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Abstract—In the past decade we observed the transition
from push-based, fully managed media streaming to pull-based,
unmanaged adaptive HTTP streaming thanks to enhancements
in media compression, network capacity, and client capabilities.
Adaptive media players, specifically their algorithms, have been
subject to research for a long time and lead to various approaches
documented in the literature. In the past years we witnessed more
and more commercial deployments taking into account findings
presented in scientific papers but a quantitative evaluation and
assessments of its performance is missing. In this paper, we
propose means for the automated performance evaluation of
commercially deployed adaptive media players with respect to
i) objective, well-known metrics, such as bitrate, stalls, startup
delay and ii) derived/calculated metrics (instability, inefficiency,
average bitrate) previously proposed in the literature. Addition-
ally, we propose a new metric (Bandwidth index) to measure the
effectiveness of bandwidth utilization and together with existing
QoE models for adaptive HTTP streaming (focusing on stalls,
startup delay) we demonstrate its usefulness in this domain.

I. INTRODUCTION

Streaming audio and video from Internet services is more
and more replacing traditional broadcast television services
and is being massively deployed thanks to the availability
of international standards such as MPEG Dynamic Adaptive
Streaming over HTTP (DASH) [9]. In MPEG-DASH, the
media content is prepared in multiple versions (representation,
e.g., different bitrates, resolutions) and divided in segments,
each comprising a given amount of data measured in sec-
onds allowing for a dynamic switching (typically at segment
boundaries) between the different representations based on the
given context conditions (e.g., fluctuating bandwidth in mobile
networks).

In the past, we have witnessed a plethora of publications
in this area, most of them focus on the adaptation algorithm
and its evaluation (e.g., [4], [1], [12], [10], [11]) which in most
cases determines the Quality of Experience in HTTP adaptive
streaming [8]. However, these papers either propose a specific
aspect of the issue (including a preliminary evaluation) or
provide a comparison of a reduced set of different algorithms.
None of them address real-world deployments with some
exceptions [7] but a comprehensive evaluation of existing
approaches is almost impossible due to the lack of the actual
implementations and a common evaluation framework.

The aim of this paper is i) to investigate the streaming
performance of adaptive media players (DASH), specifically

focusing on those adopted within real-world deployments
including – but not limited to – commercially available players
and ii) to analyze available QoE models proposed in the
context of DASH and how they could be utilized to assess the
streaming performance. Therefore, we built an open, flexible
evaluation architecture which enables the automated evaluation
of DASH players under different network conditions. We have
selected Web/HTML5 players as the main platform due to
its widespread adoption and integrated a set of commercially
deployed adaptive HTML5 players into our evaluation system.
We analyzed the survey of Seufert et al. [8] for appropriate
QoE models and have found two models which complement
already existing, objective metrics – used in our evaluation
system – and which are easy to integrate into our system. We
performed a series of experiments under predefined network
conditions to gather performance data and we will discuss find-
ings in this paper. Further details about evaluation architecture
and setup can be found here [13].

The remainder of this paper is organized as follows.
Section II describes the system architecture developed for the
automated QoE evaluation of adaptive HTML5 players and
algorithms. The evaluation setup including an overview of
the used players is described in Section III. Results of the
evaluation are presented and discussed in Section IV and the
paper is concluded in Section V.

II. EVALUATION ARCHITECTURE

The system architecture of the proposed evaluation frame-
work is shown in Fig. 1 and comprises a controlled environ-
ment enabling the automated evaluation of adaptive streaming
systems. It defines a flexible system that allows adding new
adaptive HTML5 players (and algorithms) relatively fast as it
mostly relies on existing Web technologies based on HTML5.

The server infrastructure comprises three servers with
distinct functionalities running Ubuntu OS (version 16.04 LTS)
and the servers are connected using Gigabit Ethernet switches.
The Web server is equipped with a standard HTTP server
hosting the segmented video content including a MySQL
database for storing all the measurements and metrics. The
network emulation server comes with a customized Mininet
(http://mininet.org/, last access: Feb 7, 2017) environment
allowing for network emulation (e.g., bandwidth shaping, de-
lay). It defines a controlled environment for dynamic network
configurations fully managed by an external management in-
terface. The Selenium server is an open source software testing
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framework for Web applications (http://www.seleniumhq.org/,
last access Feb 7, 2017) which is used to automatically con-
duct our experiments with different adaptive HTML5 players
running within a Web browser (in our case Chrome browser
but also various mobile platforms are possible). Finally, the
Web management interface provides two functions, i) one
for configuring and conducting the experiments and ii) one
which includes the player and provides real-time information
about the currently conducted experiment. It is accessible
from outside the controlled environment and everything else is
within a controlled environment in order to avoid any cross-
traffic that may influence the experiments.

Fig. 1. System Architecture for the Evaluation

III. EVALUATION SETUP

This section provides an overview of the evaluation setup
including an overview of the adaptive HTML5 players used for
the evaluation, the actual content and network configurations,
and the evaluation metrics (objective, subjective) used in the
experiments.

A. Overview of daptive HTML5 layers

All players used for this evaluation are implemented in
Javascript and utilize the Media Source Extensions (MSE)
available on all modern browser platforms. In general, each
player has its own application programming interface (API)
with methods, properties, and events which are used to obtain
all metrics used in this paper. As they are not standardized,
it requires a deep knowledge of the underlying technology to
enable a comparison among each other. Table I comprises a
list of players (in alphabetic order) used in this paper including
version and Web site (URL).

B. Content and etwork onfiguration

In our evaluation we focus primarily on the streaming
performance – in contrast to picture quality – and, thus,
we adopted the Big Buck Bunny sequence which is also
used in commonly used datasets in this domain [3]. The
content is encoded and formatted according to MPEG-DASH

TABLE I. OVERVIEW OF ADAPTIVE HTML5 PLAYERS

Media player Version Web site (last access: Feb 7, 2017)
Bitmovin Player 7.0 https://bitmovin.com

dash.js 2.4.0 http://dashif.org

Flow Player 6.0.5 https://flowplayer.org

HAS Player 1.7 https://github.com/ Orange-OpenSource/hasplayer.js

JW Player 7.6.1 https://www.jwplayer.com

Radiant MP 3.10.8 https://www.radiantmediaplayer.com

Shaka Player 2.0.3 https://github.com/google/shaka-player

VideoJS Player 5.9.2 http://videojs.com

utilizing two different profiles. The first comprises a FullHD
profile with five different representations: 426x238 pixels
(400kbps), 640x360 (800), 854x480 (1200), 1280x720 (2400),
and 1920x1080 (4800). For the second configuration we
reverse-engineered the Amazon Prime video service which
offers 14 different representations: 400x224 (100), 400x224
(150), 512x288 (200), 512x288 (300), 512x288 (500), 640x360
(800), 704x396 (1200), 704x396 (1800), 720x404 (2400),
720x404 (2500), 960x540 (2995), 1280x720 (3000), 1280x720
(4500), and 1920x1080 (8000). In both cases we adopted
a segment length of four seconds as it provides the best
trade-off with respect to streaming performance and coding
efficiency [3] which is also used in commercial deployments
like Netflix.

The network configuration comprises a bandwidth trajec-
tory adopted from [11] providing both step-wise and abrupt
adjustments in the available bandwidth to properly test all
adaptive HTML5 players and its adaptation behavior under
different conditions. It uses the following sequence: 750 kbps,
350 kbps, 2500 kbps, 500 kbps, 700 kbps, 1500 kbps, 2500
kbps, 3500 kbps, 2000 kbps, 1000kbps and 500 kbps. Such
a scheme of bandwidth trajectory inevitably causes quality
switches of MPEG-DASH streams used in our experiments.
The network delay parameter was set to 70 milliseconds
which corresponds to what can be observed within long-
distance fixed line connections or reasonable mobile networks
and, thus, is representative for a broad range of application
scenarios. Finally, the duration of each experiment was set to
630 seconds.

C. Evaluation etrics

This subsection provides an overview of the metrics which
are used for comparing the experimental results of the different
adaptive HTML5 players. We cluster the metrics in i) those
directly retrieved from the players’ API, ii) those which are
derived from the raw metrics, and iii) those used to predict the
QoE score based on a given model.

Download video bitrate (or selected video quality)— the
bitrate of the currently requested/downloaded video segment in
kbps (higher is better).

Video buffer length (or video buffer level) — the value
of buffered video data in seconds (depending on the policy,
use case, higher/lower is better).

Video startup time— the time when the player enters the
play state (i.e., when clicking the play button or autoplay is
enabled) to the event which is fired when the current playback
time has changed. For example, for the Bitmovin Player, the
onPlay event is fired when the player enters the play state and
the onTimeChanged is fired the first time when the playback
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starts. Thus, video startup time (in milliseconds) equals to the
timestamp of the onTimeChanged event minus timestamp
of the onPlay event (lower/faster is better).

Stalls (or buffer underruns) — stage of the player
playback occurring when the player buffer is getting empty
and the playback stops (lower is better, zero is the best).

Quality switches — number of the switches between
different representations encountered during the experiment
(lower is better).

The second category of metrics are derived from those
introduced above and defined as follows. N is the number of
the measurements. Wi,t is the network bandwidth defined by
the network emulator at time t. bi,t is the bitrate selected for
the video segment at time t.

Instability [2] — this metric is shown in Equation 1 and
evaluates the ratio between the sum of all quality switches
observed during the experiment and the sum of all bitrates
in the experiment which were selected by the players’ rate
adaptation algorithm. Lower values of this metric reflect
smoother video quality adaptation to the changing network
characteristics (lower is better).

Inefficiency [2] — this metric is shown in Equation 2.
Smaller values of this metric indicate that the player rate
adaptation algorithm more efficiently utilize the available net-
work throughput in order to deliver the media content to the
application (lower is better).

Average video bitrate — is shown in Equation 3 and
represents the average download video bitrate (or selected
video quality) during the entire experiment. It reflects the
media throughput delivered to the application (higher is better).

Bandwidth index — is shown in Equation 4 and establish
a relationship among the average video bitrate, instability,
and inefficiency. The higher the value, the more efficient the
available bandwidth is utilized. c is a constant parameter used
for fine-tuning and in our experiments c is set to 104 based on
practical observations (higher is better).

Instability =

∑k−1
d=0 |bt−d − bt−d−1|∑k

d=1 bt−d

(1)

Inefficiency =
1

N
·
∑

t

|bi,t −Wi,t|
Wi,t

(2)

Average video bitrate =
1

N
·
∑

t

bi,t (3)

Bandwidth index =
Average video bitrate

Instability·Inefficiency·c (4)

Finally, the third category comprises QoE models that
take into account start-up time and stalls as those are not
considered in the previously introduced metrics. Together with
the bandwidth index they provide means for a detailed analysis
of the performance of each player and, more importantly,
a comparison thereof. The following two models have been
selected due to simplicity and ease of integration into the
existing system.

Equation 5 provides the QoE model according to Mäki et
al. [5] with number of stalls Ns and the total stalling time
Ts,total. This model has been developed for sequences with
a duration of 60s and, thus, we included k to cope with our
duration of 630s resulting in k = 630/60. In this case we
assume that stalls are uniformly distributed over the entire
duration of the experiment.

QoEMäki = 4.56− 0.36·Ns

k
− 0.09·Ts,total

k
(5)

Equation 6 provides the QoE model from Mok et al. [6]
with start-up time Tinit, stalling frequency frebuf , and average
duration of a stalling event Trebuf = Ts,total/Ns. In this case
we do not need to use k coefficient for frebuf and for Trebuf

because these are relative values.

QoEMok = 4.23− 0.0672·Tinit − 0.742·frebuf − 0.106·Trebuf

(6)

Both models provide Mean Opinion Score (MOS) values
on a scale from 1–5 which translates to bad, poor, fair, good,
excellent service quality when adopting an absolute category
rating (ACR).

IV. EVALUATION RESULTS

Fig. 2. Download Video Bitrate and Buffer Length for the Amazon Profile

In this section, we present and discuss the results of our
evaluation. Each experiment was conducted ten times and
the average is presented here (i.e., 160 experiments; each
630s; total duration 28h). An excerpt for the Amazon profile
is shown in Fig. 2 comprising the download video bitrate
and video buffer length of all players under the predefined
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Fig. 3. QoEMäki (blue) and QoEMok (red) vs. Bandwidth Index for FullHD Content Profile

bandwidth trajectory. It clearly shows that players provide
different streaming performances but, in general, all are able to
follow and adapt to the available bandwidth. The video buffer
length shows that some players produced stalls while others
could avoid stalls at all.

In the following we present the results for both content
configurations, i.e., FullHD and Amazon, using QoE values
according to the given models (QoEMäki Equation 5 and
QoEMok Equation 6) on the y-axis and the bandwidth index
(Equations 4) on the x-axis.

The results for the FullHD content profile is shown in
Fig. 3 and the results for the Amazon content profile is shown
in Fig. 4 respectively.

In general, QoEMäki always reports higher MOS than
QoEMok which can be explained by the fact that QoEMok

also includes startup time whereas QoEMäki solely considers
stalls. Different players show quite a different behavior with
respect to the number and the duration of stalls. In some cases
the difference between the two QoE models is higher (e.g.,
Shaka and JW players) and sometimes it is very close to each
other (e.g., HAS player). In this case, Shaka and JW players
have much higher startup time than all other players (including
HAS player) which explains the (huge) gap.

For both content profiles and QoE models, the Bitmovin
player achieves the highest MOS scores as it also has the
highest video download bitrate, lowest number/duration of

stalls, and lowest startup time compared to all other players.
Interestingly, the HAS player has a much higher bandwidth
index using the FullHD profile than all others due to a
very low instability. This low instability results from a low
number of switches during playback. However, we noticed
also a high number/duration of stalls which inevitably leads to
switches during stalls but they are not considered within the
instability metric. This is the main reason why HAS player has
a higher bandwidth index but lower MOS value. Additionally,
the player only performs step-wise switches (up/down) which
also contributes to the lower instability.

The bandwidth index for the Amazon profile covers a
broader range [2..16] than for the FullHD profile [10..18]
(excluding HAS player) as it offers almost three times more
representations which allow for a more fine-grained, flexible
adaptation to changing bandwidth conditions.

The interested reader will apparently observe that dash.js,
Flowplayer, and VideoJS player form a sort of cluster for both
QoE models as they share the same code base. In particular,
Flowplayer and VideoJS player as well as Radiant MP and
HAS players are all based on dash.js but, interestingly, the
latter two show slightly different performances. dash.js is the
official reference client of the DASH Industry Forum (DASH-
IF, http://dashif.org/) which is open source and allows its
usage also for commercial purposes. It is equipped with a
pluggable adaptation logic which explains the difference in the
performance or, alternatively, Radiant MP and HAS players
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Fig. 4. QoEMäki (blue) and QoEMok (red) vs. Bandwidth Index for Amazon Content Profile

adopted a different version from dash.js as others. Among
the players based on dash.js, Radiant MP shows the lowest
performance and we observed that it sometimes requests the
highest representation although this does not fit at all into the
available bandwidth.

Finally, we observe that the MOS values barely are below
three which means that the quality of such a service would
be always considered to be fair or good although some
players show high number of stalls (> 10), high stall duration
(> 20s), and high startup time (> 3s). Thus, absolute MOS
values should be considered very careful but when taking into
account the bandwidth index and comparing the results among
each other, it provides a relatively good indication about the
performance of each player. In general, the number of stalls,
stall duration, and startup time is higher for the FullHD profile
than for the Amazon profile which is explained due to the
different number of content representations. It is much higher
for the Amazon profile and, thus, provides more flexibility for
the adaptation logic resulting into a lower number of stalls and
shorter stall durations. The bitrates at the lower end are also
much smaller for the Amazon profile which allows for a faster
startup time. In practice, the number of representations used
for such a service directly depends on business decisions as
the higher the number the higher the costs.

For a better understanding of the above conclusions we
include detailed results for the number of stalls, stall duration,
and download video bitrate for the Amazon profile (Fig. 5,

Fig. 6, Fig. 7). The download video bitrate of Shaka and JW
players is much lower than for others which explains the low
bandwidth index. The performance of dash.js-based players
is similar except that Radiant MP, Flowplayer, and VideoJS
players produce more and longer stalls whereas HAS player
performs better than dash.js regarding stalls but has a lower
download video bitrate than others. The Bitmovin player has
the highest download video bitrate and almost zero stalls which
is also reflected in the MOS.

V. CONCLUSIONS

In this paper we presented our evaluation system for
adaptive HTML5 players which is flexible and easy to use,
new players (and also algorithms) can be integrated easily,
and it can be used for the automated performance testing on
various platforms (i.e., operating systems, browsers, mobile,
desktop, etc.). We conducted a series of experiments with var-
ious players which are fully deployed in existing applications
and services. We evaluated the results adopting i) objective
metrics, such as bitrate, stalls, startup delay, ii) derived/cal-
culated metrics (instability, inefficiency, average bitrate), and
iii) proposed a) the bandwidth index – taking into account the
aforementioned derived/calculated metrics – together with b)
existing QoE models – focusing on stalls, startup delay – as
a main tool to determine the streaming performance of each
player. The findings presented in this paper demonstrate the
applicability of these metrics for the evaluation of adaptive
media players. Overall, the Bitmovin player offered the best
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Fig. 5. Number of Stalls for the Amazon Profile

Fig. 6. Total Time of Stalls for the Amazon Profile

Fig. 7. Download Video Bitrate for the Amazon Profile

performance followed by those players which are based on the
DASH-IF reference client dash.js.

Future work in this context will include new players (as
they become available) and also proponents proposing new
algorithms are invited to provide a Javascipt implementation
to allow for effective comparison with state-of-the-art deployed
systems. Additionally, we will investigate further QoE models
and subjective user studies (using crowdsourcing) in order to
verify the results and fine-tune the models itself. Finally, we
will investigate whether and how these players perform under
competition with respect to fairness.
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[5] T. Mäki, M. Varela, and D. Ammar. A Layered Model for Quality
Estimation of HTTP Video from QoS Measurements. In 2015 11th
International Conference on Signal-Image Technology Internet-Based
Systems (SITIS), pages 591–598, Nov 2015.

[6] R. K. P. Mok, E. W. W. Chan, and R. K. C. Chang. Measuring the
Quality of Experience of HTTP Video Streaming. In 12th IFIP/IEEE In-
ternational Symposium on Integrated Network Management (IM 2011)
and Workshops, pages 485–492, May 2011.

[7] R. Roverso, S. El-Ansary, and M. Högqvist. On HTTP Live Streaming
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