
Data Security Evaluation for Mobile Android
Devices

Igor Khokhlov, Leon Reznik
Rochester Institute of Technology

Rochester, NY, USA

{ixk8996, lrvcs}@rit.edu
Abstract—Vast spreading of Android-based devices with em-

bedded diverse sensors make them popular platforms for data
collection in various research domains. However, Android OS
complexity and vulnerabilities may facilitate sensor data manip-
ulation and falsification that will have a high impact on data
security and quality. This paper presents a data security and
quality evaluation method based on a possibility assessment of
malicious actions that exploit certain Android OS features and
vulnerabilities as well as applications installed. It describes the
Android OS architecture features related to security and major
security mechanisms. The paper shows metrics chosen for data
security evaluation and the developed method of their integration
that computes Overall Security Evaluation Score representing
sensor originated data trustworthiness level. The examples of
Overall Security Evaluation Score calculation are presented and
analyzed.

I. INTRODUCTION

Nowadays, Android mobile OS is the most popular mobile
platform in the world. Installed on about 315 million devices,
in the third quarter of 2016 it dominated the smartphone market
with a share of 86.8% [1]. Broad spread out of Android OS
and its open-source nature have attracted software developers
and led to enormous amount of applications available on the
market, from games to scientific tools. These applications may
have a very specific target [2] or used in various research
domains.[3]. Modern smartphones are equipped with numerous
sensors that make them a popular platform for conducting
research in various areas.

Growing popularity of the Citizen Science significantly
expanded sources of the data that are generated and could
be used for research purposes. However, wider participation
of non-professional researchers who bring their uncalibrated
and untested devices to collect data may result in generation
of huge amounts of unreliable and untrustworthy data. Re-
searchers face novel challenges during data aggregation with
data security evaluation being one of the most important.
With at least several sensors embedded into each device,
an Android-based smartphone represents a complex platform
that combines communication, processing and data collection
abilities . Data from Android devices could be corrupted or
manipulated accidentally or intentionally. Due to complexity
of such platforms, evaluation of data trustworthy level becomes
an important issue.

Since Android OS initial release, a variety of vulnerabilities
and attacks have been discovered [4] that demonstrates various
shortcomings in the Android OS security mechanisms. The
major protection components of the Android OS security

framework are permission mechanisms, application sandbox-
ing, and application signing.

This paper presents a method of sensor originated data
security evaluation for Android-based devices. The method
evaluates possibility of various data manipulation attacks. It
is based on various metrics of a Android-based device and
takes into account already discovered system vulnerabilities as
well as possible ways of data falsification and manipulation.
Due to modularity of the Data Security and Quality Evaluation
Framework [5], developed method can be easily integrated into
it. Thus, the proposed method may introduce additional metrics
used for the data security and quality evaluation.

Android OS Architecture features related to the security
components that might be explored by attackers are presented
in the section II. Possible attacks of sensor data manipulation
and falsification are described in the section III. Section IV is
devoted to various metrics that are used in the sensor originated
data trustworthiness evaluation. Finally, section V presents
evaluation the workflow diagram, sensor data trustworthiness
level definition and examples.

II. CURRENT ANDROID OS ARCHITECTURE FEATURES
RELATED TO SECURITY MECHANISMS

Twelve major versions have been released since Android
OS launch in 2009. Currently [6], 98% of all Android-based
devices use one of five versions: Jelly Bean (versions 4.1.x
- 4.3) with 11.3% share, KitKat (version 4.4) with 21.9%,
Lollipop (versions 5.0 and 5.1) with 32.9%, Marshmallow (ver-
sion 6.0) with 30.7% and Nougat (versions 7.0 and 7.1) with
1.2%. Despite a discontinued support of Jelly Bean, KitKat
and Lollipop, these versions are used by 66.1% of all Android
powered devices. However, the share of these versions is
decreasing. Also, Android OS has various modifications made
by hardware platform manufacturers. Such modifications may
range from pre-installed applications to modifications in the
OS kernel. This variety is called Android OS fragmentation.
In addition, because of Android OS open source nature, various
enthusiasts produced numerous unofficial versions.

A typical Android architecture is presented in Fig.1. It
is composed from the basic layer which is the Linux kernel
that communicates with platform hardware and sensors. The
Hardware Abstraction Layer (HAL) provides standard inter-
faces of hardware components. Native C/C++ Libraries layer
contains high performance libraries. Android Runtime (ART)
and its predecessor Dalvik (for Android OS versions bellow
5.0) execute Java code.

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



Fig. 1. Typical Android Architecture

Android is based on Linux kernel. It implements the Linux
Discretionary Access Control (DAC). Each application is as-
signed with Unique ID (UID) and has its own sandbox. Such
approach prevents applications to interfere with each other
and represents one of the main protection mechanism in the
system. System permissions present another important protec-
tion. Permissions restrain an application from an unauthorized
access to the system’s resources. They are declared in the
Manifest file, which is an inseparable part of an Android OS
application. System permissions could be classified into four
levels: normal, dangerous, signature and signatureOrSystem.
Prior to Android OS version 6.0, a user had to accept all
declared permissions during an installation process. In version
6.0 new Runtime Permissions of the dangerous level were
introduced. Now a user can install an application with declared
dangerous permissions but without granting such permissions.

Any application installed on an Android OS is signed
by the developer. In order to update an application, install
a new version and keep all application and user data in the
application sandbox, new version application should be signed
with the same signature. Otherwise, Android OS requires
deleting an application and clearing all data related to it.
Such an approach prevents cases when an infected application
replaces an old version and captures user data. However, an
application signature mechanism works only if a developer of
the infected version does not have the signature key of the
original application.

Each application may consist of several components that
may have various types: Activity, Service, Content Provider,
and Broadcast Receiver. In addition, an application may have
multiple entry points, each corresponds to a specific compo-
nent. Service components can perform actions in background
without any explicit signs, that creates a good ground for
possible malicious actions. Moreover, an application or its

component can be launched by other applications directly or
through broadcasting an Intent. For example, the application
“A” consists of two components: Activity and Service. The
application “B” can launch a service component of the ap-
plication “A” and pass to it any data it needs. The service
component of the application “A” should be capable to process
the data received.

The Google Play Store represents another Android OS
security frontier. All applications that are uploaded there have
been checked with Google’s Bouncer malware prevention
system. However, due to code obfuscation and other techniques
that help to hide malicious code, Bouncer may not guarantee
that the Google Play Store is malware free [7].

III. POSSIBLE ATTACKS OF SENSOR DATA MANIPULATION

In this section possible, scenarios of the malicious sensor
data manipulations are presented. We consider two sensor
data manipulation scenarios: data manipulation performed by a
smartphones’ legitimate user or by another person. This section
describes possible sensor data manipulation on a physical
device, not on a virtual device. On an android virtual device
(AVD) any sensor data can be easily emulated through AVD
manager, which is included in the Android SDK.

A. Possible malicious data manipulations performed by smart-
phones’ legitimate user

This category includes more scenarios than the second one.
Smartphone’s legitimate users commonly have more access,
including connection to a PC, than other persons. We consider
only deliberate malicious actions. Data from sensors can be
manipulated by various software tools.

1) Touchscreen and buttons data integrity violations:
These attacks produce fake data from touchscreen and
hardware buttons. Commonly this data can be emulated
through Android Debug Bridge (ADB) shell [8]. ADB is a
software tool that allows communicating with an Android
device. ADB facilitates device actions such as: installing
applications, debugging applications, and provides access to a
Linux shell, which can be used for running various commands
on the device. ADB can have a remote access to a device
either trough wired or wireless connections. For example, the
following two commands successfully emulate power button
pressing:

adb shell sendevent /dev/input/event0 1 116 108
adb shell sendevent /dev/input/event0 0 0 0

However, such method requires a device to turn on a
“Debug mode” and to connect to the PC with installed
Android SDK software. These commands can be executed
either through wired or wireless connections. In the same
way data from a touchscreen, volume buttons, headphone jack
events, and a keypad can be emulated.

2) GPS data falsification: This attack includes a possible
production of fake GPS data. For spoofing GPS data, one
can write an application or use an existing applications that
are available in the Internet or Google Play Store [9]. This
method requires enabled Developer menu in the Android OS
settings, which is disabled by default, with turned on “Allow

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 155 ----------------------------------------------------------------------------



Fig. 2. Mock Location Settings. Android v.5.1.1 (left) and Android v.7.1.1
(right)

Mock Location” option (Fig.2). However, if an Android system
is “rooted”, a location can be faked even without enabling
the developer menu. “Rooted” device means that installed
applications can gain SuperUser privileges. Applications with
SuperUser privileges have read/write rights to any file and
folder in the system.

In order to develop the protection mechanism against this
attack, the author conducted with various Android OS versions
an empirical study that demonstrated the behavioral deviations.
For example, Android v.7.1.1 has been found to keep true
location data even with enabled “mock location” option. That
leads to continuous changing data between true and fake. Such
behavior of GPS sensor can be used to detect this attack.
However, Android v.5.1.1 does not restore a true data and
this protection mechanism will not work on this version. That
requires a further investigation.

3) Environment, position and motion sensor data manip-
ulation: This attack attempts to manipulate data from envi-
ronment, position and motion sensors categories. The envi-
ronment sensors category includes following sensors: ambient
temperature sensor, illuminance sensor, ambient air pressure
sensor, ambient relative humidity sensor, device temperature
sensor. The position sensors category includes magnetometer
and proximity sensor. Also, position sensors include software
sensors based on the sensors from motion category. The motion
category includes: 3-axes accelerometer sensor, 3-axes gyro-
scope and step-counter. In order to manipulate data from the
sensors of these categories, one need to modify corresponding
files in the “/dev/input/” directory. Changing files in this
directory requires SuperUser (root access) privileges. If one
gets SuperUser rights, they gain unlimited possibilities for
fulfilling this attack.

B. Sensor data manipulation by non-legitimate user of a
device

Certain attacks can be performed by a non-legitimate user.
However, such attacks require gaining the permissions from
the dangerous category and/or SuperUser rights, Table I. In
the versions preceding Android v.6.0 user had to accept all
declared permissions during an installation process or reject
an application installation. In the version 6.0 a runtime per-
mission model of the “dangerous” category was introduced.

TABLE I. DANGEROUS PERMISSION GROUPS

Permission Group Permissions

Calendar
• READ CALENDAR
• WRITE CALENDAR

Camera • CAMERA

Contacts
• READ CONTACTS
• WRITE CONTACTS
• GET ACCOUNTS

Location
• ACCESS FINE LOCATION
• ACCESS COARSE LOCATION

Microphone • RECORD AUDIO

Phone

• READ PHONE STATE
• CALL PHONE
• READ CALL LOG
• WRITE CALL LOG
• ADD VOICEMAIL
• USE SIP
• PROCESS OUTGOING CALLS

Sensors • BODY SENSORS

SMS

• SEND SMS
• RECEIVE SMS
• READ SMS
• RECEIVE WAP PUSH
• RECEIVE MMS

Storage
• READ EXTERNAL STORAGE
• WRITE EXTERNAL STORAGE

The dangerous category consists of several groups, where each
group may include several permissions. Dangerous permission
groups are presented in the Table I.

Declared permissions are not shown to the user during
an installation process. However, if an application needs to
use some of a device’s resources, it should explicitly ask a
user for granting a permission (Fig.3) with an explanation
why an application needs this permission and resources. If
a user granted at least one permission from the group, other
permissions from the same group are granted automatically.
All requested permissions should be declared in the manifest
file. This approach may solve a problem with over-permission
applications, when an application requests more permissions
that it needs and a user have no choice but to accept them.

However, application “A” can reasonably request a bunch
of dangerous permissions and the user may approve them.
Also, application “A” has various components like services
and broadcast receivers. One of such receivers may have
malicious intentions and can be triggered with a special event
outside the application “A”. The application “B” does not
request dangerous permissions, but designed to work with
malicious component from the application “A”. Application
“B” can send a special event and data that triggers the
malicious component in “A”. In such a way, application “B”
implicitly gains dangerous permissions. The same scenario can
be used with the third party applications that have root access.
Obfuscation techniques make analysis of such applications
very difficult. Also, these applications may detect installed
anti-malware software and does not reveal malicious intentions
[10]. To evaluate this attack possibility external information is
required. The declared permissions and applications rating in
the Google Play Store can help. However, signatures of the
installed applications should be compared with the applications
signatures in the Google Play Store.

Android OS is an open source project (AOSP) and can
be modified. Almost all smartphones vendors use Android
OS with various levels of modification. Such modifications
very often include stock applications customization, adding
vendors application, and third-party applications, which tend

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 156 ----------------------------------------------------------------------------



Fig. 3. Runtime Permission dialog example. “Allo” application is asking for
location permission.

to increase possible vulnerabilities [11]. It does not mean,
that original version of AOSP does not contain vulnerabilities.
Smartphones branded by Google Inc. have versions of Android
OS with the minimal number of modifications. Moreover,
Google releases a security update that fixes discovered security
vulnerabilities for latest Nexus and Pixel devices each month.

In addition, due to the Android open source nature, there
exist numerous custom versions of AOSP-based Android OS
made by enthusiasts or software companies. One of the most
famous is the former “Cyanogenmod” and now known as
“LineageOS” [12]. Less famous custom versions of Android
OS, often made by several developers are likely to have more
software flaws.

IV. METRICS OF SENSOR ORIGINATED DATA SECURITY

EVALUATION

This section determines some metrics that should be mea-
sured in order to evaluate a security level of the sensor
originated data. These metrics are related to Android OS
security mechanisms and possible attacks that were described
in the section II and III. They complement metrics that were
introduced by Weiss et al.[13]. As not all metrics can be
measured on a smartphone, we split metrics into two groups:
Internal metrics, which are calculated using data only from a
device and External metrics, which are calculated with external
information. Metric’s classification and score used for their
calculation are presented in Table II.

A. Internal metrics

1) Root access: As shown earlier, SuperUser privileges,
also known as “root access”, have a big impact on the possibil-
ity of the sensor data manipulation. Gaining root access allows
to fake any sensor data on a device. Often, root access can
be achieved through flashing third-party Android OS image.
Also, there exist software that allows to gain root access using
system vulnerabilities, for example, “Kingo Root” software
[14]. “Root access” vulnerability metric may have two values:
0 if root access is gained and 1 otherwise.

2) Unlocked bootloader: Bootloader is used to load either
OS or recovery software. Locked Android OS bootloader
does not allow to load unverified or untrusted third-party
recovery software or Android OS. In most cases to gain
“root access” unlocked bootloader is required. Sometimes, a
bootloader unlock process involves dangerous procedures that
can break a device. Some vendors, for example HTC, cancel or
limit warranty after bootloader was unlocked [15]. Unlocked
bootloader vulnerability metric may have two values: 0 if
bootloader is unlocked and 1 otherwise.

3) Device lock: Device lock is very important mechanism
to secure one’s personal data and the device from undesirable
actions from fraudsters. An unlocked device makes easier
for non-legitimate users to install various applications, un-
lock bootloader, gain root access without a legitimate user
awareness. Android OS by default provides a few primary
lock mechanisms: pin code, pattern and password. A user
can choose only one primary lock mechanism. Also, Android
OS provides secondary unlock mechanisms, that make unlock
process easier. These mechanisms are:

• Fingerprint - if device have fingerprint sensor, legiti-
mate user’s fingerprint can be used to unlock a device;

• Trusted Face - a device uses a front camera to recog-
nize a user’s face and unlock a device;

• Trusted Places - keeps a device unlocked in chosen
locations within a radius of up to 80 meters;

• Trusted Voice - unlocks a device by phrase “OK,
Google” if the system recognizes a user’s voice;

• Trusted Devices - unlocks a device if it connected to
chosen device(s) via bluetooth. Also, a NFC tag can
unlock a device;

• On-Body Detection - if a device was unlocked this
mechanism keeps it unlock while a user carries the
device. Uses an accelerometer and in some devices
can learn and identify user’s walk patterns.

A user can choose several secondary lock mechanisms.
However, these mechanisms are less secure and, in some cases,
the Android OS requires to use a primary unlock mechanism.
For example, after a device reboot or four hours of inactivity,
the device can be unlocked only with a primary mechanism.

Assigned score could be: 0 - no lock mechanism, 1 -
secondary lock mechanism, 2 - only primary lock mechanism.

4) Android OS version: It is likely that the latest versions of
Android OS have less vulnerabilities than older ones. Although

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 157 ----------------------------------------------------------------------------



this metric is measured on a device, it is used in the external
metrics measurement.

Assigned score could be: 0 - outdated Android OS version,
1 - previous Android OS version, 2 - the latest Android OS
version.

5) Security patch version: Some vendors, for example
Google, release patches that fix discovered vulnerabilities. The
latest security patch that is installed on a device makes a device
more secure and increases overall security score. Although this
metric is measured on a device, it is used in the external metrics
measurement.

Assigned score could be: 0 - outdated security patch, 1 -
previous security patch, 2 - the latest security patch.

6) Device model: Device model along with an OS version
and installed security patches can provide information about a
device security in terms of available vulnerabilities.

Assigned score could be: 0 - unknown device model, 1 - a
known device with known vulnerabilities or inaccurate sensors,
2 - a known device with accurate sensors and without known
vulnerabilities.

7) Unknown sources of application: A user of a device
can allow to install applications from unknown sources, for
instance, not from the Google Play Store. Installing application
from the unknown source may lead to a device contamination
by various kinds of malware, including applications that can
manipulate sensor data.

Assigned score could be: 0 - if unknown sources are
allowed, 1 - otherwise.

8) Installed applications: Installed applications with sig-
natures are used to evaluate potentially harmful software that
can manipulate sensor data. Also, the fact that a well known
application that is installed on a device has signature different
from the same application at the Google Play Store, can
serve as an evidence that an application was repackaged
and can contain various modifications, including malicious
components. A list of installed applications along with the
signatures are transfered to the server for further analysis. This
metric is used for the external metric calculating only.

9) Developer options menu: Enabled “developer option”
menu in the settings allows to manipulate sensor data, for
example, GPS data. However, if root access is gained on the
device, a developer setting may have a very little influence on
the overall data security evaluation.

Assigned score could be: 0 - if developer option is turned
on, 1 - otherwise.

B. External metrics

This subsection describes metrics that may use external
information for their calculation.

1) Installed applications rating: This metric combines sev-
eral values. First of all, it takes into account what applications
are installed on the device. Secondary, it compares signatures
of the installed applications with the signatures of the same
applications at the Google Play Store. If signatures match, we
take in account a rating of an application.

TABLE II. MEASURED METRICS

Metric Symbol Group Scale

Root Access MR Internal Boolean

Unlocked Bootloader Mub Internal Boolean

Device Lock Mdl Internal From 0 to 2

Android OS Version MV Internal From 0 to 2

Device Model MM Internal From 0 to 2

Installed Security Patch Msp Internal From 0 to 2

Unknown Sources Mus Internal Boolean

Installed Applications Mia Internal N/A

Developer Option Menu Mdo Internal Boolean

Installed Application Rating Mar External From 0 to 3

System Vulnerabilities Msv External From 0 to 9

Device Rating Mdr External From 0 to 9

Assigned score may range from 0 to 3, where 0 - a known
application for data manipulation is installed, 1 - an unknown
third-party applications is installed, 2 - all applications are
known, but signatures are different from those that at the
Google Play Store, 3 - all applications are known and sig-
natures match with those that at the Google Play Store.

2) System vulnerabilities: This metric takes into account
three internal metrics: the Android OS version, a device model
and versions of the installed security patches. To compute the
value of this metric, an analysis of a device’s system image is
required.

Assigned score may range from 0 to 2, where 0 - System
contains well known vulnerabilities, 1 - system does not
contain well known vulnerabilities, but a device has inaccurate
sensors, 2 - system does not contain well known vulnerabili-
ties, and a device has accurate sensors.

3) Device rating: This is an external metric that does not
depend on the internal metrics. This metric value depends on
how reliable a device was in the past. Giving a fake data
decreases rating.

Scale varies from 0 to 9, where 0 - if a device provided
fake data more than 8 times, and 9 - if a device never provided
fake data.

V. SECURITY EVALUATION DEFINITION AND EXAMPLES

A. Overall security evaluation

The general diagram of an overall security evaluation is
presented in Fig. 4, and consists of two major parts: the
Android part and the Remote part. The Android part is divided
into two modules: an Android application and an Android
service. First, a user launches an Android application to gather
sensor’s data. Then the application starts a service and sends
a request for the internal security score and the metrics. The
service calculates all required metrics, computes the internal
score and passes it back to the application along with all the
metrics. The application sends sensor data, the internal score
and the metrics required for external metrics measurement to
the remote part.

On the remote part, received data are stored for further
processing. The external score is computed using received
metrics. Overall Security Evaluation Score (OSES) is com-
puted by fusing both the external and the internal scores. For
computing the external score, the remote part may use external
information, for example, a device rating, application ratings,
vulnerabilities database, etc.

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 158 ----------------------------------------------------------------------------



Fig. 4. General diagram of Overall Security Evaluation.

B. Overall security evaluation score

OSES represents likeliness of the sensor data manipulation.
Score may range from 0 to 9, where 9 - sensor data have
maximum trustworthiness and 0 for the lowest trustworthiness.
However, 0 does not mean, that data has been manipulated, it
means that data could be manipulated easily. Overall Security
Evaluation score is presented by equation (1):

Mveracity =
9

13
× (MR +Mub +Mus +Mdo ×MR

+Mdl +
1

3
× (Mar +Msv +Mdr))

(1)

where,

Msv =
3

2
× (MV +MM +Msp)

C. Overall security evaluation examples

As the first example, we consider Smartphone Google
Nexus 6P with the latest Android v.7.1.1 with the latest security
patch installed, turned off developer menu, without root access,
locked bootloader, activated fingerprint unlock mechanism,
disabled unknown sources, and installed applications are only
from Google Play Store with original signatures. A User has
just registered the device. In this case OSES equals:

Mveracity =
9

13
× (1 + 1 + 1 + 1× 1 + 1+

+
1

3
(3 +

3

2
× (2 + 2 + 2) + 9)

=
9

13
× 12 = 8.3

As the second example, we consider Smartphone Google
Nexus 5 with the previous Android v.6.0.1 with the latest se-
curity patch installed, turned on developer menu, without root
access, locked bootloader, without unlock mechanism, disabled
unknown sources, and installed applications are only from
Google Play Store with original signatures, but there is the
application for faking GPS data, among installed applications.
A user has just registered the device. In this case, OSES equals:

Mveracity =
9

13
× (1 + 1 + 1 + 0× 1 + 0+

+
1

3
(0 +

3

2
× (1 + 2 + 2) + 9)

=
9

13
× 8.5 = 5.9

Lower OSES in the second example does not mean, that
data from the device has been manipulated. However, it
represents the higher possibility that sensor data could be
manipulated.

VI. CONCLUSION

Embedding numerous sensors into Android-based devices
makes them a very convenient platform for research in dif-
ferent domains. However, due to complexity of Android-based
systems and existing vulnerabilities, multiple scenarios of data
manipulation and falsification are possible.

This paper investigates an Android OS architecture and
its major security mechanisms that might have an influence
on the trustworthiness of sensor originated data. Also, we
investigated potential vulnerabilities that could arise due to
the number of possible attacks and how they may affect the
data trustworthiness.

The following metrics have been developed to evaluate
the data security: root access vulnerability, unlocked boot-
loader vulnerability, device lock, Android OS version, security
patch version, device model, unknown sources of applications,
installed applications, developer options menu, installed ap-
plications rating, system vulnerabilities, device rating. Those
metrics could be classified into the internal and the external
groups, depending on the information used for their calcula-
tion.

We developed the method for metrics integration that com-
putes Overall Security Evaluation Score representing overall
data trustworthiness. Two test cases have been researched.
The examples of OSES calculation have been presented and
explained.

ACKNOWLEDGMENT

This research was supported in part by the National Science
Foundation (award # ACI-1547301)

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 159 ----------------------------------------------------------------------------



REFERENCES

[1] “IDC: Smartphone OS Market Share.” [Online].
http://www.idc.com/promo/smartphone-market-share/os . Accessed:
February 13, 2017.

[2] B. T. f. Ornithology, “BirdTrack.” [Online].
https://play.google.com/store/apps/details?id=org.bto.btapp . Accessed:
February 22, 2017.

[3] S. M. Communications, “Citizen Science (Unre-
leased).” [Online]. https://play.google.com/store/apps/details?id=
com.sonymobile.activityathome . Accessed: February 22, 2017.

[4] “All vulnerabilities - Android Vulnerabilities.” [Online].
http://androidvulnerabilities.org/all . Accessed: February 5, 2017.

[5] I. Khokhlov, L. Reznik, A. Kumar, A. Mookherjee, and R. Dalvi, “Data
Security and Quality Evaluation Framework: Implementation Emperical
Study on Android Devices,” in published in these proceedings, 2017.

[6] “Dashboards | Android Developers.” [Online].
https://developer.android.com/about/dashboards/index.html . Accessed:
February 13, 2017.

[7] L. Stefanko, “Android trojan drops in, despite Googles Bouncer.” [On-
line]. http://www.welivesecurity.com/2015/09/22/android-trojan-drops-
in-despite-googles-bouncer/ . Accessed: February 18, 2017.

[8] M. Mohamed, B. Shrestha, and N. Saxena, “SMASheD: Sniffing and
Manipulating Android Sensor Data for Offensive Purposes,” IEEE
Transactions on Information Forensics and Security, 2016. [Online].
http://ieeexplore.ieee.org/abstract/document/7605458/

[9] IncorporateApps, “Fake GPS Location Spoofer
Free.” [Online]. https://play.google.com/store/apps/details?id=
com.incorporateapps.fakegps . Accessed: February 18, 2017.

[10] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur,
M. Conti, and M. Rajarajan, “Android security: a survey of
issues, malware penetration, and defenses,” IEEE communications
surveys & tutorials, vol. 17, no. 2, pp. 998–1022, 2015. [Online].
http://ieeexplore.ieee.org/abstract/document/6999911/

[11] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The impact of vendor
customizations on android security,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security. ACM,
2013, pp. 623–634. [Online]. http://dl.acm.org/citation.cfm?id=2516728

[12] LineageOS, “LineageOS LineageOS Android Distribution.” [Online].
http://lineageos.org/ . Accessed: February 19, 2017.

[13] R. Weiss, L. Reznik, Y. Zhuang, A. Hoffman, D. Pollard,
A. Rafetseder, T. Li, and J. Cappos, “Trust evaluation in
mobile devices: An empirical study,” in Trustcom/BigDataSE/ISPA,
2015 IEEE, vol. 1. IEEE, 2015, pp. 25–32. [Online].
http://ieeexplore.ieee.org/abstract/document/7345261/

[14] “F.A.Q.” [Online]. https://www.kingoapp.com/faq.htm . Accessed:
February 20, 2017.

[15] “HTCdev - Unlock Bootloader.” [Online].
http://www.htcdev.com/bootloader/ . Accessed: February 20,

2017.

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 160 ----------------------------------------------------------------------------


