
Localising Unsafe Software Resource Usage with
Typed Code Model

Lavrentii Tsvetkov, Anton Spivak
ITMO University

Saint Petersburg, Russia

lavrentii.tsvetkov@corp.ifmo.ru, anton.spivak@gmail.com

Abstract—The article presents a method for quality assurance
on resource leakage by defect search automation using developed
model of program code. Resources requested by the program
are identified and assigned extended types storing state markers.
Detection occurs by assignment of this markers to elements
of code model according to resource management functions,
evidencing resource availability. Further analysis is taken place
by propagation of the markers according to the rules of a model.
Rules are structured a in way that prevents unsafe use of resource
handles. Inability to apply specific rule at analysis stage signifies
that resource is used in unsafe way, creating potential security
flaw in a program.

I. INTRODUCTION

Correct resource management is essential part in software
development. Despite wide spread of hight-level programming
languages with automatic memory management, they still do
not provide tools for ensuring correct handing of many other
resources, such as file handles, network connections, and other
objects with manual internal state management.

By violating expected order of resource management op-
erations, software defect is introduced, opening a gap for
vulnerability to affect a program. Consider unused memory
block that was not deallocated by usual means. Access to
this memory can still be done without alert of operating sys-
tem, leading to information leakage. Accumulating unclosed
network connections may result denial of service when open
connection limit will be reached by operating system.

To prevent such events, strictness of resource management
must be enforced or at least maximized. There are several ways
to increase strictness of resource management.

First way is to restrict use of resource access primitives and
provide higher-order access functions. In this scenario, basic
functions such as open / close are replaced with high-order
combinators such as withFile, automatically closing file after
provided callback function is finished, or by readFile, reading
full file content at once [1]. Clearly, this approach can not
be applied to wide variety of software by many reasons. In
particular, full content stream can not be read in case of
interactive message exchange, and opening many files with
higher-order function will lead to stack depletion.

Second way is to include in a programming language new
statements, assuring correct resource deallocation. Examples of
this approach are C++ destructors [2] and deferred functions in
Go [3]. This approach ensures correct handling of resource if
corresponding statements are used. Drawback of this approach
is that resource is bound to lexical scope it was declared in.

From this follows impossibility to transfer resource handle
copy upward in call stack without creating alias handles, in-
troducing potential inconsistency in their use. To mitigate this,
more entities are introduced in different languages, including
move semantics, reference counting and null states.

Third approach is to introduce additional compilation stage
validating correctness of resource usage using state markers
associated with resource handle. Because markers are assigned
to resource protocol primitives (such as POSIX functions), this
method is not bound by particular programming language. This
approach can validate programs statically, allowing not only
future software to be checked, but also existing ones.

In this paper third approach is considered for localising
unsafe resource usage. Proposed markers are assigned using
“resource type” introduced to program language type system.
Since programming languages of interest already have fairly
solid type systems, to help them in detection of unsafe resource
usage, extended types should be implemented, preserving
special properties that need to be considered when attempt of
modifying resource state is made. This is a typical use case for
rich type system, that is system capable of tracking sophisti-
cated interactions of variables, conditions, etc. at compile time.

Rich type systems are used greatly in functional languages,
such as Haskell, where monads are used to limit computational
side effects. Languages like Agda [4] and Idris [5] allow
even more precise restrictions on operations to be defined
using dependent types. On the other hand, type systems for
imperative languages were not improving for last decade until
Rust language was released [6]. Taking some inspirations in
functional programming, Rust features immutable-by-default
variables and function parameters. Moreover, key feature of
Rust — “borrowing” — ensures exclusive write access to
referenced resources. This mechanism augments main type
system of Rust by effectively implementing an affine type
system on variable scopes itself. This provides strict solution
to resource aliasing problem.

Augmented type system approach is preferable due to
limited concern of actual type system used by programming
language. This allows to implement the core of defect locali-
sation method regardless of details of particular programming
language, opening the way for language-agnostic analysis.

Following issues are addressed in this paper:

• Kinds of entities that can be modeled with linear
resource management operations: While main objects
that approach is applicable for are file and network

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



handles, many other objects that can benefit from extra
information tracked at type level are candidates for
using introduced resource type.

• Resource aliasing: Programs that address same re-
source by interleaving access from different aliases
can not be analysed using simple type systems. Prob-
lem arises because usage of one of the aliases must af-
fect types of other aliases when resource management
functions are called. Since our approach is targeted at
existing programs that generally could not be easily
restructured, developed system must be capable of
tracking aliased resources and properly handle them.

• Ownership transfer: Imperative nature of program-
ming languages of interest simply does not allow to
apply functional variable-as-proofs principle, meaning
that availability of resource is not guaranteed by re-
source handle value not equaling special empty value.
This means that in presence of correct aliasing track-
ing, ensuring resource deallocation must be performed
only when all aliases are unreachable or already
reset to empty values. This requirement is too strict,
disallowing resource release in subsequent procedures
that nest more than most upper-level resource alias.
This is a common practise in programming to have
paired resource operations to not match clearly on
same procedure nesting level. By ownership transfer
down the nesting level we minimise positive alerts
in programs that are correct according to unstated
assumption by programmer.

• Conditional resource management: Most part of dan-
gerous resource usage come from conditional state-
ments. Error made in rarely used condition branch
can stay undetected for a long time. Vulnerabilities
often rely on such code to initiate intrusion into a
program. There are many reasons why conditional
resource management is present in a program. One
is optimisation attempt on resource (de)initialisation.
Other is improper handing on error conditions, such
as returning early from function with part of resource
allocated.

• Analysis localisation: Implementation of type system
with dependent types is faced with a fact of verifying
all possible routes of conditional statements quickly
leads to combinatoric explosion. This effect can not
be fully eliminated but can be mitigated by limiting
full type inference by boundaries of semantically
grouped parts of a program — procedure declarations,
representing its structure as black box with pre- and
post- conditions on required state of resource. Not
only meaningful to human result is produced, but also
derived type can be reused without rescanning inner
procedure structure. This is not a case for other struc-
tures that can be represented internally as functions,
such as loops as dependence on previous stage can
result although correct but obscure type expression.

First, in Section II existing works on localising software
defects are analysed, discussing their pros and cons. In Sec-
tion III outline how different kinds of objects can be rendered
as resources by mapping their main operations to resource

operations. Next, in Section IV type model of a resource
is presented as well as rules that govern defect localisation
method. In particular, in Section IV-A basic rules of resource
management are presented that are sufficient for diagnosing
linear resource management that does not involve conditionals.
In Section IV-B more detailed rules are shown that allow
smooth integration over different conditional statements by
using dependent typing rules on corresponding resource states.
Section IV-C describes how presented approach allow to limit
depth of type search in case of nested procedure invocations
by factoring out irrelevant type elements from procedure
types. Section IV-D discusses how specific resource usage
pattern — implicitly transferring ownership — can be inferred
to minimise false-positives in defect localisation. Finally, in
Section VI future directions of improvement are discussed.

II. RELATED WORKS

Related works on localising unsafe resource usages can be
categorised to dynamic and static approaches.

Valgrind [7] is dynamic binary analysis tool with primary
use of locating erroneous memory operations such as out-of-
bounds access, double-free, uninitialised use of memory and
etc. It can be specified to report unclosed file descriptors on
program exit. If such descriptors exist, stack trace reported
to the user, identifying location where descriptor was opened.
Unfortunately, there is no possibility to identify reason why
descriptor was not closed properly.

Address Sanitizer [8] is another dynamic analysis tool.
It is specialised to find errors corresponding to one type of
resource — memory. It can detect out-of-bounds access, use-
after-free errors, as well as report leaked memory at the end
of a program. It maps available memory to special shadow
zone, tracking current status of memory cell. When erroneous
access is made, it is detected immediately and current stack
trace is reported. Using compressed shadow state encoding,
average program slowdown is 73%. Address Sanitizer has no
false-positive alerts.

Both Address Sanitizer and Valgrind are very effective in
locating unsafe memory usage patterns, but other types of re-
sources are not tracked. Moreover, error could be detected only
when appropriate code is executed, leaving error undetected if
particular code section was left uncovered by performed tests.
This is limitation of dynamic analysis, because there is no way
to preform analysis on non-executed parts of code.

Static analysis methods do not suffer from this restriction.
There are several systems that use dependent typing to ensure
different properties on type level.

Hoare Type Theory [9] is implementation of Hoare Logic
on type level. Imperative computations are executed in Hoare
monad. Postconditions in Hoare triples can depend on returned
value, allowing caller code to identify measures needed to
cleanup allocated resources. HTT uses two-stage type infer-
ence to mitigate undecidability issue arising in some programs.

Ynot [10] is logical extension over HTT. Ynot is imple-
ments HTT rules in Coq proof assistant. Main goal is to allow
imperative programs with side-effects to be implemented in
purely functional languages. Dependent typing that is required
for HTT is provided by Coq. With this approach authors have

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 467 ----------------------------------------------------------------------------



implemented several imperative algorithms and proved their
correctness.

Xanadu [11] is one of first attempts to bring dependent
typing into imperative languages. Notable feature of Xanadu
is possibility of altering variable type during evaluation.

Deputy [12] provides flexible type system for low-level im-
perative languages. Types for local variables are automatically
inferred with dependent typing rules. Mutable variables are
supported, with type invalidation issue handled using Hoare
rule of assignment. Relevant types that are affected by mod-
ification are rechecked verify well-typedness. Expressions in
dependent types are restricted to local variables only. There are
some cases that are not coverable by Deputy type system. In
such cases Deputy augments program with assertions inserted
in places where type system is unable to ensure correctness.

Goal of HTT and Ynot is to provide means for new
software to rely on to be analysable using existing methods
developed for functional programming. They do not themself
provide any source-code analysis of software. In our approach,
existing software is analysed using depend types to ensure
correctness in terms of general resource management protocol.

Our system differs from Deputy (and Xanadu) in sev-
eral notable ways. Mainly, these systems target at detecting
memory-based defects and do not allow other resources to be
verified. Furthermore, Deputy has only local type inference and
variables with dependent types cannot be transferred outside of
function scope. Finally, we believe that if path of static analysis
is chosen for verifying program correctness, tool should no
longer rely on dynamic assertions in a programs. Presence of
such assertions itself opens a path for different vulnerabilities,
effectively causing denial-of-service attack.

III. OVERVIEW

To identify potential flaws in software, it is not enough to
solely assign some markers to code. Rules concerning transfer
and modification must be defined. To represent a program we
use Static single assignment form (SSA)[13]. In this form
variables can be assigned only once so their binding with
resource can not be invalidated.

For tracking resource state and related handle we assign
markers to involved variables using special types in type
system. These types not only identify type of the resource, but
also include indexes, discriminating usage of methods not ap-
plicable to current state. Such indexed are called phantom [14].

While handle value can not be modified in SSA-form,
type of handle variable can change phantom part of the type.
This allows to restrict uses of resource handle and matches
semantics of imperative languages, because previous type is
no longer available for use. It is essential to provide alias
creation mechanism, because we need to ensure consistency
across multiple copies of a handle.

Fig. 1 show some examples of resource management oper-
ations that need certain restrictive properties to be established
before operation can be performed. Possible operations in-
clude, but not limited to, creation and destruction of a resource,
execution of some query, or writing to or from a resource. In
case of file or network connection, there is no preliminary

File / Network connection

Creation No restriction
Destruction If have no alias
Writing No restriction / exclusive access

Memory

Creation No restriction
Destruction If have no alias
Writing Restricted on other level

Escaped sequence

Creation Escaping rules must be applied
Destruction No restriction
Execution Safe if have resource type

Confidential Data

Creation Safe container marker
Destruction Data erasure before termination
Writing To permitted channels only

Fig. 1. Different kinds of resources

restriction for creating such resource. But for destruction to
be correct, it must be ensured that there is no active alias that
can refer to this resource after it is deallocated. Same principle
applies to memory as resource. Depending on desired effect,
write operation to file may be restricted to ensure exclusive
access to ensure integrity of data written or stay unrestricted to
allow interleaving of stream data. For memory resource, such
granularity is too coarse. Per-element is possible to achieve by
storing memory size in dependent type[15].

Interesting kinds of resources are escaped sequences such
as SQL statements, URL’s and etc., which have constraints
not on destruction but on creation, requiring escaping to be
performed on input from untrusted source. This guarantees that
query execution will not lead to injection attack. This effec-
tively implements basis for type-based static taint analysis[16].

Another example of resource type is confidential data.
It has restrictions both on destruction and use. Destruction
requires that stored data will be eased appropriately, preventing
potential read in future by direct access to previously deallo-
cated memory. Confidential data is also participating in taint
analysis, where we ensure it cannot be tainted by use of disal-
lowed data sink. Unfortunately, appropriate tainting constraints
can not be automatically derived, preventing inference of this
resource type.

IV. METHOD DESCRIPTION

In this section we describe principle our localisation
method. Localisation is carried out in three steps. First,
analysed program is translated into intermediate SSA-
representation[15]. Next, types of local variables are inferred
from their declarations and constraints are derived by prop-
agation of appropriate type according to set of rules. All
rules are designed to be applicable if and only if corre-
sponding operation is safe. If specific rule is not applicable,
corresponding operation in unsafe in current context and will
introduce software defect. If all rules applied successfully
to a program, we say that program is correct with respect

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 468 ----------------------------------------------------------------------------



v ← open(f)
(OPEN)

Γ � v : RN 1

Γ � v : R v0i v′ ← v
(HCOPY)

Γ � v : R v0(i + 1), v′ : R v1

Γ � v : R v0i v′ ← dup v
(COPY)

Γ � v′ : RN1

Γ � v : R v0(i + 1) Γ � v′ : R v1
(SCOPE)

Γ � v : R v0i

Γ � v : RN 1 close(v)
(SCOPE)

Γ � v : Null

Fig. 2. Handle typing rules

to resource management. In case of error, code location is
traced back from SSA-form to original statements and user is
presented with error message describing unsatisfied constraints
for expected rule.

A. Basic resource management

We introduce resource type R : τ → int→ ∗ to language
type system. First index of R tracks original resource handle
for alias declarations and contains name of original variable
v or special marker N denoting original handle. Second
index is responsible for resource deallocation consistency and
corresponds to number of active handle aliases.

Handle type is determined using inference rules (Fig. 2).

Rule (OPEN) is applied on resource creation. This results
fresh resource handle, containing no references to other handle
(N marker) and exist in one copy.

Rule (HCOPY) corresponds to handle copy without copying
resource itself, creating an alias. This increments alias counter
in original variable. Because new alias itself can serve as
primary for new aliases, its alias counter starts at one.

Rule (COPY) is used when resource is fully copied and
new handle is created. This corresponds to primitives such as
POSIX dup and accept. Despite resources can still share
some data, new handles are unrelated in respect to resource
management protocol, i.e. both must be deallocated.

Most of errors in resource management are resulted by
incorrect resource deallocation and access attempts after deal-
location was performed. For effective analysis by type system
it must first: ensure no resource alias exists after resource was
closed and second: closed handle is unavailable for future use.

To guarantee absence of resource aliases after deallocation,
we require that all aliases are properly nested. If this require-
ment is held, to close a handle all aliases must be removed in
reversed order of creation. Although this ensures correctness of
deallocation, it could be hard to achieve such requirement. This
matters the most while analysing existing programs, because it
is not possible to influence established program structure. This
is why rule (SCOPE) allows some deviation of this requirement,
allowing independent termination of disjoined aliases. When

variable containing a handle to resource goes out of scope,
parent handle alias counter is decremented, provided here are
no descendant aliases from erased variable. After successful
termination of all aliases, for handle with no referenced parent
handle (first type index equals N) deallocation function be-
comes available according to rule (CLOSE). After that resource
type is set to Null, effectively blocking all further actions. It
must be stressed out that no resource leak is possible in this
system because there is no rule that allows to drop a handle
away without conforming to requirement of having no aliases.

Presented rules provide program correctness with respect
to basic resource acquisition protocol. To use system different
kinds of resources one must additionally mark each resource
type with unique index, identifying type of the resource.

If additional restrictions are required, such as exclusive
access, needed for ensuring integrity of file operations, more
rules may be developed prohibiting write operations based on
current state of alias counter.

B. Complex resource management

Complex resource management is involved when there is
conditional calls to management procedures. This necessarily
arises when error handling is involved. Common programming
pattern for error handling is early return from procedure.
This approach is error-prone, because during modification of
program new resource allocations will be introduced. Existing
static analysers can not diagnose such or similar behavior,
because condition check may be performed by programmer
at arbitrary depth of nested function calls requiring that all
conditional combinations must be exhaustively verified. Basic
typing rules are not expressive enough to represent properties
needed to decide on availability of particular resource. To
allow more detailed and precise specification of constraints,
dependent types must be used (Fig. 3).

Core of idea of dependent typing here is represented by
Φ-type, standing for dependent pair. It represents fixed choice
made by conditional statements by saving at type level the
variable used to make a choice. It should be noted that value of
that variable is not saved, because there is no way to know it in
advance. Neither reference to it is stored. All analysis is taking
place in purely symbolic space, i.e. by name (with ambiguity
removed by proper nesting of scopes). By using SSA-form we
ensure that decision variable is not modified by the moment
it reaches next condition evaluation. If resource deallocation
was performed under condition, that condition must be verified
again after different branches converge, otherwise there can be
attempt to double-free a resource or attempt to skip resource
deallocation and introduce memory leak.

As variables of resource type could not be lost freely
by going out of scope, Φ-type containing resource in any
part of expression also can not be erased. There is no way
to extract condition value from Φ-type. First because it is
unknown at type checking phase. Second if because there is
no statements in original languages to access such extended
types. Only way to retrieve resource type from conditional
type is by performing condition on same variable again (rule
(IF)). When appropriate condition is inserted in typing context
Γ, allowing to one of the rules (Φπ1 ) or (Φπ2 ) be applied in
each block under the condition. Retrieved resources then must

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 469 ----------------------------------------------------------------------------



Γ � v1 : τ1 Γ � v2 : τ2
(PAIR)

Γ � 〈v1, v2〉 : τ1 × τ2 :: ∗

Γ � b : bool
Γ � τ1 :: κ1
Γ � τ2 :: κ2

(Φ)
Γ � Φ(b, τ1, τ2) :: ∗

Γ � 〈v1, v2〉 : τ1 × τ2
(π1)

Γ � v1 : τ1

Γ � 〈v1, v2〉 : τ1 × τ2
(π2)

Γ � v2 : τ2

Γ � v : Φ(T, τ1, τ2)
(Φπ1)

Γ � v : τ1

Γ � v : Φ(F, τ1, τ2)
(Φπ2)

Γ � v : τ2

Γ, v1 : τ1, . . . , vn : τn � vr : τ

v ← fun(v1, . . . , vn) {s; return vr}
(FUN)

Γ � v : τ1 → · · · → τn → τ

Γ � b : bool
Γ, b � e1 : τ1

Γ,not b � e2 : τ2

if b then s1; v1 ← e1; s
′
1

else s2; v2 ← e2; s
′
2
(IF)

Γ � ϕ(b, v1, v2) : Φ(b, τ1, τ2)

Γ � e : τ v ← e
(VAR-ASSIGN)

Γ � v : τ

Γ � v : Φ(b, τ, τ)
(CONVERGE)

Γ � v : τ

Fig. 3. Dependent typing rules

be managed to converge by successfully deallocating them and
establishing same type to (CONVERGE) or they will revert back
to conditional Φ-type.

C. Analysis localisation

By using bidirectional propagation of types and lexically
bound variable it types locality of analysis is provided. Existing
dependently-typed languages suffer from fact that conditional
expression may be performed with same logic by using same
expressions in other order or by using another set of variables
with restriction making it equivalent to former expression. To
be usable by users, these system must perform combinatorial
search to identify equivalence status of both expressions.
This is not always possible when complex computations are
involved. Moreover, it means that almost all language features
must be lifted to type level with a danger for type system to
become Turing-complete and thus undecidable.

In our approach we require conditions to be evaluated using
exactly the same variable that was used to originally evaluate
conditional statement. Otherwise types will diverge with even
more Φ-types being nested. Although some flexibility is lost,
it eliminates whole equivalence search procedure, allowing all
expressions contributing to final choice value be hidden by
single conditional variable. This variable is the only thing ex-
ported by function return type, which stays the same regardless
of arguments provided. Such functional type serve as basis for
information hiding which enables locality of analysis.

Bidirectional application of typing rules also contributes
to minimisation of unnecessary type evaluations by bringing

Γ � v : RN 1 Γ � f : RN 1→ Null
(TRANSFER)

Γ � f(v) : Null, v : Null

Fig. 4. Ownership transfer

CWE-676 Use of Potentially Dangerous Function
CWE-754 Improper Check for Unusual or Exceptional

Conditions
CWE-841 Improper Enforcement of Behavioral Work-

flow
CWE-772 Missing Release of Resource after Effective

Lifetime
CWE-456 Missing Initialization

Fig. 5. Detected weaknesses

some constraints to call cite to provide user with more mean-
ingful information on allowed uses of a function.

D. Ownership transfer

As stated earlier, without special rule for transferring
ownership of resource to subsequent procedures no analysis
of real software will be possible, because alias counter will
increment with each call made. Rule (TRANSFER) (Fig. 4)
allows to transfer ownership in calls to other function if there
are no aliases held to resource. It is then called function
responsibility to free resource according to the rules. Ob-
viously, ownership transfer may be performed only once in
given function, because resource type is invalidated till the end
of current function scope. Any attempts to use such null’ed
variable will result immediate errors in type checker.

V. DETECTED WEAKNESSES

Fig. 5 shows some of defects according to Common
Weakness Enumeration (CWE) that can be detected by our
approach. These weaknesses are not uncommon and open path
for vulnerability to occur. By using static analysis, we can
enforce that all boundary and special conditions are handled
appropriately by programmer and themselves did not introduce
new defects. Missing initialisations are detected by assigning
special Null type by uninitialised variables. If variable will be
overwritten later by initialised value, it will have corresponding
type. If some execution path left that uses of potentially
uninitialised variable, when error is raised by type checker.

Detection of potential resource leakage prevents many
types of denial-of-service attacks. With special sensitive data
markers degree of protection against direct memory access can
be increased. By disabling alias creation for some resources,
certain level of integrity can be established.

VI. FUTURE WORK

Main direction of improvement is introducing parametric
polymorphism to dependently-typed functions. This would
allow to use argument preconditions to refine resulted type
be eliminating unreachable combinations on particular input
values and carry such proof to more deeply nested functions.
It would also minimise border cases where resource usage is

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 470 ----------------------------------------------------------------------------



considered correct by programmer but such behavior is not
guaranteed by observable procedure contracts.

Next, including full power of linear logic in resource type
system can rise a bar for diagnosing several problems such as
automatically determining what resource type can be copied
freely or a limited number of times, and resources that are
unique in a sense that no copies should exist.

VII. CONCLUSION

With presented approach it is possible to localise unsafe use
of resource management operations. System is two-fold, serv-
ing not only as basis for analysis tooling, but also as guideline
for minimisation resource related errors. Method applies not
only to convenient resources such as files, program memory,
network and database connections but also SQL statements,
URL’s and other entities that need input filtering. Use of typed
code model makes it possible to analyse program at symbolic
level while maintaining logical structure and mathematical
correctness. Method is implementable as compiler extension of
target language or as separate analysis tool. Possibility of static
analysis gives opportunity to locate resource management
defects in existing software. By localisation and correction
of defect causes software quality in increased and potential
vulnerabilities are eliminated.

REFERENCES

[1] O. Kiselyov and C.-c. Shan, “Lightweight monadic regions,” in ACM
Sigplan Notices, vol. 44, no. 2. ACM, 2008, pp. 1–12.

[2] B. Stroustrup, “Foundations of c++,” in European Symposium on
Programming. Springer, 2012, pp. 1–25.

[3] A. A. Donovan and B. W. Kernighan, The Go programming language.
Addison-Wesley Professional, 2015.

[4] U. Norell, “Dependently typed programming in Agda,” in Advanced
Functional Programming. Springer, 2009, pp. 230–266.

[5] E. Brady, “Idris, a general-purpose dependently typed programming
language: Design and implementation,” Journal of Functional Program-
ming, vol. 23, no. 05, pp. 552–593, 2013.

[6] N. D. Matsakis and F. S. Klock II, “The rust language,” in ACM SIGAda
Ada Letters, vol. 34, no. 3. ACM, 2014, pp. 103–104.

[7] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in ACM Sigplan notices, vol. 42, no. 6.
ACM, 2007, pp. 89–100.

[8] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker,” in Presented as part of the
2012 USENIX Annual Technical Conference (USENIX ATC 12), 2012,
pp. 309–318.

[9] A. Nanevski, G. Morrisett, and L. Birkedal, “Hoare type theory,
polymorphism and separation,” Journal of Functional Programming,
vol. 18, no. 5-6, pp. 865–911, 2008.

[10] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal,
“Ynot: dependent types for imperative programs,” in ACM Sigplan
Notices, vol. 43, no. 9. ACM, 2008, pp. 229–240.

[11] H. Xi, “Imperative programming with dependent types,” in Logic in
Computer Science, 2000. Proceedings. 15th Annual IEEE Symposium
on. IEEE, 2000, pp. 375–387.

[12] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula, “De-
pendent types for low-level programming,” in Programming Languages
and Systems. Springer, 2007, pp. 520–535.

[13] C. Wimmer and M. Franz, “Linear scan register allocation on ssa form,”
in Proceedings of the 8th annual IEEE/ACM international symposium
on Code generation and optimization. ACM, 2010, pp. 170–179.

[14] J. Cheney and R. Hinze, “Phantom types (2003).”
[15] L. Tsvetkov and A. Spivak, “Utilizing type systems for static vul-

nerability analysis,” in Open Innovations Association and Seminar
on Information Security and Protection of Information Technology
(FRUCT-ISPIT), 2016 18th Conference of. IEEE, 2016, pp. 345–350.

[16] W. Huang, Y. Dong, and A. Milanova, “Type-based taint analysis for
java web applications,” in International Conference on Fundamental
Approaches to Software Engineering. Springer, 2014, pp. 140–154.

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 471 ----------------------------------------------------------------------------


