
Web-Service for Drive Safely System User Analysis:
Architecture and Implementation

Aleksandr Fedotov, Igor Lashkov
ITMO University

Saint Petersburg, Russia
mr.fedotovaleksandr@gmail.com, igor-lashkov@ya.ru

Alexey Kashevnik
SPIIRAS, Saint Petersburg, Russia

ITMO University, Saint Petersburg, Russia
alexey@iias.spb.su

Abstract—Drive Safely is a mobile application that is aimed
at dangerous situation determination while driving based on
information from a smartphone front-facing camera and
sensors. The smartphone is mounted in windshield for tracking
the driver face. During the operation the Drive Safely
application generates statistics that includes recognized
dangerous states, time, location, speed, acceleration, driver’s face
parameters, and other information from smartphone sensors.
The objectives of the Web-Service developed is to analyze the
data obtained and visualize them for the driver offline. Based on
the driver’s feedback Drive Safely application can improve the
quality of dangerous situations determination.

I. INTRODUCTION

According to the statistics of traffic fatalities for the first
half of 2016 17,775 people died in motor vehicle traffic
crashes in the U.S. [1]. There is a lot of research and
development in the world in the area of Advanced Driver
Assistant Systems but due to the cost these systems at the
moment are installed only to luxury car segment. Drive Safely
application [2], [3] is aimed at dangerous situations
determination and recommendation generation for the driver
while driving the vehicle to prevent accidents. The application
uses the driver smartphone installed in windshield to get the
context situation in the vehicle cabin.

Modern smartphones are equipped with front-facing
camera and variety of built-in sensors such as an
accelerometer, a gyroscope, an ambient light sensor, a
proximity sensor, a magnetic field sensor, and GPS that are
capable to measure parameters that are needed determine
dangerous states. At the moment the Drive Safely application
determines two dangerous states: drowsiness and distraction.
The smartphone’s front-facing camera monitors the head
movements, facial expressions, and the prolonged and
frequent eye blinks that indicates the micro sleep. Visual cues
relevant to the drowsiness state are percentage of closure of
eyelid (PERCLOS), eye blink time, eye-blinking rate, eye

gaze, pupil movement and eyelid movement. Distraction
dangerous state is related to mmaintaining the eye contact
with the road. Distraction occurs when drivers divert their
attention away from the driving task to focus on another
activity instead.

Using the smartphone Drive Safely system generates alerts
for the driver using vibration, audible signals, and visual
information in according with the proposed recommendation
schemes [4]. In addition the Drive Safely application provides
statistics about the driver’s behavior on his/her route. It tracks
such parameters as recognized dangerous states, time,
location, speed, acceleration, driver’s face parameters, and
other information from smartphone sensors. Table I shows
statistics for distraction dangerous state and Table II shows
the drowsiness dangerous state. The statistics is stored in the
cloud systems that provides possibility to use the powerful
resources to analyses it.

This paper describes the development of the Drive Safely
Web-Service that is able to analyze the presented in the table
statistics and visualize it in a driver-friendly interface. Due to
the visualization the driver can track a route, become aware of
dangerous states determined by Drive Safely, and approve or
decline the determined by the application dangerous state.
Based on this feedback the quality of dangerous situations
determination in Drive Safely application can be improved.

The requirements for the developed Web-Service have
been specified as follows. The system should be accessible to a
wide range of users and it has to support Multilanguage
interface. Web-Service should authenticate users by their
Google accounts as Drive Safely application uses a Google
account connected to the smartphone. Presented in statistics
GPS coordinates have a detection error so they should be
approximated to the map roads. The driver route should shown
in a map. Driver should have possibility to choose the
dangerous state and confirm / decline it.

TABLE I. DISTRACTION DANGEROUS STATE DETERMINATION STATISTICS

Date/Time Latitude Longitude Acceleration (m/s^2) Head angle Speed (km/h) City/Country Light level (Lux)
27/04/17 18:38:08:048 59,94228254 30,262599 11,16 -22,51 12 City 116
13/05/17 16:06:32:875 56,18414201 36,9833062 2,1 20,43 26 City 630
13/05/17 16:08:35:733 56,19890477 36,95948511 2,09 -26,25 64 City 565
13/05/17 16:08:54:948 56,20137014 36,95550604 4,08 35,21 80 Country 465
13/05/17 16:36:43:879 56,38791051 36,66605464 9 32,82 67 Country 731
14/05/17 20:23:06:339 60,73556818 30,09532307 6 24,01 67 Country 59

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

TABLE II. DROWSINESS DANGEROUS STATE DETERMINATION STATISTICS

Date/Time Latitude Longitude Acceleration
(m/s^2)

PERCLOS Left eye open
probability

Right eye open
probability

Speed
(km/h)

City/Country Light level
(Lux)

13/05/17
16:19:52:169

56,30814 36,78249 3,47 0,42 0,24 0,20 85 Country 1583

13/05/17
16:23:28:514

56,33012 36,73267 5,58 0,41 0,26 0,12 67 City 1259

13/05/17
16:32:50:919

56,34909 36,70548 3,61 1 0,27 0,20 76 City 902

13/05/17
16:39:08:220

56,41278 36,64071 5,08 0,33 0,26 0,13 104 undefined 992

13/05/17
16:42:38:188

56,45994 36,5926 3,84 0,42 0,22 0,18 104 Country 462

13/05/17
16:43:21:285

56,4688 36,58359 3,83 0,29 0,19 0,25 71 City 404

19/05/17
17:17:06:017

59,93627 30,28634 5,33 0,37 0,25 0,19 51 City 3924

The rest of the paper is structured as follows. Section II
describes the related work in the area of driver behavior
analysis. Section III describes to develop Web-Service. Section
IV concentrates on implementation. Conclusion summaries the
paper.

II. RELATED WORK

Currently, there is a large number of systems for the
analysis of the driver behavior. The paper [5] provides
comparative analysis of the behaviors of non-professional and
professional drivers on the basis of the undertaken individual
studies. The results showed the correlation between non-
professional drivers and ordinary and aggressive violations and
errors, while professional drivers were associated with positive
behaviors.

Authors of the paper [6] examines older people driving
behavior which includes road selection, left/right turn and
driving speed. There are 108 participants has been participated
in the study. Authors confirmed that older drivers are more
reluctant to drive on expressway than other participants for
long trips. Considering that driving in non-expressway with
long time may cause frequently facing complex and unsafe
conditions, more efforts should be carried out to promote and
train expressway driving among older drivers.

The paper [7] describes a tracking system that monitors
facial feature and create 3D geometric reasoning. The system
has three main components: robust facial feature tracking, head
pose and gaze estimation, and 3D geometric reasoning to detect
Eyes off the Road state.

The system proposed authors in [8] is the one that
determines dangerous states by sound. Authors present silence
removal approach using short term energy and zero crossing
rate prior to extracting the relevant features in order to reduce
the computational time in a vehicular environment.

Predictive driver assistance systems use an in-vehicle video
network to determine safety critical events [9] using the
specially installed two cameras.

The system proposed in [10] is based on machine learning
and visualizes dangerous states while driving that helps people
to recognize distinctive driving behavior patterns in continuous

driving behavior data. Driving behavior can be measured using
various types of sensors connected to a control area network.

The model developed in [11] shows how each type of
dangerous states affects the distribution of dangerous zones on
a city map.

III. WEB-SERVICE DEVELOPMENT

A. Objectives
To develop a system, it is necessary to identify the tasks

that it is to perform. From the general description of the
application and the users’ needs, the following tasks to be
solved were identified:

Authentication of web application users through Google
Account.
Distribution of roles and rights.
GPS data processing, their approximation to the
roadway.
Visualization of user routes on the data collected.
Display on the route areas where dangerous driver
conditions are identified.
Verification of the collected data by the user, for
retraining the system for monitoring dangerous states.
Language localization.

To implement the tasks it is necessary to select the
technologies and software tools that allow implementing
functionality. Next section describes the system and software
architecture of the Web-Service for the analysis and
visualization dangerous states.

B. System Architecture
All systems are based on technical tools and consist of

several objects. The object of the system is a stand-alone
solution or a tool for solving specific tasks. The environment is
required to install and ensure objects operation. The ideal
solution, in this case, is the virtualization environment, which
allows deploying the system elements. To develop the
application, the «Docker» [12] virtualization environment has
been chosen. It allows to solve the task of ensuring the health
of the application in various environments, as well as the
problems of defining dependencies, updating components,

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 41 --

scaling the application. The Web-service is broken into
components based on their functions, which have individual
dependencies packaging. They can be deployed on an
architecture different from the standard. «Docker» is easy to
manage and convenient to configure. Analogues like
«OpenVZ» [13], «LXC» [14] have a large overhead, take
longer setup, have poor documentation, experience difficulties
with seeking for a finished image for the required functional
component. Each object of the system developed is located in a
certain container, what allows to isolate the machine resources,
simplifying the deployment process on the destination server.

Fig. 1 represents the architecture of Web-Service system
developed. It consists of six main components.

«Clickhouse» [15] is a column database for OLAP
structures. This database management system is designed
specifically to collect unchanging time events and store large
amounts of information. It has built-in clustering, which allows
adapting to the increasing amount of data. As a part of the
Drive Safely, «Clickhouse» keeps route data after processing
GPS points obtained during the trip. They are stored in the
form of events with a time reference.

«Postgres» database management system [16] keeps data of
a smaller size that need to be modified. The database contains
information about users, days and routes of trips, t confirmed
dangerous states, synchronized data and other application data.
«Postgres» is integrated with «Clickhouse», which allows to
write aggregation requests using both database management
systems.

«Application» is a container that includes the «PHP-FPM»
process manager [17], which runs scripts in separate processes
for each connection. The connections are initiated by «Nginx»
proxy server [18], which acts as the primary firewall and
caching of static resources.

Processing information about dangerous states of users, it is
necessary to avoid re-synchronization for one user. «Redis»
solves this problem. «Redis» - networked journaling data store
[19], which allows implementing a blocking pattern.

Docker

Clickhouse
Database

PostgresDatabase Application

Nginx

Google API

Redis

Fig. 1. System architecture of the developed Web-Service

Scaling the number of instances of the application the
synchronization runs on one instance, it does not start on
another one. The external Google API service is used to
authenticate users in the system and makes it easier to integrate
with Drive Safely mobile application that uses Android system.
To connect to Google API, the protocol «Oauth 2.0» is used
[20]. The mobile application saves events to Firebase Cloud
Storage in the form of CSV files. These files contain
information collected in the vehicle cabin with a frequency of
2-3 events per second. Google Roads API [21] approximates
GPS data received from the smartphone to a real roadmap to
avoid possible errors. This service interpolates coordinates, i.e.
inserts additional points in the order of coordinates for
maximum correspondence to the curvature of the road.

C. Program Architecture
To implement Drive Safely the «PHP» programming

language has been chosen, as it allows to take the advantage of
strict and dynamic typing, has a large community and fast
development speed. In order not to search for solutions to
typical tasks, the sets of classes previously used and re-usable
components are included– in a framework. Framework
«Symfony3» has been chosen. This framework is built on the
connection of independent components, allowing adhering to
the service-oriented approach. Among its -, «Symfony»
overcomes its analogs such as «Yii» and «Laravel» in terms of
speed and number of integrable libraries.

The architecture of the application completely corresponds
to the Model-View-Controller model. MVC is a scheme for
applying several design patterns, it supports solution model,
user interface, and user interaction. It consists of three groups
in such a way that the modification of one of the components
has a minimal effect on the others. This design pattern is often
used to build an architecture when moving from theory to
implementation in a particular subject area.

The scenario for processing the request from the user is
shown in Fig. 2. In object-oriented programming, objects are
the smallest units of the system. Each object is aimed at
performing certain functions and other objects are encapsulated
within it. As a result the parent object manages the state of
inner objects. The Dependency Injection template is designed
to resolve this problem by providing dependency management
to the external code. The parent object always works with the
finished instance of another object, has no data about its
creation and dependencies. The parent object simply provides a
mechanism for substituting a dependent object, usually through
the constructor or setter method.

Controller Model

View

Manipulation

Display changesRender

User request

Fig. 2. The request processing scenario

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 42 --

This transfer of control is called Inversion of Control and
means that the object itself no longer controls the state of its
descendant objects.

The Dependency Injection component in «Symfony 3»
relies on the container, manages all registered services and
tracks the relationships between them, creates service instances.
The components of the application can be divided into 3 groups
as shown in Fig. 3: «Symfony» components, vendor
components and the system components themselves. Supplier
components are the third-party libraries and classes that
implement a specific functionality that can be used in different
projects.

«Symfony» components are the following. The Security
component is the application firewall that provides a user
authentication process. «Routing» component specifies the
correspondence between the request address and its handler -
the controller. «Console» is needed to run the console
component of the project. It is necessary for writing
synchronization and data processing commands. The «Locale»
component is responsible for managing the localization of the
application. «File System» is used to work with the file system.

«Http Kernel» is the core of the framework, the handler of
incoming requests, initiates the remaining components. «Form»
is a component for convenient work with forms of different
types and levels of nesting. «Asset» manages resource files for
a web client.

Fig. 3. Web-Service Components Chart

«DI» is the implementation of Dependency Injection and
Inversion of Control pattern. Its structured code allows
adhering to the best practices.

Supplier Components:

«JMS-Serializer» is a serializer and deserializer of the
objects. Used for API and for mapping the objects for
«Clickhouse» database.
«Doctrine» is ORM for working with «Postgres» that
also provides DBAL for «Clickhouse».
«Redis Client» is a client for working with «Redis»
necessary to implement non-duplicating
synchronization.
«Google API» is a library for working with the Google
API.
«Twig» is a view template for displaying pages and
organizing their hierarchy. «Clickhouse» Adapter is an
adapter for working with «Clickhouse».

The components of the application are to be considered in
detail. «Sync Commands» is a set of commands for
synchronizing events from the cloud storage of Firebase. It
includes parsing csv files and calling the «RoadsService»
functions. Events are collected data from the driver's cab at a
specific point in time. «Sync Service» a set of control classes
for calling synchronization commands for users. It uses
«Redis» to block the synchronization of an individual user so
that at a given time the commands are not called for this user
on other instances. «Controllers» are the controllers of the
application transfer data from models to a template or
serializer. «Roads Service» is a set of classes for identifying
road routes in a sequence of events approximating GPS data to
a roadway. «Events Service» is a set of classes for working
with events defined as dangerous. The event data structure has
differs from the main one. In addition, this service is
responsible for confirming a dangerous condition.
«AuthProvider» is an integration component for Google
authentication. «Voters» are classes for providing access
control to application objects. It checks whether the current
application has rights for actions with a particular system
object.

Web-Service class diagram is presented in Fig. 4.
Controllers are the classes responsible for the relationship
between the operation logic and the template by which the data
is displayed. «PanelController» is responsible for displaying
the pages of the user panel.

Fig. 4. Web-Service class diagram

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 43 --

«CriticalEventController» gives and stores data about
dangerous states. «RoadLineController» provides a set of
coordinates for the selected trip.

Fig. 5 presents console commands that migrate data from
the event log files stored in Firebase to the application
database. «PanelStatEventsCommand» is the command that
processes and stores data from a file with coordinates and states
of the system at certain points in time.
«ParseCriticalEventCommand» is the command that processes
and stores data from a file with dangerous states.
«LoadFireBaseUserFileCommand» searches and downloads
unprocessed files from Firebase Storage. Fig. 6 presents classes
that provide access to the application entities. They encapsulate
the logic of queries to the database. A separate repository is
created for each entity as in terms of the functional point of
view they provide access to different objects.
«RoadLineRepository», «UserRepository»,
«CriticalInfoEventRepository», «CriticalEventRepository»,
«StatEventRepository» are repositories for corresponding
models containing queries to databases.

Fig. 5. Console commands that migrate data from the event log files stored in
Firebase to the application database

Classes that control the creation and updating of entities are
presented in Fig. 7. «CriticalEventManager»,
«StatEventManager», «RoadLineManager»,
«CriticalInfoEventManager» are managers responsible for a
particular entity perform additional conversions if necessary.
Separated classes ensure the purity and statefulness of the code.

The diagram of the services is presented in Fig. 8.
«CriticalEventParser» is a class for processing dangerous state
files. «StatEventParser» class processes files with event data in
the driver’s cab. «StatEventFactory» and
«CriticalEventFactory» are the entity creation factory of
«StatEvent» and «CriticalEvent» made from the lines of the
file. They perform the conversion of string data to the types
stored in the database. «BatchGenerator», «ObjectGenerator»,
«FilterGenerator», «RoadLineGenerator» are generators for
processing files that are lined up for streaming processing.

Fig. 6. Classes that provide access to application entities

Fig. 7. Classes that control the creation and updating of entities

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 44 --

Fig. 8. Services diagram

«BatchGenerator» splits the sequence into blocks of data
for block processing. «ObjectGenerator» performs the
generation of objects using factories that implement the
«FileFactoryInterface» interface. «FilterGenerator» filters data
on the conditions specified in Closure. For example, if the
nearest objects have the same stats or no valid data, they are
skipped. «RoadLineGenerator» aggregates events in a
continuous sequence of one route. «SnapRoadService»
performs the interpolation and approximation of GPS points
using Google Roads API.

«UserProvider» provides the user's entity by necessary
criteria. «StorageFinder» is a service that follows Firebase files
that are not processed. It uses supporting classes
«StorageObjectLog», «PrefixUserFolder»
«NextStorageObjectsResult», which encapsulate storage
objects. «CriticalEventInjector» aggregates objects of
dangerous states and information from users.

D. Data Architecture
Fig. 9 shows the key entities of the Web-Service developed.

They illustrate how data is logically grouped into the proper

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 45 --

objects. Within the project structure five main models for data
storage are used. «CriticalEvent» represents events identified
by the system as dangerous. The entity contains a data structure
responsible for a critical state. It contains an extensive aspect of
the parameters that display the values collected in the driver's
cab. «StatEvent» represents events occurring for values within
a short time period. It contains data on the movement of the
vehicle, as well as smartphone performance.

«User» is the model of the user that contains the credentials
of the «Oauth» identifiers and the data of the last
synchronization.

«RoadLine» is a model representing a dedicated route
within a certain time range. It groups events into a continuous
sequence that can be displayed on the map. «CriticalInfoEvent»
contains the data that the user provides after examining the
statistics. It is necessary for training the system.

IV. IMPLEMENTATION

The development process is divided into several stages. The
result of each stage is the input parameter for the next one.
Thus, the set of steps creates a continuous chain that shows the
development sequence of the Web-Service as seen in Fig. 10.
In order to understand what tasks the system should solve first,
it is necessary to analyze the subject area, then choose the tools
that can solve the tasks. After developing the architecture, it is
implemented with the tools selected adding operation logic
that meets the requirements and templates responsible for
displaying it.

Fig. 9. Key entities of the developed Web-Service

The next stage is to add dynamics to the user interface and
conduct integration testing.

Fig. 11 presents the Web-Service main screen that contains
brief information about the product, has a navigation menu and
a login button. The homepage of the personal profile contains
some graphs on the user’s routs and dangerous states as shown
in Fig. 12.

Fig. 13 shows the map of dangerous states. Here it is
possible to choose the day and the perfect rout on a given day.
The map indicates the points at which dangerous states are
found.

Start of Project Analyze the subject
area

Choose
instrumentation for

realization

Design Architecture
Develop

synchronization
core functional

Add business logic

Add view templates Build Client
application

Testing and
valdation result

Fig. 10. Development sequence of the Web-Service

Fig. 11. User interface: Web-Service main screen

Fig. 12. User interface: homepage of the personal cabinet

Fig. 13. User interface: map, route, and determined dangerous states

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 46 --

Fig. 14. Dangerous state

When the user clicks at the point, a pop-up window shows
specific information about the dangerous state (Fig. 14). In
addition, the user is able to note whether there is a critical
condition in fact or not. A confirmation is stored in the
database and used for the automatic improvement of the
system.

V. CONCLUSION

The paper presents Drive Safely Web-Service for the driver
behavior analysis which is used by Drive Safely system. The
Drive Safely system generates driving statistics describing the
driver’s behavior on his/her route. The statistics is uploaded to
the cloud and becomes accessible for the Web-Service. Web-
Service developed allows tracking the driver’s path and
confirming or declining the determined dangerous states. This
provides Drive Safely system with the possibilities to evaluate
and enhance dangerous states determination.

ACKNOWLEDGMENT

The work has been partially financially supported by grant
17-29-03284 of the Russian Foundation for Basic Research,
by the Russian State Research # 0073-2018-0002, and by
Government of Russian Federation (Grant # 08-08).

VI. REFERENCES

[1] Early Estimate of Motor Vehicle Traffic Fatalities for the First Half
(Jan–Jun) of 2016, National Center for Statistics and Analysis, Report
No. DOT HS 812 332, Washington, DC: National Highway Traffic
Safety Administration.

[2] A. Kashevnik, I. Lashkov, V. Parfenov, N. Mustafin, O. Baraniuc,
“Context-Based Driver Support System Development: Methodology
and Case Study”, Proceedings of the 21st Conference of Open
Innovations Association FRUCT, Helsinki, Finland, 6-10 November
2017, ITMO University, St. Petersburg. 2017. pp. 162–171.

[3] A. Smirnov, A. Kashevnik, I. Lashkov, V. Parfenov, “Smartphone-
Based Identification Of Dangerous Driving Situations: Algorithms
and Implementation”, Proceedings of the 18th Conference of Open

Innovations Association FRUCT, St. Petersburg, Russia, 18-22 April
2016, ITMO University, pp. 306–313.

[4] A. Smirnov, A. Kashevnik, I. Lashkov, “Human-Smartphone
Interaction for Dangerous Situation Detection & Recommendation
Generation while Driving”, Speech and Computer: 18th International
Conference on Speech And Computer (SPECOM 2016), Proceedings,
Budapest, Hungary, 23-27 August 2016, pp. 346–353.

[5] M. Maslac, B. Antic, K. Lipovac, D. Pešic, N. Milutinovic,
“Behaviours of drivers in Serbia: Non-professional versus
professional drivers”, Transportation Research Part F, vol. 52, 2018,
pp. 101–111.

[6] Y. Zhao, T. Yamamoto, T. Morikawa, “An analysis on older driver's
driving behavior by GPS tracking data: Road selection, left/right turn,
and driving speed”, Journal of Traffic and Transportation
Engineering, In Press.

[7] F. Vicente, Z. Huang, X. Xiong, “Driver Gaze Tracking and Eyes Off
the Road Detection System”, IEEE Intelligent Transportation
Systems Society, vol. 16, Issue: 4, 2015, pp. 2014–2027.

[8] N. Kamarud, A. Wahab A. Rahman, K. Ikhwan Mohamad Halim,
“Driver behavior state recognition based on silence removal speech”,
International Conference on Informatics and Computing (ICIC),
2016.

[9] E. Ohn-Bar, A. Tawari, S. Martin, M. M. Trivedi, “On surveillance
for safety critical events: In-vehicle video networks for predictive
driver assistance systems”, Computer Vision and Image
Understanding, vol. 134, May 2015, pp. 130-140.

[10] H. Liu, T. Taniguchi, Y. Tanaka, “Visualization of Driving Behavior
Based on Hidden Feature Extraction by Using Deep Learning”, IEEE
Transactions on Intelligent Transportation Systems, vol. 18, Issue 9,
2017, pp. 2477–2489.

[11] S. Sharda, “Mapping Risky Driver Behavior and Identifying their
Contributory Factors: A Spatial Statistical Approach”, Master of
Science in Civil Engineering Thesis, Montana State University,
Bozeman, Montana, 2016.

[12] Docker official website, Docker - Build, Ship, and Run Any App,
Anywhere, Web: https://www.docker.com/

[13] OpenVZ official website, OpenVZ Virtuozzo Containers Wiki, Web:
https://openvz.org/

[14] LXC official website, Linux Containers - LXC – Introduction, Web:
https://linuxcontainers.org/lxc/

[15] Clickhouse official website, ClickHouse — open source distributed
column-oriented DBMS, Web: https://clickhouse.yandex/

[16] Postgres official website, PostgreSQL: The world's most advanced
open source database, Web: https://www.postgresql.org/

[17] PHP-FPM official website, Home - PHP-FPM, Web: https://php-
fpm.org/

[18] Nginx official website, nginx news, Web: http://nginx.org/
[19] Redis official website, Redis, Web: https://redis.io/
[20] OAuth 2.0 spec official website, OAuth 2.0 – OAuth, Web:

https://oauth.net/2/
[21] Google Maps API official website, Google Maps APIs Google Maps

APIs, Web: https://developers.google.com/maps/documentation
[22] PHP official website, PHP: Hypertext Preprocessor, Web:

http://php.net
[23] IEEE official website, Visualization of Driving Behavior Based on

Hidden Feature Extraction by Using Deep Learning - IEEE Journals
Magazine, Web:
http://ieeexplore.ieee.org/abstract/document/7839988

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 47 --

