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Abstract—Nowadays the promising line of research is an ap-
plication of groups of mobile robots to various tasks. An effective 
SLAM algorithm is one of their main success factors. Due to the 
increasing popularity of the open-source robots framework, ROS, 
the best methods should be implemented on this platform. The 
development should be based on the theoretical research of the 
subject area. So, the paper is justified by this fact. Multi-robot 
SLAM methods have been classified according to their key fea-
tures. Their advantages and disadvantages have been identified. 
The methods have also been compared according to the available 
experimental data. The methods most suitable for implementa-
tion have been selected. 

I. INTRODUCTION 
The task of Simultaneous Localization and Mapping 

(SLAM) can be described as step-by-step continuous 
estimation and adjustment of the map based on data from a 
mobile robot and positioning of the robot on this map at the 
same time. An effective and precise SLAM algorithm is an 
important element in navigation and other high-level tasks [2]. 
In this context we consider any mobile robotic platform 
equipped with its own computing unit and sensors for getting 
information from the environment such as LIDAR, video and 
depth cameras, odometer, inertial sensor, etc. 

Now there are a lot of effective and applied in practice 
single-robot SLAM algorithms. However, the research on this 
problem for a group of robots becomes more relevant because 
of the expansion of their usage in different spheres, rapid 
development of hardware and evolution of software [13]. The 
group usually consists of independent autonomous robots 
which are connected into a single network and cooperate for 
the common goal achievement. 

As practice shows, there is still no widely accepted, proven 
and reliable navigation algorithm for groups of robots. 
Meanwhile, the scientific community is interested in the topic 
and this results in new inventions. The majority of the efforts 
doesn’t become popular either because the authors don’t 
publish the implementation details of their approaches and 
source code or because the very algorithms are not elaborated 
enough to be a universal solution. These difficulties along with 
the lack of communication between the research groups and a 
single formalized theoretical and code base slow down the 
progress significantly [3].  

This paper is meant to contribute to the research on this 
problem. And its goal is the review, analysis, classification of 
the existing multi-robot SLAM methods, as well as the 
identification of their advantages and disadvantages and 
comparative evaluation. The next step should be the 
implementation of the promising methods on the available 
open-source platform for robot development, Robot Operating 
System (ROS), and the estimation of their functioning in 
different conditions based on real experiments. 

II. SLAM PRINCIPLES 
The minimum requirement to a robot while solving the 

SLAM problem is its mobility and presence of a device 
retrieving information about the environment. The general 
scheme of single-robot SLAM can be represented in three 
steps [1] defined in probabilistic terms [2]: 

1. The control signal moves the robot to new coordinates. 
But noise in the data from motion sensors, wheel slips and 
round-off errors lead to the uncertainty of the robot’s location. 
This process is described by the motion model which depends 
on the type of odometer, platform and the way the robot 
moves. It is a nonlinear function: 

It means that the new robot’s location  depends on the 
previous one  , the control signal  and the Gaussian 
noise  with certain mean value and variance.  

2. The robot receives new information about the 
environment. This stage is described by the inverse 
observation model which depends on the type of a sensor and 
its characteristics, and the algorithm of finding landmarks 
based on the sensor data. This is a nonlinear function: 

 

In other words, the sensor measurement  is a function of 
the robot’s location , the landmark location    (where  
is a landmark with index  at the step ) and the Gaussian noise 

. 

3. The robot updates its location and the map. This is a 
key stage and it depends on a certain algorithm of integrating 
sensor data into the map and eliminating the noise. In general, 
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the estimation of the map and a robot’s location can be 
described by the recursive expression: 

 

where  is a map represented by landmarks or 
cells of grid.  

The single-robot SLAM methods can be adapted for the 
groups of robots. Such modifications are aimed at solving the 
number of problems appearing in a new context [3]: 

What data communication channels should the robots 
use? 

What network topology should we use for connecting 
the robots? 

What information about the map and the location 
should the robots exchange? 

What way should the integration of other robots’ data 
be done? 

How should the robots estimate relative locations? 

In case of solving these problems, we can get several 
advantages: 

Faster map construction compared to a single robot due 
to the work of several computing units and sensors; 

Higher algorithm precision due to the presence of 
several independent sources of data and map 
estimations; 

Algorithm robustness against the influence of negative 
environment factors on individual robots within the 
group and robot breakdowns. 

Probabilistic expression of the multi-robot SLAM task 
appears as follows [13]: 

 

 

where  is a number of robots in the group. 

III. CHOICE OF RESEARCH METHOD 
The research on the multi-robot SLAM methods was 

conducted in four steps: 
Firstly, we have classified the existing methods according 

to the most significant criteria. 

Secondly, we have compared them based on the 
advantages and disadvantages, indicative for certain classes of 
the methods. The results are shown in Table I.  

Thirdly, we have compared the methods based on the 
experimental data presented in the corresponding articles. The 
data contains scenarios of simulated and real experiments, the 

test environment characteristics, the number of robots and 
their parameters, images of the constructed maps. The results 
are shown in Table II. 

Fourthly, we have made conclusions about the efficiency 
and practicality of the methods. They are presented in the 
corresponding section. 

IV. METHODS CLASSIFICATION 
Despite the diversity of SLAM methods, they are all based 

on several typical approaches with different adaptations. And 
this allows to divide them into classes. 

A. Software architecture 
According to software architecture there are frontend and 

backend methods [19]. 

Backend methods perform construction of the map and 
localization having the whole data set collected by both the 
motion and observation models. This helps to manage bad 
quality data easily and to recover after serious errors in the 
estimation of the map and robots’ location. Such methods have 
a complex probabilistic model and are usually based on the 
filtering algorithms. They can be used with or without 
frontend methods. 

a) Filtering methods, historically, were the first SLAM 
algorithms which were developed during the time of the 
backlog of technical means (inaccurate and expensive 
sensors). Such methods are based on the probabilistic 
apparatus of the Extended Kalman filter (EKF) [5], [12], 
Sparse Extended Information Filter (SEIF) [9] or Rao-
Blackwellized Particle Filter [6], [8], [15]. Experience has 
proven that EKF has become outdated and is scarcely used 
due to significant limitations of the map size and bad 
compatibility with high-precision laser rangefinders. At the 
same time particle filter is widely used and big variety of 
methods based on it are characterized by high estimate 
precision and robustness. 

b) Pose-graph optimization methods process and store 
all the data collected during a robot’s motion in the form of 
graph vertices. That is why the map cannot always be 
estimated in real time. However, it makes these methods 
the most precise and, in contrast to the other classes of 
methods, allows to get the estimation of the whole path, i.e. 
solution of the full SLAM problem [11], [19]. 

c) Methods based on machine learning and neural 
networks [17] are getting popular nowadays but already 
seem far-reaching. Their main benefit and disadvantage is 
a necessity for preliminary model training.  

Frontend methods are mostly smoothing, i.e. based on 
error minimization algorithms. They are aimed at processing 
the data received according to the observation model. These 
methods can be used both as preliminary for backend ones or 
individually with high-precision sensors. It is these sensors 
that allow to dispense with complex mathematical apparatus 
without the loss of the quality of the result. 
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a) Methods that take sequences of scans from a laser 
rangefinder (LIDAR) or similar device (Kinect) as an 
input. They are mostly algorithms of scan-matching (ICP, 
IDC) [16], [18]. 

b) Methods that extract environment landmarks from a 
sequence of camera images and then match clouds of 
features. Such algorithms as SURF and SIFT are used [13], 
[14]. 

B. Runtime 
According to the runtime there are online and offline 

classes of methods [2]. 

Offline methods (full SLAM) are executed with a pre-
collected data set and construct a robot’s trajectory and the 
map only after the phase of the robot’s activity is finished 
[11], [16]. Their main benefit is an opportunity of generating 
very accurate map and robots’ path due to the lack of time and 
computational power limitations. But these methods are not 
applicable in most real tasks which require a robot’s decision 
based on the current map in real time. 

Online methods work along with robots’ motion and data 
collection. They are applicable to the tasks in which the main 
requirement is a robot’s autonomy and the ability to make 
independent decisions. The majority of the analyzed methods 
are online. 

C. Map representation 
According to the inner map representation which directly 

depends of the type of sensor there are three classes. 

The grid map uses an array of cells in which it stores the 
probability of finding an obstacle in a given space point [8], 
[10], [16], [17]. This representation is used for robots 
equipped with a laser rangefinder. The category includes the 
majority of the popular methods. 

The map represented by the set of landmarks such as 
markers of special shape, object corners, unique textures [5], 
[6], [15]. Markers are extracted from images received from the 
camera based on computer vision algorithms. However, it is 
also possible to extract landmarks from laser scans which will 
represent positions of obstacles on the 2D surface. 

The map represented by a pose-graph [10], [11], [16] 
where edges are translation vectors and vertices are sensor 
observations from these space points. It is possible to use any 
sensor because after optimization the data in the vertices is 
integrated and converted into representations 1 and 2. 

The next classification criteria are specific only for multi-
robot SLAM methods and usually characterize robots’ 
interaction. 

D. Network topology 
According to the network topology which connects robots 

there are centralized and distributed methods. 

In a centralized network the key role belongs to a central 
node which performs main computations of a SLAM 
algorithm. And robots play roles of mobile sensors reading out 

information about the environment and passing it to the central 
node [4]. This scheme is easy to implement, allows to arrange 
better coordination between robots and requires less resources 
of robots-sensors. However, among its drawbacks there are 
high requirements to reliability and capacity of data exchange 
channels, the central node power and the necessity of 
identifying initial robots’ location. Moreover, the system 
becomes difficult to implement and impractical given a big 
explored area or a big number of robots. 

Distributed scheme means that each robot is fully 
autonomous, constructs its own copy of the map and, if 
possible, exchanges it with the other robots while exploring 
the area. This group comprises almost all the reviewed 
methods. The scheme allows the construction of big maps by 
big groups of robots with high robustness to noise and parallel 
task execution. But these systems undergo the problem of 
mutual detection of robots and estimation of their relative 
location and also the difficulty of coordination. 

E. Data exchange method 
According to the data exchange way there are algorithms 

with direct and indirect connections. 

Direct data exchange is more popular and effective. It 
means that robots communicate with each other through their 
own receivers and transmitters. This is most consistent with 
the SLAM task requirements. 

Indirect data exchange takes place in case of an algorithm 
transmitting all the data through the central node [4] or buffers 
which can be special transmitting trackers positioned all over 
the area [15]. 

F. Type of data for exchange 
According to the type of the environment data for 

exchange there are methods that transmit raw data from a 
sensor or parts of a map. 

If the raw data is exchanged, it is possible to get more 
precise map estimation. However, the load on the transmit 
channel increases. Each robot uses this data just like it uses its 
own sensor data. That is why an error in map estimation made 
by each robot doesn’t influence the overall result [8], [10]. 

The exchange of parts of a local map is less resource 
intensive because there is no need to store and transmit raw 
laser scans or point clouds. But while integrating this data 
estimation errors made by robots are accumulated [5], [6], 
[14], [17]. 

V. METHODS ADVANTAGES AND DISADVANTAGES 
Advantages and disadvantages of the reviewed methods 

are shown in Table I. The “Method” column contains the links 
to the corresponding articles (see references). The other two 
columns are the indices of the advantages and disadvantages 
which are listed below. 

A. Advantages 
There are the following advantages: 

1) The map is integrated by the group of robots online. 
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2) The robots don’t have to be in direct contact to identify 
their relative locations. 

3) The method solves the problem of association between 
the data from the sensor and the data already integrated 
into the map. This doesn’t include the loop closure 
problem. 

4) It is possible to combine the method with other 
algorithms which solve particular subtasks or to modify 
the method for getting better results. 

5) The robots are fully autonomous, the network is 
decentralized.  

6) The method effectiveness is proven by not only 
simulated experiments but also real ones. 

7) The method does not require the assumption that initial 
mutual locations of robots are known.  

8) The corresponding paper introduces a resource 
effective algorithm for data exchange between the 
robots. 

B. Disadvantages 
There are the following disadvantages and problems: 

a) The area size is limited because of using the EKF filter 
and feature-based map. 

b) The method requires a central node or server which 
limits robots’ autonomy. 

c) The robots have to be in direct contact to identify their 
relative location. Besides, it requires special markers on 
their bodies. 

d) The implementation of some parts of the algorithm is 
omitted, i.e. it does not implement the full solution of 
SLAM problem. 

e) The method has the association problem of the data 
from a sensor and the data already integrated into the 
map, i.e. the problem of re-discovering the landmarks 
or rangefinder scan-matching or pose-graph edges 
mapping, etc. 

f) The authors make an assumption of initial conditions 
while implementing or testing the algorithm. Usually 
this means that robots’ relative location or sensor data 
associations are known a priori. 

g) The method requires installing special markers or 
landmarks on the area. 

h) The algorithm can’t work online because of high 
resource requirements. 

i) The method requires complex and/or not effective 
scheme of data exchange between robots. 

j) The method requires large amounts of RAM due to the 
use of the particle filter with the grid map. 

k) The method is not robust enough in some scenarios, for 
example, in case of limited contacts between robots, a 
lot of noise in data, small or too big number of map 
features, etc. 

l) The algorithm description in the article is not detailed 
enough for its implementation. Some important aspects, 
for instance, the problems of data association and data 
exchange, are not considered. 

m) The experimental data is ambiguous, i.e. incomplete, 
inaccurate or not demonstrating the method 
effectiveness. 

n) The method has a problem of loop closure in robots’ 
paths. 

TABLE I.  SLAM METHODS ADVANTAGES AND DISADVANTAGES 

Method / Paper Advantages Disadvantages and 
problems 

Extending SLAM to Multiple Robots [4] 1 a, b, d, e, f, m 
Multi-robot SLAM with Unknown Initial Correspondence: The robot rendezvous case [5] 1, 5, 6, 7 a, , e 

Cooperative Multi-Robot Map Merging Using Fast-SLAM [6] 1, 5, 7 c, e, g, m 
Multi-robot Simultaneous Localization and Mapping using Particle Filters [7], Rao-

Blackwellized Particle Filters Multi Robot SLAM with Unknown Initial Correspondences 
and Limited Communication [8] 

1, 3, 5, 7 c, j, i, n 

Multi-Robot SLAM with Sparse Extended Information Filers [9] 1, 2, 3, 5, 7 k 
Multi-Robot SLAM using Condensed Measurements [10] 1, 3, 5, 6, 7, 8  
Multi-Robot SLAM with Topological/Metric Maps [11] 5, 6, 7 , h, l 

Decentralized Cooperative SLAM for Sparsely-Communicating Robot Networks: A Central-
ized-Equivalent Approach [12] 

1, 5, 7 a, c, g, l 

Multi-robot visual SLAM using a Rao-Blackwellized Particle Filter [13] 1, 3, 4, 5, 6 c, f, l 
Multi-Robot Marginal-SLAM [14] 1, 2, 5, 7 f, k, m 

Multi-Robot Range-Only SLAM by Active Sensor Nodes for Urban Search and Rescue [15] 1, 2, 3 f, g, i, l 
Multi-Robot Pose Graph Localization and Data Association from Unknown Initial Relative 

Poses via Expectation Maximization [16] 
2, 3, 5, 7 f, h, n 

A Neural Network-based Multiple Robot Simultaneous Localization and Mapping [17] 1, 2, 3, 5, 7 k 
Multi-Robot Localization and Mapping based on Signed Distance Functions [18] 1, 2, 3, 6 f, k, l 
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VI. METHODS COMPARISON 
The results of comparison are shown in Table II. The 

column “Based on” contains the mechanism of estimating the 
map and robots’ locations. “Size of map” column shows the 
size of the explored area, estimated using the photos of maps 
or indicated by the authors. 

The column “Estimated precision” contains the rating of 
the functioning of methods. It considers the following factors: 

The presence of real experiments data. 

The size of the explored area. The bigger - the better. 

The number of robots participating in the experiment. 
The bigger - the better. 

The quality of the method elaboration and description 
in the corresponding paper, including the algorithm 
aspects defined and the assumptions made. 

The underlying SLAM algorithm for a single robot. 

"Exellent" means that the method has the best accuracy of 
map estimating among those considered. "Good" means that 
the accuracy is sufficient for real-world applications. 
"Satisfactory" means that the method is interesting only for 
limited experiments. Since the articles do not contain metric 
parameters of enviroments and maps, it is impossible to give 
more complete precision estimate without carrying out our 
own experiments. 

VII. COMPARISON RESULTS 
In the result of the analysis and comparison of multi-robot 

SLAM methods the following conclusions have been made. 

Despite the variety of multi-robot SLAM methods many of 
them have the disadvantages that make them non-universal. 
Besides, the majority of them is provided with little 

information about the experiments in real conditions and/or 
with big groups of robots.  

The filtering methods have been developing for a long time 
and are well studied. There is a number of proven single-robot 
SLAM algorithms with high robustness and precision. And 
there are also many theoretical efforts to adapt them for a 
multi-robot SLAM task. 

Rao–Blackwellized particle filter algorithms [8], [13] have 
the advantages of precision, running speed and universality 
over the outdated extended Kalman filter. They are able to 
solve a multi-robot SLAM problem to the full extent. 

Pose-graph optimization algorithms show the highest 
precision of map construction [10], [11]. The combination of 
these methods with filters and scan-matching algorithms 
allows to overcome the widespread difficulties. However, their 
execution is not always possible in online mode. 

Due to the increased sensor accuracy smoothing frontend 
methods are getting more popular. They are fast and effective 
[18]. Hybrid methods combining the best features of frontend 
and backend algorithms appear [10], [16]. 

The methods based on machine learning and neural 
networks [17] are also promising despite their poor elaboration 
now. The possibility and necessity of preliminary model 
training are their strength and weakness at the same time. 

The experiments show that the methods which don’t use 
map features are preferable because the corresponding 
computer vision algorithms are not perfect yet. Their big 
problems are data association and loop closure in robots’ 
paths. 

It is obvious that the methods which don’t require direct 
robot contacts are better because the conditions of their robust 
functioning expand [16], [17], [18]. 

TABLE II. THE RESULTS OF THE METHODS COMPARISON 

Method / 
Paper

Based on Map type Size of map, m x 
m

Estimated 
precision 

Number 
of robots 

Real experi-
ment 

[4] EKF Landmarks - Satisfactory 2 No 
[5] EKF Landmarks 60×80 / 4800 Good 2 Yes 
[6] Particle Filter Landmarks 5×5 / 25 Satisfactory 2 Yes 
[7] Particle Filter Grid 2500 Good 4 No 
[8] Particle Filter Grid 200 Good 2 Yes 
[9] SEIF Landmarks 350×350 / 120000 Good 8 No 

[10] Scan Matching + Graph 
Optimization 

Pose-graph + Grid 13×38 / 500 Excellent 8 Yes 

[11] Particle Filter + Graph 
Optimization 

Pose-graph + Grid 77×36 / 2800 Good+ 3 Yes 

[12] EKF Landmarks 15×8 / 120 Good 9 Yes 
[13] Particle Filter Landmarks 30×30 / 900 Good 3 Yes 
[14] Particle Filter Landmarks 40×40 / 320 Good 2 Yes 
[15] Particle Filter Landmarks + Grid 17×29 / 500 Good 4 Yes 
[16] Scan Matching + Graph 

Optimization 
Pose-graph + Grid 15×15 / 225 Good 3 Yes 

[17] EKF + Neural Network Grid 10×17 / 170 Good+ 2 Yes 
[18] Scan Matching Grid 28×14 / 392 Good 2 Yes 
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The most universal approaches are the methods with 
distributed network, particularly, those of them which don't 
need initial mutual locations [8], [11], [16], [17]. Here the 
robots are fully autonomous and SLAM tasks are solved 
simultaneously. 

The above described methods are recommended for the 
implementation on the ROS platform due to their objective 
advantages identified in the result of the comparison. 

VIII.CONCLUSION

In this paper we have reviewed the principles of SLAM 
methods for a group of robots.  The classification of these 
methods is developed according to key features: SLAM 
software architecture, algorithm runtime, inner map 
representation, robots network topology, data exchange 
channel and data type. The advantages and disadvantages of 
the methods have been identified. Their effectiveness and 
precision have been evaluated. The methods have also been 
compared according to the results of the experiments 
published by its authors.  

The best results belong to the methods with decentralized 
network topology in which the map is represented by the grid 
and/or the pose graph. These methods are based on various 
combinations of such approaches to map assessment as the 
Rao–Blackwellized Particle Filter, pose-graph optimization 
and scan-matching algorithms.  

The results of this paper will be used for implementing the 
selected SLAM methods for groups of robots on the open-
source ROS platform. 
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