move past the 
“hill”. 

The error signal for the nodes in hidden layer is calculated 
in a similar way to the output layer. 

where  is the weighted error signal. A derivative of 
the activation function for the hidden layer is: 

therefore 

(3)

Weights of the hidden layer are updated in the same way as 
the weights of the output layer: 

Biases of both layers are updated in a similar way as 
weights: 

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 22 ----------------------------------------------------------------------------



C. UAV emulation 

Before training our neurocontroller, we first create a neural 
network that is able to behave like the target object. 

Training a neural emulator of the object involves collecting 
a dataset of object’s states, inputs and corresponding outputs. 
A neural network that has the same number of inputs and 
outputs is created, with one hidden layer and a configurable 
number of neurons. As mentioned before, the number of 
hidden neurons depends on the particular task and could be 
determined empirically. After experimenting with different 
number of neurons we chose 11 nodes in the hidden layer, as 
this particular number allowed the network to converge on the 
solution relatively fast and with acceptable precision. 

The network has 3 inputs – a control signal, current state, 
which in our case is the tilt angle, and current speed. After 
processing the inputs, the emulator returns the resulting state 
and speed of the system. 

An important note here is the fact that we use the same 
model for roll and pitch angles, since the dynamics of these 
angles in the real UAV are nearly identical and often the same 
set of PID coefficients is used for controllers of both angles. A 
separate model for the yaw angle should be used. The method 
of training the neural network to emulate the UAV on yaw 
angle is identical to the one used for roll/pitch angles, 
therefore in the scope of this article we will only present 
experiment results for the latter. 

Training is done in the following way: we collect flight 
data from the real quadcopter and separate it into the training 
set and the testing set. Using backpropagation algorithm, we 
train the neural network to match the outputs of the real craft. 
After multiple iterations and when the squared mean error (4) 
is below the acceptable threshold, the model is tested with the 
values that were not present in the training set to determine 
how well the emulator represents the target object.  

(4)

The process is represented in Fig. 4. 

Fig. 4. Neural network UAV emulation 

The initial state Z0 of the UAV is passed to the neural 
network along with the PID control signal. The network 

produces a new state Zn, which is then compared to the actual  
state Zk+1; the error is backpropagated through the network and 
its weights and biases are adjusted. The process repeats until 
the conditions of squared mean error being below the target 
mark are met.

D. Neurocontroller initial training 

The goal of this work is to create a controller capable of 
adapting to the changing conditions, that satisfies a set of 
requirements. Using a neural network makes adjusting the 
neurocontroller attitude possible; this controller is also not 
bound by the limitations of the PID algorithm. 

In order to achieve a better stabilization response, we 
increase the number of inputs that the controller takes. Aside 
from the normal three inputs (current error of the angle, 
angular speed and accumulated error), the neurocontroller also 
takes acceleration and the desired rise time as input. The 
output of the controller is the same output a PID algorithm 
gives. 

Having a neural emulator of the target object means we can 
train the network without the risk of breaking the actual 
vehicle. The learning process always starts with the object 
being in a state z0; the goal of the controller is to drive the 
vehicle to the desired state zd. While training, we set the initial 
tilt angle of the model to 30 degrees on one of the axis with 0 
angular speed. The desired state is set to 0 degrees and 0 
angular speed. This means that after a period of t the controller 
needs to drive the model to the desired state and stop there. 
Any difference in the angle or the speed contributes to the total 
error of the controller. 

A controller stays the same within one stabilization cycle 
for a period of t. Since initially it does not possess any 
knowledge about how to control the model, we use a 
conventional PID controller data to quickly train the 
neurocontroller to stabilize the model just like PID algorithm 
would. Thus, our neurocontroller training is done in two 
phases. In the first phase it learns to behave identically to a 
PID controller. Inputs not supported by PID algorithm are set 
to zero in this phase. 

z

up

un

PID

eNN

Learning
algorithm

Fig. 5. Neurocontroller initial training 

A learning scheme is presented in Fig. 5. Since the PID 
function has linear relation to its arguments, the network 
converges on the solution relatively fast. After a number of 
iterations the neurocontroller is capable of stabilizing the craft 
on a level of a well tuned PID controller and is now ready to 
be improved.  
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E. Neurocontroller tuning 

A trained controller can be tuned further, using the 
neuroemulator to test its performance. This is the second phase 
of controller training. 

Our goal is to modify the weights and biases according to 
the final state of the model. To train the controller, we need to 
know the error of the control signal; unfortunately, the only 
available error is the difference between final state and the 
desired state. However, since the vehicle model is a neural 
network, we can backpropagate the error of the output layer all 
the way back to the input layer, which means the controller’s 
error can be acquired. The real vehicle cannot be used in this 
way, because there is no data on the relation between its inputs 
and outputs. 

Using the equations (1) and (3), we translate the final state 
error to the neurocontroller output error. Figure 6 represents 
the training process. This method was suggested by Derrick H. 
and Bernard W. [3] and is a very effective tool to bypass the 
usual limitation of the backpropagation algorithm – obtaining 
a proper labeled dataset. Since normally there is no particular 
data on how exactly the object should be moving at each point 
in time, training the neurocontroller is difficult as we do not 
have the information required to compute the error signal for 
all layers. However, with this approach a controller will learn 
the optimal way to get to the target by itself, using the data 
from the emulated vehicle to acquire its own error.  

Fig. 6. Neurocontroller training with neuroemulator 

IV. RESULTS

Neurocontroller showed promising results in learning to 
control the emulated model of quadcopter. As mentioned 
earlier, the training was done in two phases: first, we created 
functional PID analog; second, using algorithm described in 
section 3, we tuned the neurocontroller further. A set of 
requirements was chosen for the network to meet: overshoot 
less than 10% of the initial angle, rise time of 1 second, 
settling time of 1.5 seconds and the steady-state error of 0.1%. 
Final test involved stabilization in changing external 
conditions, which were generated artificially by applying a 
random changing force to the craft model. 

After the first phase, the neurocontroller behaved nearly 
identically to conventional PID, which is shown in Fig. 7. 

In the second phase the network started to receive the 
error, propagated backwards through the neuroemulator, and 
adjusts its weights accordingly. Initially after 1000 iterations 
the network appeared to give worse results (Fig. 8), however 

after 100000 and 200000 of iterations it showed visible 
improvement (Fig. 9 and 10). 

Fig. 7. PID and neurocontroller comparison 

Fig. 8. Neurocontroller stabilization after 1000 learning iterations 

Fig. 9. Neurocontroller stabilization after 100000 and 200000 learning 
iterations

It is apparent that introduction of new inputs throws the 
neurocontroller off initially. Nonetheless, with small learning 
rates the neural network is capable of adapting to the new 
conditions.

It is important to note that, while the number of iterations 
required for the training process may seem large, the actual 
computational load in flight is significantly lower, since the 

Z0
U0 U1Z1 Zn

Zd
En

Zn-1
Un-1

N NN

Error

O OO

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 24 ----------------------------------------------------------------------------



controller is already tuned and only needs minute adjustments. 
Most of the initial training for the neurocontroller can be done 
on the emulated object, and the emulation training process 
only requires flight data from the real UAV. 

Flight tests were done using the ARM32 Cortex-M3 
80Mhz processor. It proved more than capable of handling 2 
neural networks (for yaw and pitch/roll stabilization), as well 
as other functions required for remote control. 

It can therefore be concluded that the presented method of 
using a neurocontroller based on a multilayer perceptron is an 
effective way to build a flight controller for a multirotor UAV. 

Future work will be focused on the optimization of the 
learning algorithm and reduction of time required for network 
training. 

V. CONCLUSIONS

Mechanical simplicity of UAVs comes at a cost of 
increased controller complexity. Quadrotors, unlike certain 
other aircrafts, are inherently unstable and highly sensitive to 
small changes in rotor speeds. In this paper, we presented a 
controller based on artificial neural networks. Initially the 
neurocontroller learns to control the aircraft similarly to PID 
algorithm. The neuroemulator is used to further tune the 
controller, thus achieving better results, especially in the 
presence of external turbulences. 
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