
Software Platform for Development of Multimodular
Robotic Systems with Asynchronous Multithreaded

Control

Arseniy Ivin, Daniil Mikhalchenko
St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences,

ITMO University
St. Petersburg, Russia

ocnechlahim@mail.ru, arssivka@yandex.ru

Abstract—Modern robotic complexes (RC) are equipped with
lots of integrated hardware and software tools, the purposes of
which are: environment analysis, communications, control of
executional mechanisms and other specific features. In most
cases, existing software platforms for developing RC are oriented
to a very specific class of tasks, or in fact, these platforms are too
“heavy” for a quick adaptation to an application task. In this
article, a software platform for development of Multimodular
robotic systems with asynchronous multithreaded control is
proposed. The main feature of the platform is high performance
of communications between modules of a robotic system, which
was confirmed by experiments. For most practical robotic
systems with 10 modules and transmission of 100 messages per
cycle the proposed platform deals with such a load in less than
1 ms. This is significantly faster than the speed of program
interaction with hardware of the robot. For instance, the average
frequency of program interaction with hardware of a popular
mobile robot Darwin OP was about 14 ms.

I. INTRODUCTION
Robotics is an interdisciplinary science, which requires

decisions, connected with math modeling of controlling
complex processes, software implementations of digital signal
processing, hardware implementation of a sensor system,
execution system and others [1]. Interaction of onboard
computers, controllers, sensors, input/output devices, power
supply devices, etc., must be asynchronous and multithreaded
considering onboard computing and network equipment.
Furthermore, in some cases communication between
autonomous RC must be provided [2]. In most cases,
developers of RC have to integrate various heterogeneous
software and hardware components, which causes a number of
problems related to the unification of communicational
protocols and simultaneous control of distributed equipment.

The problem of asynchronous multithreaded control is
increased in swarm robotics with a growing number of
communication units with simplest computing, sensor and
built-in actuators, as well as limited resources of homogeneous
swarm robots [3],[4]. In the area of swarm robotics, multi-
agent technologies are used to simulate the interaction of large
groups of simple homogeneous robots. The limited resources
of individual robots significantly affect the configuration and
capabilities of the whole system; however, due to the
distributed swarm intelligence based on data retrieved during

the mass of pair interactions of robots, the existence of a
swarm and solving them required tasks is solved [5],[6].

At solving a task by a system of robots a range of emerging
tasks depends on three main aspects [7]: 1) the robot
simultaneously performs one task or a multitude of tasks; 2) the
task is executed by one robot or a multitude of robots; 3) the
problem is solved immediately when appointed or there is a
plan of tasks requiring execution. Based on the proposed
taxonomy of problems in [8] an approach to forming coalitions
of robots for problem solving in real time is proposed,
providing a prediction of the execution time each robot needs to
perform a specific task.

The paper [9] investigates the problem of dividing a swarm
of mobile robots into balanced subgroups and provides control
algorithms of the position and orientation of groups of robots
when forming a certain spatial structure. In the proposed
algorithms, the control of robot models is performed based on
two main parameters: the synchronization and orientation of
individual robots. At that three types of synchronization of the
robots are considered: 1) fully-synchronous (FSYNC) model,
when all robots operate according to the same time and cycles,
and perform any action type in every cycle; 2) semi-
synchronous (SSYNC) model, when all robots operate
according to the same cycles, but not all robots are necessarily
active in all cycles; 3) asynchronous (ASYNC) model, when
the robots operate on independent in terms of duration cycles

Proposed software platform for creating multimodal
asynchronous multithreaded robotic systems will provide
communication of software modules, whose functionality is
limited by the C++ language standard and by the platform on
which robotic system is running. In addition, a module with
high resource efficiency for controlling robots’ hardware can be
done with the use of the proposed robotic platform. Robotic
Platform satisfies the requirement of the architecture flexibility
for developers using this platform. It will provide execution of
required functionality using modern methods of multithreaded
programming.

This research mainly deals with three tasks:

1) Developing platform architecture that will provide
registration and removing modules of the robotic
systems, execution of functional part of modules
using three different modes: execution with thread-

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

pull, fully multithreaded execution and execution
using single thread. In addition, the use of third-party
libraries should be minimized.

2) Developing methods of execution of functionality of
robotic system using modern multithreaded
programming techniques.

3) Developing effective serialization and data transfer
method using RTTI – run time type identification.

The paper presents analysis of the existing frameworks in
Section II. After that platform structure, its components and
development approaches are described in Section III. Testing
and an example of application of the platform are presented in
Section IV. Section V gives a conclusion. Future directions of
platform development are stated in Section VI.

II. RELATIVE WORK
Multimodular robotic systems with asynchronous

multithreaded control are suitable for various purposes, and
Multimodular approach extends their usefulness and allows
rebuilding the system, depending on specific tasks. There is a
wide application area of Multimodular robotic systems:
manned space exploration [10], geological exploration [11],
disaster relief [12], etc. An analysis of the existing frameworks
for development of multi-agent robotic systems, such as ROS,
YARP, OROCOS, ORCA, Open-RTM, and Open-RDK, is
presented in [13]. The authors highlight the main aspects for
multi-agent robotic systems software development and identify
certain characteristics of framework which provide a wide
range of tools for the developers of robotic systems. An
overview of the mentioned frameworks is presented in Table I.

The authors of the paper [14] introduce an orchestrated
data mapping service, based on Service Oriented Computing
(SOC), which maps the information present in a virtual
scenario and that it is used by a multi-robot system. An
overview of Multimodular platform for robotic systems named
ROS is presented in the paper [15]. Nowadays this is the most
popular robotic software platform among robotic developers.
ROS possesses a multiprocess architecture. Such type of
architecture makes it effective only on UNIX-like systems.
One should pay attention to some disadvantages of ROS: it is
made without using modern standards of language, is too
“heavy” and depends on lots of third-party libraries. It is said
that this platform is mainly oriented to working with big
robotic complexes. Although ROS is capable to work with
almost any robot, it requires too many resources to work on
small mobile robots. More often, it is used for research
purposes.

An overview of multithreaded architecture of robotic
platform PX4, developed with the use of “Publisher-
Subscriber” pattern, is presented in the paper [16]. However,
this platform is based on “Posix” interface and is mainly
oriented to work with microcontrollers. The platform can
communicate with ROS and can be easily controlled in Unix-
shell style. However, it cannot be considered as universal due
to the fact that it is oriented only to work with
microcontrollers.

An overview of the system named ROCOS is presented in
the paper [17]. It is a platform for real-time programming of
robotic systems. This platform allows integrating not
complicated automates in run-time. Memory-allocator and
garbage collector are developed to optimize the usage of
memory in this platform. It uses script language LUA. The
main feature of this platform is a possibility to develop
modules in run-time without recompilation. It does not possess
any other noticeable features.

TABLE I. FRAMEWORKS OVERVIEW

Platform Noticeable
features

Constraints Shortcomings

ROS multimodality, a
lot of useful tools
from simulators
support to
different
visualizers

effective only
on UNIX-like
systems

multiprocess
architecture, a
lot of
dependencies on
third-party libs

PX4 multimodality,
unix-shell style
controlling,
communications
with ROS

only for
microcontroll
ers

usage of “Posix”

ROCOS multimodality,
Real-time
programming,
optimized
memory usage

only research
application

OPRoS multimodality,
visual
programming tool

only research
application

low-
performance

Urbi multimodality,
new robotic-
specific
programming
language, cross-
platform,
prototype-based
programming

requires to
learn new
programming
language with
non-standard
paradigm

non-traditional
multithreading
method, non-
standard
programming
language

Multimodular platform for developing robotic systems

named OPRoS is presented in the paper [18]. It is based on
multiprocess architecture. Its components are integrated as
network modules. XML technology is widely used. The
platform possesses a visual programming tool. This platform is
similar to the already mentioned ROS. It is used for research
purposes and is mainly oriented to speed and comfortability of
development. However, this platform lacks high-performance
feature, due to this it is not suitable for real robotic systems.

A platform named Urbi is presented in the paper [19]. A
new programming language that considers specific aspects of
robotic developments is proposed. However, this feature can
make development process more complex because one needs
to learn a new specific language. In addition, multithreading
implemented in this platform is based on a non-traditional
method. This fact can be another complexity in a development
process. A new specific programming language cannot be
considered as standard. Due to that fact, it cannot be
considered as universal.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 106 --

The authors of overviewed platforms mainly concentrated
on comfortability and speed of development. As can be seen,
the main common feature of such platforms is multi-
modularity. The platform, proposed in this article, seeks to be
universal and possess high performance feature. This platform
can be applied not only to robotic systems, but to any project
that requires a light-weight high-performance multimodular
system. Furthermore, it is in line with mobile and embedded
devices of cyber-physical systems [20].

III. PLATFORM ARCHITECTURE
The 11-th standard of C++ programming language is

used for developing the platform [21]. This standard has a lot
of integrated tools, which allow avoiding the use of a third-
party library “Boost”. “Boost” is a widely-used library that
extends possibilities of C++ language. “Boost” contents a lot
of implementations of different programming tools such as
algorithms or metaprogramming tools. Avoiding this library
allows one to liquidate big dependency and make platform
more light-weight. In addition, it makes installation of
platform easier. C++ (standard 11) has integrated support of
multithreading that allows to implement required algorithms,
such as thread-safe containers, control of multithreaded
execution, synchronization of transferring data and others. In
addition, C++ (standard 11) possesses another useful feature –
rvalues references. This feature allows using move
constructors instead of copy constructors, which is good for
optimizing the work with memory.

Lock-free implementations of thread-safe containers are
considered to be used in the platform. As one can see from the
name, such thread-safe containers are implemented without
using mutexes – mutual exclusions – which are needed to
provide synchronization while running in multithreaded mode.
This method allows increasing performance of program.

Such containers are well suitable for the suggested

architecture because situation MPMC (Multiple Producer
Multiple consumer) is possible. This is a situation when data
can be written to the container and read from the container
from different threads simultaneously. Using containers with
locks in such situations can dramatically decrease
performance. The possibility to use such implementations
without third-party libraries is provided by the tools of C++
(standard 11).

In addition, one of the main features of this library is the
maximum of flexibility and extensibility. The platform
architecture is made considering this desirable feature.
Abstraction called Mechanism is widely used in this platform.
This abstraction can be literally considered as a mechanism,
which is responsible for a certain task of synchronization
within the platform. A developer, using this platform, can use
ready mechanisms provided by library, but if this does not suit
the required purposes, a developer can implement his own
specific mechanisms to extend the functionality of the
platform.

An example to illustrate the flexibility of the platform:
there is a mechanism responsible for the start and execution of
all modules within the system; there are few variants of
implementation of this mechanism: single threaded,
multithreaded and thread pool. The platform can be used on
different CPU’s. CPU’s can be single core or multi core. It is
reasonable to use specific implementation of this mechanism
to suit the possibilities of CPU to avoid a waste of resources to
provide synchronization when it is not needed and to provide
maximum performance. For example, there is no point of
using multithreaded mode on an old single core CPU, while
there is no point of avoiding using possibilities of multi core
CPU’s. Flexibility and extensibility of the proposed platform
allows configuring it for the specific environment. Fig. 1
illustrates a prototype of platform in its basic configuration:
core and a basic set of modules.

Fig. 1. Basic configuration of the platform

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 107 --

In addition, Fig. 1 clearly describes functions of the
platform. Core is the main component of the system that
provides all required mechanisms for running and creating
modules. All of core components are weakly connected, which
is good when a developer wants to change core’s behavior
according to his purposes. Launcher is a core’s component,
which is responsible for an order of processing components of
the system. Its implementation delivers within the core.
Furthermore, the core possesses a set of mechanisms to
provide interaction of system components.

Basic functions of the core:

1) Registration of the required modules.
2) Removal of modules from the registered modules list.
3) Start and execution of modules.
4) Control of modules execution.
5) Transferring messages between modules.
6) Serialization of transferring data.
7) Providing thread-safety.
8) Providing input/output for the files/network/terminal.
9) Keeping and transferring settings.

Planned basic set of modules:

1) DLL Loader – module providing dynamic load of
DLL libraries.

2) Python-module – module providing the possibility of
using modules written in Python language.

3) Logger – module providing writing of logged data.
4) State-machine-module – module providing possibility

to work with framework allowing creation of decision
automata.

5) Network module – module providing network
communications.

6) Simulator Integration Module – module providing
interaction with simulators such as Gazebo.

7) Robot hardware module – module providing control
of robot’s hardware.

8) Kinematics module – module providing algorithms
for calculating robot’s kinematics.

9) Computer Vision module – module providing
computer vision algorithms.

Let us present a detailed description of the platform
components and how it functions. Fig. 2 illustrates a
generalized architecture of the core of the platform. This
diagram illustrates the main core components. These
components can describe main features of the platform’s core.
It should be noticed that, in fact, the core consists of a larger
number of components. This architecture is oriented towards
flexibility and extensibility. Extensibility is provided by the
possibility to create new implementations of each abstraction.
In addition, provided implementations allow configuring the
system for the specific runtime environment. It should be
noted that this architecture is not final. Some of the
components are not presented in this article; other components
are still under development.

Abstract Launcher is an interface of the component, which
is responsible for order and mode of launching, execution and
synchronization of system’s components. Existing of this

abstraction allows creating different implementations of this
mechanism.

Linear Launcher is implementation of the Abstract
Launcher interface, which provides a running of the whole
system in a single threaded mode.

Thread Pool is implementation of the abstract launcher
interface, which provides a running of the whole system using
thread pool – mechanism, which allows the system easing
multithreaded processing. A programmer chooses certain code
fragments, which can be executed in parallel. Runtime
environment optimizes execution of this code fragments using
working threads from thread pool.

Abstract Queue Adapter is an interface of the component,
which is responsible for providing deffered synchronization. It
transfers all the synchronization tasks to the certain queues.
STL Queue Adapter is an implementation of Abstract Queue
Adapter Interface, which provides the possibility to work with
the queue from the C++ standard STL library.

Lock Free Adapter is an implementation of Abstract
Queue Adapter Interface, which provides the possibility to
work with the lock-free thread-safe queue.

Ring Queue Adapter is an implementation of Abstract
Queue Adapter Interface, which provides the possibility to
work with the ring queue.

Using a mechanism of deffered synchronization allows
avoiding problems of cycling when a certain module can send
messages to itself. In addition, this allows choosing specific
implementation for the specific situation.

Abstract Node is an interface which allows creating
independent components of the system – nodes aka modules.
Each of these modules might be responsible for a specific
functionality. Modules do not “know” about each other’s
existence and are fully independent from each other. Their
interaction and execution are provided by the core of the
system. Such a method of modules creation allows re-using
ready modules in different configurations of the robotic
platform.

Abstract Mechanism is an interface providing some kind
of interaction between modules. This abstraction itself
provides versioning of the mechanisms.

Basic Abstract Mechanism creates the needed number of
lock-free thread-safe queues to provide regulation of execution
of requests. For example, firstly, the set of services will be
changed in the Service Mechanism and only after that requests
will be sent. In addition, it creates an object of the basic non-
thread safe class that must be thread safe. The derived class of
mechanism creates functions-wrappers, which encapsulate
every call of the needed class to the queue of deffered
execution that will be processed in the synchronization phase.

Launcher Mechanism is an implementation of the Abstract
Mechanism interface providing connection with a certain
implementation of the Abstract Launcher interface. It allows
adding and removing modules as well as starting and stopping
execution of the system.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 108 --

Messaging Mechanism is an implementation of the
Abstract Mechanism interface providing possibility of
communication and data exchange between modules of the
system. Services Mechanism is an implementation of the
Abstract Mechanism interface providing the possibility to
execute specific methods using their names. Such behavior is
commonly known under the name RPC – remote procedure

call. Messaging and Service mechanisms are two main
mechanisms provided in the platform. These mechanisms
transfer buffers of symbols between modules. Such an
approach allows changing the serialization and deserializations
methods without changing the core. This is made in terms of
flexibility. It is required that all modules of the platform use
exactly the same serialization and deserialization method.

Fig. 2. Generalized core architecture

As it was mentioned, the platform is based on the
asynchronous approach. It is made using deffered call of the
“callbacks”. “Callbacks” are pieces of code that are passed as
arguments to other executable pieces of code. Launcher, the
basics of which were described above, encapsulates two
queues. One queue is a queue of synchronization tasks. Other
queue is a queue of “user” tasks. “User” tasks are tasks that
must be done by modules. Launcher contains a scheduler to
schedule execution of tasks to a certain time. This is made to
avoid inappropriate waste of resources. There is also a class
called Core that is not shown in Fig. 2. But it is important to
mention its existence, because it is a sort of a layer between
Launcher and mechanisms which facilitates the work with the
queues of the launcher for mechanisms and modules as well as
addition of new mechanisms. Fig. 3 illustrates the sequence
diagram of the deffered call. It is an example of the interaction
between components of the system. First of all, Launcher runs
the processing of all modules. At the same time,
synchronization mechanisms, can only asynchronically accept
requests from modules. When modules process ends,
processing of synchronization mechanisms is started by the
Launcher. This processing is needed to apply all the planned
changes to the modules. One can see from the diagram that
such a system allows facilitating the synchronization process
reducing it to the use of thread-safe queues, in particular, lock-
free or wait-free implementations of thread-safe queues, which
obviously provides better performance than critical sections.

Fig. 3. Deffered call diagram

In terms of the proposed platform, the Module conception
is abstract. There is no need to create the real object of the
Module. The Module conception consists of a set of callbacks,
which are responsible for specific functionality. The creation
of the real object of the Module can be useful when dynamic
registration or deletion of module is needed to provide the
possibility for registered modules to automatically add or
remove callbacks from the core with the full memory freeing.
To increase the performance messages are transferred through
the constant shared pointer, which allows avoiding copying
and additional reallocation of buffers. Mechanisms use

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 109 --

templates for the message type. This allows changing the
transferring and keeping approach with minimal changes to
the core. Type of message is set in the class of the Core that
interacts with classes of modules.

At the moment, core prototype based on using Google
Protocol Buffers Library is implemented. This library is used
to provide data serialization. Current prototype provides basic
functionality. However, this implementation possesses few
disadvantages. At the moment, the methods, which will allow
avoiding the following disadvantages, are being developed.

These disadvantages are:

1) Dependency on the third-party library – this forces
user to install additional library and makes
installation of the system more complex.

2) Serialization of data provided by Google Protocol
Buffers can be considered as relatively slow due to
the high degree of compression.

3) Using Google Protocol Buffers library forces to use
an external tool for creating classes of messages.
Furthermore, this tool must be built for every specific
platform.

IV. APPLICATION AND TESTING
Experiment scenario was implemented to test

performance of the developed system. In this scenario, a
certain relatively big number of modules were created. These
modules are subscribed to receiving certain message. During
the execution of scenario a big number of messages are sent to
these modules. Table II presents the results of the tests.

TABLE II. TESTS RESULTS

 Number of messages
Number of modules 100 1000 10000 100000

10 0 ms 3 ms 37 ms 346 ms
100 2 ms 15 ms 158 ms 1568 ms
1000 18 ms 129 ms 1251 ms 13508 ms

At the moment, the average frequency of program
interaction with hardware of the mobile robot is about 14 ms.
This frequency was achieved on the popular mobile robot
Darwin OP. Most probably the number of modules in practical
use of such systems would be similar to the numbers presented
in the first test, which is about 10 modules and 100 messages.
Proposed robotic platform deals with such a load in less than 1
ms. It is significantly faster than the speed of program
interaction with hardware of the robot. The worst case
presented in test table is 1000 modules and 100000 messages.
One can see that platform deals with such a load in 13
seconds. In real time situations, it is not an accessible speed.
However, it is hard to imagine mobile autonomous robot that
requires such a number of modules. Nowadays, there are no
such autonomous robotic systems. To prove the chosen
numbers of modules and messages in test, a diagram of
possible use of the platform is proposed in Fig.4.

It is a possible set of modules for the robot-football
player. Rectangles are for modules, ellipses are for messages.

Arrows can be considered as channels for the message
transfer. As one can see, there will be 14 messages transferred
between 8 modules. Even if there will be 2 times more
modules than presented, the platform’s performance still will
show great results as one can judge from the tests presented in
Table II. From the diagram it is seen how modules interact
with each other through the messages. Gait module gets
sensors data from the Hardware module, after that execution
determines needed positions for robot’s limbs, and sends it to
kinematics module. Kinematics module receives needed
positions for limbs, determines angles for servos and sends it
to Hardware module, so it can be applied. Computer vision
module gets an image from the Hardware module, processes it
and sends messages with coordinates of founded robots, lines
and corners on the field and the ball. These messages are
received by the Localization module, which can determine a
robot’s position on the field. A lot of messages are received by
the State-Machine module. It is used to make a decision about
what to do: e.g., determine where to go and send
corresponding parameters to the Gait module, or decide to
kick a ball and send corresponding parameters to Kicking by
the Leg module, which after that will send needed limb
positions to the kinematics module etc.

Fig. 4 Messaging example

V. CONCLUSION
The conducted research shows that the complexity of

architectures of robotic complexes is growing significantly.
This is due to the application of a wide set of different
integrated software and hardware tools providing analysis of
environment, connection, controlling executional mechanisms
and other specific functions. Modern software platforms for

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 110 --

developing Robotic Complexes are oriented to the
implementation of a very specific class of tasks needed to be
done by the robot. Other platforms, oriented to the
universality, lack high performance. There are platforms that
are oriented towards the comfort and speed of development.
Development of all these platforms requires a lot of adaptation
to the specific task. The proposed software platform with the
asynchronous multithreaded control possesses the opportunity
of high performance of communication between modules of
the robotic system. This is confirmed by the results of
experiments. The developed software will be used in
humanoid robotic systems [22], [23] and other mobile
platforms [24].

VI. FUTURE DIRECTIONS OF THE PLATFORM DEVELOPMENT
After the field-testing some changes may be done to the

core architecture, but without changing the overall concept.
Another serialization/deserialization library is planned to be
integrated into the system for testing the library google
flatbuffers. It is expected to be more efficient than protocol
buffers because of its zero-copy deserialization algorithm and
overall performance. Furthermore, the platform needs to be
more user-friendly, so one of the most important directions of
the platform development is a development of useful user-
friendly tools, e.g. some clients with graphical user interfaces,
etc. One can notice that concepts of the proposed platform are
suitable for the “Internet of things” developments, so the
possibility of applying this platform to the “Internet of things”
will be considered.

ACKNOWLEDGMENT
This work is supported by state research 0073-2015-

0003.

REFERENCES
[1] A. Smirnov, A. Kashevnik, N. Teslya, S. Mikhailov, A Shabaev,

“Smart-M3-Based Robots Self-Organization in Pick-and-Place
System”, Proceedings of the 17th Conference of the Open
Innovations Association FRUCT, Yaroslavl, Russia, on 20-24 April
2015, pp. 210 – 215.

[2] A. Kashevnik, N. Teslya, B. Padun, K. Kipriyanov, and V.
Arckhipov, “Industrial Cyber-Physical System for Lenses Assembly:
Configuration Workstation Scenario”, Proceedings of the 17th
Conference of the Open Innovations Association FRUCT, Yaroslavl,
Russia, on 20-24 April 2015, pp. 62-67.

[3] M. Gauci, J. Chen, W. Li, T.J. Dodd, R. Groß. “Self-organized
aggregation without computation”. International Journal of Robotics
Research. 2014, 33(8), pp. 1145-1161.

[4] I. Vatamaniuk, G. Panina, A. Saveliev, A. Ronzhin. “Convex Shape
Generation by Robotic Swarm”. IEEE 2016 International Conference
on Autonomous Robot Systems and Competitions, 2016, pp. 306-310.

[5] G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, M. Birattari.
“Auto Mo De: a novel approach to the automatic design of control
software for robot swarms”. Swarm Intell. 2014, 8(2), pp. 89–112.

[6] A. Ronzhin, I. Vatamaniuk, N. Pavliuk. “Automatic Control of
Robotic Swarm during Convex Shape Generation”. 2016
International conference and exposition on electrical and power
engineering, Romania, Iasi, October 20-22, 2016, index 926.

[7] B. Gerkey, M. Mataric, “A formal analysis and taxonomy of task
allocation in multi-robot systems,” International Journal of Robotics
Research, 23(9), 2004, pp. 939–954.

[8] J. Guerrero, G. Oliver, “Multi-Robot Coalition Formation in Real-
Time Scenarios”, Robotics and Autonomous Systems, 60, 2012, pp.
1295–1307.

[9] A. Efrima, D. Peleg, “Distributed algorithms For Partitioning a
Swarm of Autonomous Mobile Robots”, Theoretical Computer
Science, 410, 2009, pp. 1355–1368.

[10] B.I. Kryuchkov, A.A. Karpov and V.M. Usov, “Promising
Approaches for the Use of Service Robots in the Domain of Manned
Space Exploration”, SPIIRAS Proceedings, 2014, 32(0), pp. 125-151.

[11] A.V. Vasiliev, A.S. Kondratyev, A.A. Gradovtsev and I.Yu. Dalyaev
“Research and Development of Design Shape of a Mobile Robotic
System for Geological Exploration on the Moon's Surface”, SPIIRAS
Proceedings, 2016, 2(45), pp. 141-156.

[12] V.F. Petrov, A.I. Terentev, S.B. Simonov, D.N. Korolkov, V.I.
Komchenkov and A.V. Arkhipkin, “Problems of Group Control of
Robots in the Robotic Complex of Fire Extinguishing”, SPIIRAS
Proceedings, 2016, 2(45), pp. 116-129.

[13] P. Iñigo-Blasco, F. Diaz-del-Rio, M. C. Romero-Ternero, D.
Cagigas-Muñiz and S. Vicente-Diaz, “Robotics software frameworks
for multi-agent robotic systems development”, Robotics and
Autonomous Systems, 2012 60(6), pp. 803-821.

[14] A. Matta-Gómez, J. Del Cerro and A. Barrientos, “Multi-robot data
mapping simulation by using microsoft robotics developer studio”,
Simulation Modelling Practice and Theory, 2014, 49, pp. 305-319.

[15] M. Quigley, “ROS: an open-source Robot Operating System“, ICRA
workshop on open source software, 2009.

[16] L. Meier, D. Honegge and M. Pollefeys, “PX4: A node-based
multithreaded open source robotics framework for deeply embedded
platforms”, Robotics and Automation, 2015, pp. 6235–6240.

[17] M. Klotzbüche, P. Soetens and H. Bruyninckx, “Orocos rtt-lua: an
execution environment for building real-time robotic domain specific
languages”, Dynamic languages for Robotic and Sensors, 2010, pp.
284–289.

[18] C. Jang, “OPRoS: A new component-based robot software platform”,
ETRI journal, 2010, pp. 646–656.

[19] J. C. Baillie, “The Urbi universal platform for robotics”, First
International Workshop on Standards and Common Platform for
Robotics, 2008.

[20] A. Kashevnik, A. Ponomarev and S. Savosin, "Hybrid Systems
Control Based on Smart Space Technology", SPIIRAS Proceedings,
2014, 35(4), pp. 212-226.

[21] ISO/IEC, 2011, Standard for programming language C++, Web: http:
//www.pen-std. org/jtc1/sc22/wg21.

[22] A. Denisov, V. Budkov and D. Mikhalchenko, “Designing
Simulation Model of Humanoid Robot to Study Servo Control
System Interactive Collaborative Robotics”, First International
Conference ICR 2016. Budapest, Hungary, Aug. 2016, pp. 70-79.

[23] N. Pavluk, A. Ivin, V. Budkov, A. Kodyakov and A. Ronzhin,
“Mechanical Leg Design of the Anthropomorphic Robot Antares
Interactive Collaborative Robotics”, First International Conference
ICR 2016. Budapest, Hungary, Aug. 2016, pp. 113-123.

[24] A.I. Motienko, A.G. Tarasov, I.V. Dorozhko and O.O. Basov,
“Proactive Control of Robotic Systems for Rescue Operations”,
SPIIRAS Proceedings, 2016, 3(46), pp. 174 195.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 111 --

