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Abstract—Fog computing is a new computing structure that
brings the cloud to the edge of the network. This structure
is designed for applications that require a low latency. Fog
computing has been proposed to improve cloud computing
disadvantages. The system is faced with a variety of dynamic
resources distributed and heterogeneous. Hence, scheduling and
allocating resources is essential to maximize the use of these
resources and the satisfaction of users. Classical algorithms are
suitable for small scheduling problems, but the problem emerges
in big scheduling problems. To improve the performance of the
scheduling problem, heuristic algorithms are used. In this paper,
we used the test and select technique to introduce a hyper-
heuristic algorithm. We compare the proposed algorithm with
several heuristic algorithms. The results show that our proposed
algorithm improved the average energy consumption of 69.99 %
and cost 59.62% relative to the PSO, ACO, SA algorithms.

I. INTRODUCTION

The Internet of Things (IoT) is a new concept in technology
and communications scopes. In short, the IoT is a modern
technology in which intelligent objects around us interact
with each other to achieve common goals [1], and includes
every online object like smart cameras, wearable sensors,
environmental sensors, smart home appliances, vehicles, and
etc. [21,[3].

The number of connected devices is now more than the number
of people on earth. This number has reached about 9 billion and
is expected to reach 50 Billion of devices in 2020. The IoT
increases the quality to human life, but the use of the IoT
produces massive amounts of data, which creates an excessive
burden for data storage systems and analysis [4][5]. As a
remedy, cloud computing is used to manage and control this
massive amount of data produced by objects. Many
applications, such as health monitoring application or
intelligent traffic control application or games may need to get
feedback in a short amount of time, and the latency caused by
sending data to the cloud and then returning the response from
the cloud to the operator of these programs has an adverse
effect. Furthermore, the massive amount of data generated by
some of these applications may impose heavy burdens on the
network, and sending this volume of data to the cloud and then
returning it is not desirable [6][7]. Hence, Bonomi presented a
new concept called the fog computing in 2012 [8]. Fog
computing extends clouds to the edge of the network and a
solution to overcome the limitations.

Fog computing a distributed computing and is located between
objects and the cloud. Fog computing architecture includes
three layers: the bottom layer the layer nodes of IoT that
includes smart devices, sensors and so on. The middle layer is

the fog computing layer and includes tools such as gateways,
routers, and switches. The last and highest layer, the cloud
layer includes servers and data centers. Fig. 1 shows the
architecture of fog network. Fog computing not an alternative
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Fig. 1. Fog Computing Architecture

to cloud computing but it fixes cloud computing problems and
increases its efficiency. Cloud computing and fog computing
have common characteristics. However, fog computing has
more features than cloud computing, including geographical
distribution, real-time interaction, support mobility, hetero-
geneity, and interoperability [5]. When computing power is
needed, multiple fog nodes can be implemented instead of
a single fog node for computation, which increases scala-
bility and flexibility. Fog computing has several advantages,
including decrease latency time, decrease network traffic and
energy efficiency, but due to the novelty, this concept also has
challenges [9]. One of these challenges is associated with the
allocation of resources and scheduling [10]. In fog computing,
job scheduling problem means assigning a set of tasks to fog
nodes located at the edge of the network [11]. Applications
in the fog computing environment between sensor and cloud
run on fog devices such as a gateway, switches, and so on.
These resources are pervasive and variable. Therefore, an
efficient scheduling and allocation of resources are essential
to maximize the use of these resources and increase profit
providers of fog and fog. In this paper, we are in search
for hyper-heuristic algorithms for scheduling and allocating
resources between fog nodes with the goal of maximizing the
use of network resource’s users [6]. Our main contributions to
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this paper are following:

1)  We propose a scheduling method for application
modules by hyper heuristic (HH) algorithm in-
cludes Genetic Algorithm(GA), Particle Swarm Op-
timization Algorithm(PSO), Ant Colony Optimiza-
tion Algorithm(ACO) and Simulated Annealing Al-
gorithm(SA).

2)  We reduce the energy consumption and execution
time in fog computing environment.

In this paper, we focus on the job scheduling problem in the
fog computing environment. The rest of the paper is organized
as follows: Section II reviews related work. The proposed job
scheduling algorithm in Section III. In Section IV the results
for a simulation and in Section V conclusions.

II. RELATED WORK

A scheduling method in distributed environments generally
divided into three categories: Resource scheduling, workflow
scheduling, and task scheduling [12]. Scheduling is defined as
follows: finding an optimal solution for scheduling a set of
task’s T'= {T1, T2, ..., T,,} or workflow on a set of machines M
= {My, M, ..., M,,}. The scheduling can be done by the
deployment of a set of predefined constraints and objective
functions [13]. The task is a small part of a work that must be
performed within a specified time. One of the goals of task
scheduling is to maximize the use of existing resources and
minimize the waiting time on a job [14]. The aim of scheduling
is to benefit two categories: service providers and service users.
Service user interest corresponds to makespan, budget,
deadline, security, and cost. On the other hand, service
provider’s objective is load balancing, resource utilization, and
energy efficiency. The use of different objectives scheduling in
various articles includes: makespan (40%), cost (14%),
deadlines (14%), load balancing (14%) and budget (6%) [15].
Makespan is the end time of the last job. The aim is to minimize
the time to complete the last task. In recent years, the problem
of scheduling tasks is widely used in distributed computing
systems.

Fog computing is a new concept, and there are only a few stud-
ies on scheduling in fog computing. Deng et al. [16] provide a
scheduling methodology for the cloud-fog environment. This
schedule is based on energy consumption and transmission
delays. Intharawijitr et al. [17] have proposed a scheduling
scheme aiming to reduce the amount of computation and
latency in fog computing. Their scheduling is done based on
three policies. In the first policy, the fog node is randomly
assigned to execute a task. The second policy is based on the
selection of the fog node, which generates the least latency
according to the current state within the system, and the third
policy of the fog node, which has the most remaining resources
among other fog nodes, is selected to run the task.

In authors study, Bitam et al. [11] proposed a bio-inspired
solution based on the algorithm of the Bees Life to solve the
scheduling problem for the fog computing environment. This
solution is based on the distribution over a set of tasks between
all fog nodes.

Scheduling algorithms in systems such as clouds or the edges
are divided into two categories. Traditional or classical algo-
rithms (based on law) and intelligent algorithm [13],[18]. Clas-
sical algorithms are suitable for small scheduling problems, but
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the problem emerges in big scheduling tasks. Researchers have
tried to obtain better solutions for large complex problems
by efficient algorithms such as heuristic and meta-heuristic
algorithms [19],[20].

A. Traditional algorithms

FCFS scheduling, when a new job arrives, the end of the
queue placed. The first job from the beginning of the queue
always runs first. Round-robin method is based on the FCFS
method for scheduling tasks. Resources are assigned to tasks for
fixed periods. The advantage to this approach is load balancing
[12][21].

The Min-Min method, the smallest job of tasks available to
select and assign it to the machine takes the least possible time
to finish this job. This method increases completion time of all
tasks so makespan increases. The method Max-Min, select the
longest work among existing tasks and assign it to the fastest
machines for the run [14][22].

B. Heuristic algorithms

The Security-aware and Budget-aware (SABA) algorithm
[23] for scheduling in a multi-cloud defined. The algorithm
contains three main steps. First step clustering and the next
steps are to prioritize tasks and the final step of assigning data
to the specific data center is based on the workflows constant
data sets.

Multi-objective Heterogeneous Earliest Finish Time (MO-
HEFT) [24] scheduling algorithm is known as a model of
HEFT. A heuristic method based on a set of Pareto-based so-
lutions. Enhanced IC-PCP with Replication (EIPR) algorithm
[25], a scheduling and provisioning solution that uses the idle
time of provisioned VMs and a budget surplus are paid to
repeat the tasks to meet the deadline.

C. Meta-heuristic algorithms

PSO is a population-based random optimization algorithm.
The dimension of the particles is equal to the number of
tasks, and the position of the particle shows the mapping
between the virtual machine and tasks. Some of the scheduling
schemes using only the basic PSO algorithm [26][27], but
others used improved [28][29][30]. Some of the scheme’s
scheduling workflow using the original algorithm GA. While
the rest change it for the best results. Many of them produce
best initial population to achieve better results [31],[32]. Szabo
et al. [33] have proposed two chromosomes. A chromosome
that is responsible for assigning nodes and a chromosome is
responsible for the ordering.

Ant Colony Algorithm (ACO) by Marco Dorigo inspired from
the behavior of some species of ants was introduced. Initially
known as the ant system. Ants leave a material in the ground
called pheromones to guide other ants. This behavior is used
for solving optimization problems. ACO algorithm is used
in many optimization problems, including scheduling. Liu et
al. [34], have used the ACO method to deposit pheromones
between virtual machines in order to achieve past utility of
placing pheromone in physical machines. The algorithm is
simulated in a homogeneous environment, and only CPU and
memory resources are considered.
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D. Hybrid heuristic algorithms

Guddeti et al. [35] a combination new bio-inspired al-
gorithms for job scheduling and resource management are
provided within the cloud computing environment. Here, using
improved PSO tasks and its combination with biology-inspired
algorithms, tasks are assigned to virtual machines. The pro-
posed algorithm is a combination of modified PSO and CSO.
Delavar et al. [36] offers a mix of GA, Best Fit, and Round
Robin algorithms. Which aims to reduce the number of itera-
tions that operators of the genetic algorithm have created. An
optimal initial population is obtained by integrating of Best Fit
and Round Robin algorithms.

E. Hyper heuristic algorithms

Tsai et al. [13] a heuristic scheduling algorithm, called
the hyper-heuristic scheduling algorithm (HHSA), is provided
to Find better scheduling solutions of the cloud computing
environment. The low-level heuristic is used to find better
candidates as solutions.

Gomez et al. [37], provides a multi-objective framework for
making selections hyper-heuristics to solve the problem of
two-dimensional bin packing. The solution includes a multi-
objective evolutionary learning process, using genetic opera-
tors to generate a set of rules to represent hyper-heuristic.

III. PROPOSED ALGORITHM

The nodes in the sensor networks are receiving data from
their surroundings. The nodes send them to the gateways after
receiving the data and then sends them to the fog devices.
This data stored, processed in fog or sent to the cloud. A
case study has several applications that are in fog. When the
applications start in fog devices, a number of modules must
be executed that needs to run the VM in the fog device,
and the meta-heuristic algorithms are used to obtain the best
allocation of VM to the modules. In the following, first are
presented the algorithms that required to construct the hyper-
heuristic method, which includes algorithms GA, PSO, ACO,
and SA, and then explained the proposed algorithm based on
hyper-heuristic algorithms. Each of the algorithms is used by
a fitness function to evaluate the proper allocation of resources
to the modules. Fitness function is defined for our proposed
scheduling algorithms according to Formula (1).

1

Fitness = ——— 1
eSS =0 e+ BW M

Where: TUC defines the total CPU utilization and BW is
bandwidth. By increasing these two values, the amount of
fitness function decreases. Here we are looking to increase the
value of the fitness function, so we need to minimize the
amount of CPU utilization and bandwidth.

Genetic Algorithm: The Genetic Algorithm was defined in
1975 by Holland [38]. one of the best population-based algo-
rithms in terms of performance and ease of use for different
problems. The GA includes initialization of populations by VM
listas VMs = {vmy,vma, ..., vm,} for modules, se-lected
operators, reproduction, crossover, and mutation. Chro-mosome
also represents a solution that is generated randomly initialized.
Based on the fitness function chromosome is se-lected and the
single point crossover and mutation operations
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on it to generate new population done. This process is re-peated
until sufficient children are produced. Unlike heuristic
algorithms that use the objective function to choose the best
solution, GA algorithm implements the fitness function for
selecting the best solution.

Particle Swarm Optimization Algorithm: The particle swarm
optimization algorithm (PSO) was introduced by Kennedy and
Eberhart in 1995 [39]. Each particle as VM list is known by
position, speed, and how to move into a search space. The
evaluation of each particle is determined by the fitness function.
At each repetition, the speed and position of each particle adapt
itself to the best particle. PSO has been of great interest because
of its simplicity and the low computational cost.

Ant Colony Optimization Algorithm: The ant colony op-
timization algorithm was inspired by the behavior of real ants in
finding the shortest route between their colony and a source of
food [40]. Ants that walk between the colony and the food
source leave a material called pheromone in place and by
increasing the movement of ants in one direction the
pheromone intensity increases. ACO is useful for problem-
solving discrete optimization methods that need to find a way to
target. Each ant has a solution for all tasks assigned to the VMs.
At first, the pheromone is a positive constant value. However,
after each iteration ants update the pheromone amount. The
solution is based on a certain fitness function. Simulated
Annealing Algorithm: The simulated annealing algorithm [41]
has three steps: 1) heating step. Its aim is to the increased
thermal motion of the particles and its devi-ation from the
equilibrium position. 2) The isothermal step which is based on
heat exchange in the environment and avoids the constant
temperature for the system. The system automatically goes to
energy reduction, and when energy is minimized, the system
reaches equilibrium. 3) Cooling step. The aim is that the
thermal motion among the particles as VMs =
{vm1,vma, ..., vm,} are slipped and become more regular.
The idea of the simulated annealing algorithm is that the heated
solid is melted and then allowed to cool slowly to form a
regular crystal solid. This tremendous flexible algorithm builds
a local search and can successfully be applied to many real-life
problems.

A. Hyper-heuristic scheduling

A hyper-heuristic is a heuristic search method that com-
bines machine learning techniques, chooses, combines, gener-
ates, or matches many simple heuristics to solve computational
search problems. To solve a problem, there may be multiple
heuristics, each with disadvantages and advantages [42]. The
main idea of hyper-heuristic is to combine the benefits and
compensate for the weaknesses of simple heuristic. A hyper-
heuristic (HH) method is a heuristic one used for selecting
and producing hard computational problems (NP-hard). Since
all hyper-heuristic algorithms aimed at finding a discovery
heuristic among the heuristic of their own candidate can be
used rather than repeating the process of finding a heuristic
algorithm for an incoming workflow, a new algorithm that
uses classification and clustering strategies on previous data
to find the appropriate algorithm for workflow. Our proposed
algorithm is done using the test and select techniques, and
the best algorithm is selected among the candidate algorithms
for the new workflow. Our proposed method consists of two
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phases: training phase and test phase. The pseudo-code of this
algorithm is shown in Algorithm 1. Training phase: Initially, 64
different workflows enter the system. Then in Lines 4 through 7
of our choice algorithm includes GA [38], PSO [39] and ACO
[40], SA [41] is implemented to allocate resources to modules
in all workflow.

At line 8 of application, the intelligent monitoring system
comes along with its modules. The intelligent monitoring
system is described in Section III-C. At the lines of 9 to 11, the
amount of consumed energy, the use of network and the cost of
running each algorithm for each workflow are achieved after
the completion of each algorithm. Then, the results are stored in
a dataset, and for each workflow, the best algorithm is selected
as a label.

Energy Consumption means the total energy consumed by the
system. This energy is used by any of the network compo-
nents such as fog, sensors, gateway, and so on. This energy
consumption can be calculated by Formula (2). The amount
of network utilization, cost and execution time of running any
algorithm is also obtained from Formula (3), (4) and (5).

energy = CEC 4+ (CT — LUUT) « HLU 2)

CEC is current energy consumption. CT refers to current
time. Also, LUUT returns the value of last utilization update
time, and HLU refers to last utilization of the host. The energy
consumed from the beginning of the simulation is zero. After
running the simulation to obtain the energy consumed, the
simulation time, which is the difference between the current
system time and the last utilization updates time, is multiplied
in the last utilization of host and eventually added to the
amount of current energy consumed. This value is based on
megajoule.

(TL *TS)

MST )

Networkusage =

In Formula (3), the values of TL and TS represent the
total latency and total size of the tuple, respectively. Maximum
Simulation Time Shown with MST.

Cost = CC + (CT — LUUT) « RPM « LU « TM  (4)

Where CC is current cost, CT denotes the current time,
LUUT is the last utilization update time, RPM represents
the rate per MIPS, LU is last utilization, and TM is total
MIPS of the host. The cost of allocating resources includes
costs (allocation of memory, bandwidth, storage space, and
processor). At the beginning of the simulation, all costs are
set and the initial cost is zero. After running the simulation
of the updated values and the total simulation cost is obtained
according to the Formula (4). The current time value of the
system decreases from the value of the utilization update time,
then this amount is multiplied by the rate of getting per million
instructions per second and the last utilization system and the
total of the million instructions per second per host, and the
result adds to the current cost of the simulator. This value is
based on the non-negative number.
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FEzxecutionTime = CT — SST 5)

In Formula (5), the values of CT represent the current time, and
SST denotes the simulation start time. After completion of the
simulation, the current time on the system will be reduced from
the start time of the simulation until is achieved the simulation
time. This value is in milliseconds and is calculated based on
the simulator executive clock.

Test phase: line 15 represents new workflow enter the system.
Line 16 E uclidean distance new sample obtained with exam-
ples inside the dataset. In line 17, the best algorithm is chosen.
Then, energy consumption, network usage and total cost of
implementing the algorithm on new workflow are calculated.
Hyper-heuristic the algorithm calculates the total cost as the
cost of the selected algorithm. Finally, results are returned.
Our n ew method uses classified techniques of the incoming
data set that contains examples of workflows that are labeled
with the appropriate algorithm.

Algorithm 1 Hyper Heuristic Algorithm

. Start

. Starting Training Phase

. Initialization nember of Area, number of Camera, Scheduling

: Log in n=64 workflow

For i =1to 16

: Run Candidate Algorithms in list(GA, PSO, ACO, SA)

. EndFor

. Calling the Application DCNSFog

: For i =1to 64

. Calculate energy consumption, network usage, execution time and total cost
: EndFor

: Save the results of step 10 as a dataset

. End of Traning phase

. Starting Testing Phase

. Read new workflow

. Calculate Euclidean distance new sample With dataset members

: Choose the best algorithm based on the lowest Euclidean distance
: Calling the Application DCNSFog

. End of Testing Phase

. Calculate energy consumption, network usage, execution time and total cost
. Print the results

: end

B e r I E PP PXID ALY

o

. Test and select

A dataset has been generated during the heuristic algorithm
training phase. Each row of this dataset has six columns, which
include the number of areas, the number of cameras, energy
consumption, a number of network resources used, the cost
of execution, and the type of scheduling algorithm. In fact,
these columns include network topology and outputs generated
by scheduling algorithms. In the test phase, according to the
network topology, a row of training datasets that have the
least Euclidean distance as Formula (6) with input topology is
selected and the last column runs as a scheduling algorithm.

Dist = \/(AQ - A1)2 + (CQ - 01)2 (6)

A7 and A, are the numbers of areas, also C; and C5, the
number of cameras in the training and testing phase.

C. Case Study:Intelligent surveillance

The smart surveillance system is designed to coordinate
multiple cameras to monitor a specific area. Video surveillance/
object tracking software is a collection of distributed smart
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cameras that are capable of moving. As depicted in Fig. 2, the
Intelligent Surveillance application consists of five major
modules that include motion detector modules, an object detec-
tor, object tracker, interface and pan, tilting, and zoom control
(PTZ). The camera sends the video stream to the motion
detector module. This module sends it to the object detector by
doing the filter on the video stream. This module identifies the
object, identifies its position to the tracker module, and the
appropriate PTZ is calculated and sent to the PTZ control.
Finally, a fraction of the video streams containing each traced
object is sent to the user’s device [2]. The pseudo-code of
DCNSFog application is shown in Algorithm 2.

Physical Topology:For the case study, we have considered a
physical topology with four fog devices. Table I explained the
configurations of the different types of fog devices used in the
topology. The configuration of the sensors involved in the case
study shows in the Table II. Here, the cameras that recording
alive video feeds act as sensors and provides input data to the
application.

" Motion video stream _——

/_. { Motion. ) { Object )
o L De'j:y L Detector
aw video stream b

3 ‘\\_ Detected object

_ \
[ @} Object location
\/ TN

PTZ { Object )
Control { T;:Ekﬂ
\\.
\ PTZ params rd

(periodic 10 ms)

User
nterface

Fig. 2. Application Model of the Intelligent Surveillance Case Study

Algorithm 2 DCNSFog

. Start.

. Initialization numofarea, numofcamera, type scheduling.

. Create new fogbroker and Create application.

: Adding modules to the application model (object detector, motion detector, object
tracker, user interface).

£ LW =

5: Connecting the application modules in the application model with edges.

6: Defining the input-output relationships of the application modules.

7: Defining application loops to monitor the latency
of Camera — MotionDetector — ObjectDetector —

ObjectTracker&Userinter face — PT ZControl

8: Add an application to fogbroker.

9: Creates the fog devices in the physical topology.

: For i = 0toi < numofarea

11: Add Area

: For : = 0 to i < numofcamera

13: Add Camera

14: EndFor

15: EndFor

. Initializing a module mapping.

17: For all fog device

18: IF fogdevice start with “m”

19: Fixing instance of the motion detector module to each smart camera.
. EndIF

. EndFor

. Fixing instances of User Interface module in the cloud.
. IF mode of deployment= cloud-based

. placing all instances of object detector and object tracker module in the cloud.
: EndIF

. Create controller and Submit controller to application.
. Start simulation: Cloudsim and Fog processing.

. Stop simulation.

: End.
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TABLE 1. CONFIGURATION OF FOG DEVICES FOR INTELLIGENT
SURVEILLANCE APPLICATION
DEVICE TYPE | CPU GHz | RAM (GB) POWER (W)

Cloud VM 3.0 4 107.339(M) 83.433(I)
WiFi Gateway 3.0 4 107.339(M) 83.433(I)
Smartphone 1.6 1 87.53(M) 82.44(1)

ISP Gateway 3.0 4 107.339(M) 83.433(I)

TABLE II. CONFIGURATION OF SENSOR FOR INTELLIGENT
SURVEILLANCE
\ CPU Length

[ NW Length | Average Inter-arrival Time |
\

| 1000 Million Instructions [ 20000 bytes | 5 milliseconds |

IV. SIMULATION AND RESULT

In this section, we simulate fog computing for a case study.
Then, we obtained energy consumption, network utilization,
execution time and the total cost for this study.

A. Datasets and parameter settings

iFogSim [2] is a tool for simulating a fog computing envi-
ronment. In this study, we used the iFogSim tool to simulate
the workflow scheduling problem. The empirical analysis was
conducted on a PC with Intel Core i5 CPU and 3GB of
memory running Windows 10- 32bit. The initial population
size is 64 for the training phase and the test phase 16. The
number of checked areas has changed from one to four. Other
parameters of the scheduling algorithms are shown in Table
III. Each area has one to four smart cameras. These cameras
monitor the area. These cameras connect to an area gateway,
which is responsible for accessing the internet. Based on the
above configuration, the physical topology is designed. In this
topology, the cloud is the highest point and cameras, and other
fog devices are at the edge of the network. In Table IV, are
initialized the simulation parameters.

TABLE III. ALGORITHM PARAMETERS OF FOG COMPUTING

SCHEDULING

Algorithm Parameters

GA Population size = 10, Mutation rate = 0.5
Crossover rate = 0.9, Elitism = 10

PSO Swarm size = 10
Acceleration rate = 2

ACO Ant count = 10, Pheromone updating rate = 0.1

choosing probability = 0.85, Influence weights = 0.95

SA Mutation rate = 0.3, Cooling rate = 0.05
Starting temperature = 1

HH Train samples = 64

Test samples = 16

TABLE IV. SIMULATION PARAMETERS

Value
10.0
3.0
0.05
0.001
0.0

Parameters
Fog Device Time Zone
Fog Device Cost
Fog Device Cost Per Memory
Fog Device Cost Per Storage
Fog Device Cost Per BandWidth

B. Energy consumption

The energy consumption results obtained from the imple-
mentation of the algorithm on various configurations are shown
in Table VI. With increasing areas under surveillance, the
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TABLE V. DESCRIPTION OF NETWORK LINKS IN THE PHYSICAL

TOPOLOGY FOR INTELLIGENT SURVEILLANCE

Source Destination Latency (ms)
Camera Area Switch 2
Area GW ISP Gateway 2
ISP Gateway Cloud DC 100

TABLE VI AVERAGE OF ENERGY CONSUMPTION OF SCHEDULING
METHODS BASED ON THE NUMBER OF AREAS, CAMERAS AND FOG
DEVICES

. Normalized Average of Energy Consumption
Area | Camera | Fog Device GA FSO T ACO SA T
1 1 4 0.02 | 0.79 0.56 0.58 0.00
1 2 5 0.06 | 0.80 0.91 0.80 0.83
1 3 6 0.06 | 0.80 0.77 0.77 0.78
1 4 7 0.09 | 0.81 0.87 0.83 0.79
2 1 6 0.07 | 0.81 0.85 0.80 0.07
2 2 8 0.09 | 0.83 0.90 0.78 0.10
2 3 10 0.12 | 0.84 0.88 0.82 0.12
2 4 12 0.15 | 0.85 0.91 0.86 0.14
3 1 8 0.07 | 0.77 0.79 0.76 0.07
3 2 11 0.10 | 0.83 0.83 0.84 0.12
3 3 14 0.16 | 0.86 091 0.86 0.16
3 4 17 0.20 | 0.93 0.93 0.91 0.21
4 1 10 0.10 | 0.82 0.90 0.82 0.08
4 2 14 0.15 | 0.89 0.89 0.83 0.13
4 3 18 0.20 | 091 0.96 0.92 0.19
4 4 22 0.25 | 0.96 1.00 0.94 0.25

number of cameras and fog device also increases, and each of
these devices needs the energy to continue their work, so with
this increase. The total energy consumption of the system also
increases. Hence, you can see in Fig. 3, the energy consump-
tion of the proposed algorithm in different modes is less than
SA, ACO, and PSO algorithms and better performance than
the three mentioned algorithms. The consumed energies by
GA and HH are almost the same but that of the GA algorithm
is slightly smaller.

1.00
0.80

060

EnergyConsumption

 —
W
s
==}
o
o

000 = £ £ R sl
FogDevices 4 5 6 7 6 § 10 12 § 11 0 1 18 2
Camera 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Area 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

EHGA EEPSO =5wACO SA =HH

Fig. 3. Normalized Average of Energy Consumption for Different Methods

C. Network usage

The graph of network resource’s usage is shown in Fig. 4.
With increasing areas and the number of fog devices, increases
the amount of use network resources. As you can see in the
topologies, different algorithms are fully consumed network
resources. The amount of network usage is calculated based on
the Formula (3). In this way, for each topology, after executing
the algorithm is obtained the sum of total latency and the
total size of the tuples. And this amount is divided at the
maximum simulation time. A number of network latencies
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between devices are listed on the Table V. This Table V is
used to calculate the total latency.

3500000.00
3000000.00
2500000.00
2000000.00

1500000.00

Total Network Usage

1000000.00

500000.00

0.00

Fog device . 4 5 6 T 6 8 10012 8 10 14 17 10 14 18 22
Catnera 12 3 4 1 2 3 4 1 2 3 4 1 2 3 ¢4
Arez 11 1t 1 12 2 2 1 3% 3 3 3 4 4 4 4

—a—HH ——5A ——ACO ——P50 —GA

Fig. 4. Total Network Usage

D. Execution time

The simulation execution time is measured for the three
different configurations based on Formula (5). The first config-
uration includes one area and a smart camera and is considered
the lowest level. The average level has two areas and two smart
cameras, and the highest level includes four areas and four
smart cameras.

After executing different algorithms on these configurations,
the execution time simulation is obtained for each of the
algorithms. Fig. 5 shows the simulation execution time at these
three levels of configuration. As you can see from the applied
heuristic algorithms, the simulation execution time in the ACO
algorithm has the highest value, and for the SA algorithms, it
has the lowest value. Furthermore, the execution time of HH
and SA is similar at all three topology levels. Therefore, our
designed algorithm is the best algorithm in terms of execution
time between the four algorithms.
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Fig. 5. Execution Time of Scheduling Algorithms (millisecond)

E. Cost

The cost function is calculated according to Formula (4) in
Section III for each algorithm. The results from the comparison
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of the total cost of the algorithms are shown in Fig. 6. The cost
in fog computing includes operating costs. Suitable location
and the optimal number of nodes play an important role
in minimizing costs. The current cost is equal to the total
simulation cost that this cost of the beginning of the simulation
is equal to zero. After each run the simulator, the values are
updated and can be calculated using Table IV. GA algorithm
has the lowest cost, and the highest cost belongs to the ACO
algorithm.

Comparison of Methods

=

2.00E-0O7
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1.60E+07
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—— Average of Total Cost  —4— Average of Energy Consumption

Fig. 6. Comparison of Scheduling Methods by Average of Energy Consump-
tion and Total Cost and Train and Test Input Network Topology

V. CONCLUSIONS

This study presented a hyper-heuristic algorithm to find
better solutions for the workflow scheduling problem in the
fog computing environment. In this paper, a method based
on a hyper-heuristic algorithm using a test and the select
rule is presented. Our proposed algorithm in terms of average
energy consumption 69.34% of the SA algorithm, 71.03%
of the ACO algorithm and 69.60% of the PSO algorithm.
Furthermore, average cost, compared with the SA algorithm
is 58.84%, compared with the PSO algorithm 59.39% and
the ACO algorithm is 60.65% improvement. This method
reduced the simulation time and energy consumption by the
size of a heuristic algorithm and increased the decision-making
power for assigning resources with specific constraints to users,
according to the type of workflows. Our proposed method
at each step by choosing the best heuristic for the current
workflow improves system performance. In this method, the
algorithm is sensitive to the workflow that can be selected
in accordance with the inputs of the appropriate heuristic
algorithm. As a future work, we would like to explore and
develop new methods for virtual machine’s migration, resource
provisioning and scheduling of applications in the internet of
things based on fog networks.
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