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Abstract—The heterogeneity of interconnected devices and 
communication technologies in the Internet of Things (IoT) 
domain courses the problem of impossibility to synchronize 
several different objects in one scheme of the smart space 
effectively and automatically. Such diversity of technologies 
results in the need to have special skills in order to reach once 
created behavior for the smart space. In addition, there are many 
platforms, which allows to interconnect different devices, but 
only if they fulfill their protocols. All these lead to the idea, that a 
new, unified approach to the smart devices representation is 
needed, which allows to represent objects in a compact form by a 
platform-independent way. In this article we propose an object-
oriented model for representation of the smart devices and 
demonstrate its efficiency by the simple case of smart space 
scenes adaptation. 

I. INTRODUCTION

Smart objects are electronic devices, which allow to work 
interactively and autonomously with other objects, using 
network interfaces. The main strength of such smart devices 
relies not on their hardware, but on the capabilities to manage 
interactions among them, that results in orchestrated behavior 
of the whole smart space. 

The concept of smart spaces originates from the definition 
of ubiquitous computing, which is given in [4] as “a physical 
world that is richly and invisibly interwoven with sensors, 
actuators, displays, and computational elements, embedded 
seamlessly in the everyday objects of our lives, and connected 
through a continuous network”. This definition shows, that 
smart space can be represented as a set of interconnected 
objects (devices), using which users can improve their life 
and/or experience. 

Taking into account the widespread expansion of 
smartphones, which can be used as a “command center”, smart 
devices also seems to become popular with an expected 
diffusion of ~50 billion of things by 2020 [1]. Such a 
significant increase in the number of devices creates difficulties 
for users to operate all possible features and complicates the 
organization of orchestrated work within the united smart 
space. As a result, there is no opportunity to create personalized 
smart spaces effectively because of their complexity. 

On the other hand, the trend in computing is moving to 
cheaper, smaller and faster devices in general. However, it 
comes with its own challenges. First of all, the dominant mode 
of communication in IoT is wireless and there are already 

diverse variety of such protocols [1]. In addition to protocol 
differences, there are platform and format variations that limit 
the integration possibility [2]. This differences force system 
developers to utilize a range of tools and require various skills 
to program. For instance, interoperability middleware [3] are 
common solutions. 

Furthermore, there are two types of interoperability: 
technical and application. The first one is interoperability on 
the device level, when we support this process using different 
standards and unified technical protocols (eg. IEC ISO/IEC 
JTC 1/SC 41 [16], CoAP (RFC7252) [18], etc.), while the 
application interoperability means the ability to represent the 
device capabilities in a structured manner for using them as 
scenarios, applicable for different smart spaces. The application 
interoperability needs the conceptual scheme for device 
capabilities representation in order to ensure the independence 
of scenarios from the specific implementation of the smart 
spaces with the preservation of its personalization. As a result, 
this type of interoperability cannot be provided by standards, 
which define more technical aspects of the interoperability, 
than their conceptual representation. 

All these leads us to the idea, that in order to simplify the 
procedure of personalization of the smart spaces, we have to 
create the unified representation for every device, which 
participates in it. Such an object-model for the device will 
allow not to orchestrate initially every new device in the space, 
but to adapt it according to its unified representation. As a 
result, the user will have more opportunities to organize a truly 
personalized smart space without the need to redefine all 
connections after adding new devices. 

In this paper we propose such an object-oriented model that 
can be used by an autonomous system to help users to 
personalize a smart space and to provide an automatic 
adaptation of a “personalization”, when moving to another 
environment. Prior to going into the details, in Section II the 
limitations and challenges in smart spaces and IoT are 
reviewed to motivate the importance of proposed approach. 
Then procedure of the device personalization in the smart space 
(Section III) and description with some analysis of the object-
oriented device model are presented (Section IV). We conclude 
the article with validation of the proposed approach 
(Section V), introducing the idea of scene distances (Section 
VI) and specification of the future researches. 
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II. CHALLENGES IN SMART SPACES AND IOT
Inside any smart space there is some IoT concept. As a 

result, in order to improve the quality and effectiveness of 
smart spaces, a quick and simple real-time coordination of all 
devices in terms of IoT have to be provided. However, 
realization of such coordination procedure faces the many 
challenges, existing in IoT. 

First of all, there are many types of devices in IoT, with 
different architectures, which are controlled by different 
operating systems (or, sometimes, even without them), and 
which have to be inter-connected through a wide specter of 
communication protocols. Furthermore, some devices get 
deployed in remote locations or embedded in physical objects, 
that makes it difficult (or, at worst, impossible) to bring and 
configure them. This results in really high dimension of 
heterogeneity in development of effective IoT-based 
implementation. 

There are some efforts in the area of interoperability by 
introducing a middleware [3] to hide the underlying platform 
and protocol variation. However, most of them require special 
skills in programming languages and device settings [2]. 

Furthermore, new standards in IoT also allow to unify and 
simplify the process of interactions between different devises. 
In particular, IEC ISO/IEC JTC 1/SC 41 [16] describes the 
recommendations on semantic and network connectivity, and 
ITU-T Y.2066 [17] contains network and data management 
requirements. Unfortunately, these standards contain only 
general recommendations and do not propose any adaptations 
for a concrete area of IoT application. 

There are some attempts to resolve this problem. For 
example, Constrained application protocol CoAP (RFC7252) 
[18] and MavHome [19] allow to provide interoperability 
among smart devices in a smart home using a web-application 
protocol (similar to HTTP). According to MavHome 
architecture, there are 4 layers of interoperability: decision, 
information, communication, physical. Physical layer consists 
of all the physical objects and its interfaces within the smart 
home environment. Communication layer is responsible for 
transferring the information between objects and also to the 
user. Information layer aggregates the data from sensors and 
actuators to be used for decision making and analysis. Decision 
layer extracts the knowledge from the information gathered and 
also uses the information implicitly provided for making 
decision of what action needed in what kind of scenario. First 
three levels are mostly described in ISO and ITU-T standards, 
while the detailed specification of the fourth layer requires 
further research. In our article we focus on this layer and try to 
describe the most natural way to represent the capabilities of 
devices, needed for IoT scene scenarios activating. 

One more global problem in smart spaces and IoT, 
connected with the decision layer, is a problem of 
personalization, which means the process of changing 
functionality, interface information content, or distinctiveness 
of a system to increase its potential relevance to an individual 
[5]. In other words, personalization is a process of adapting a 
space to its dwellers. Based on who initiates this process, three 
types of personalization can be defined:  

1) Explicit personalization: takes place, when the user 
his/her-self configures the environment; 

2) Implicit personalization: takes place, when the 
environment configures itself according to users’ preferences; 

3) Predictive personalization: can be provided by both the 
user and the environment independently according to previous 
users’ preferences. 

It is fair to note that now explicit personalization enabled 
through a wide range of smart objects (especially for “smart 
home” automation [6]) that work in cooperation with 
smartphones, using frameworks that facilitate the 
communication [7] (for example, Apple HomeKit [13], Google 
Brillo [14], MECCANO [7]). The core approach for these 
frameworks is the same – a smartphone discovers objects in a 
smart space and acts as a mediator during the configuration 
using the event-condition-action (ECA) parading, orchestrating 
the interactions among objects. 

The increasing number of smart objects stresses the need of 
modeling these devices in unified manner in order to have 
opportunity to synergize their behavior and to control them 
using a single framework, which provides a standard process to 
design new ones. Object-oriented approach can be an effective 
instrument for achieving this goal. But in order to show it, we 
have to analyze what the nature of smart devices is and how 
they are implemented in smart spaces. 

III. LIFECYCLE OF A DEVICE IN THE SMART SPACE

As it was mentioned before, the smart space is usually a set 
of devices, which are connected to the smartphone, used as a 
key device to configure the smart objects and coordinate their 
tasks by the users. A group of configured tasks is called a 
scene, execution of which produces a particular case of 
coordinated behavior of several objects in the smart space. 

Usually scenes are configured using the Event-Condition-
Action (ECA) paradigm [3]. In general, the ECA paradigm 
stands on the representation of any behavior as triple (Event, 
Condition, Action), which can be interpreted as follows: 
WHEN an event occurs, IF a condition is satisfied, THEN do 
an action. According to this paradigm, every new smart object, 
included in the smart space, passes through three stages of the 
lifecycle before being ready to operate (see Fig 1). 

Discovery
Manual Automatic

Personalization

Scene creation
Recommendation

StatisticalAdaptation

Interaction

Fig. 1. The lifecycle of the device in the smart space 

1) Discovery: during this phase the smartphone identifies, 
what devices surround it and their capabilities. For this goal 
different download modules can be used which contain a 
driver of the object and formal specification of its’ 
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capabilities. Discovery can be manual, initiated by the user 
through interaction with the target object (e.g. NFC or QR 
reading), or automatic when the process needs no user 
intervention; 

2) Personalization: upon successful identification of the 
object, the user can create a personalized behavior, mashing up 
the capabilities of different devices with respect to the ECA 
paradigm. For the one specific scene the cardinality of Event is 
1, of Conditions is 0..* and Actions is 1..*. In other words, in 
order to describe the scene, we have to identify at least one 
action for every event with optional reference to some 
additional conditions. Similar to the Discovery phase, 
Personalization can also be provided by both the user (scene 
creation) and an automatic system (recommendation). The last 
one can be achieved in two different ways: through adaptation 
of the existing scene to a current space or through statistical 
analysis of shared scenes with respect to user’ preferences to 
find the most suitable for application to the current  
scene; 

3) Interaction: when the personalization finished, the new 
behavior can be performed. The control procedures are 
fulfilled in a transparent way by the user. Through this phase, 
when the smartphone receives the trigger event, it decides to 
check the conditions (if there are any) and then enables the 
actuators to do some actions. 

It's obvious that when the actual scheme and interfaces of 
the device are used, flexibility and opportunity to create an 
effective orchestrated infrastructure are lost. Much simpler and 
effective decision consists of defining a single structural 
scheme for the device representation. Such scheme defines all 
its components and functional capabilities in one manner. In 
addition to defining the behavior of different devices in a 
standardized way, that approach also allows to involve the user 
in the process of configuration of the smart space without 
special skills in programming languages and device  
settings. 

IV. THE OBJECT-ORIENTED MODEL FOR SMART DEVICES

A. Device Object Model (DOM) 
The concept of DOM is influenced by the Document Object 

Model [15], which is a platform and a language independent 
interface exposed so that programs can manipulate its elements. 
It allows to update and format elements of the document in 
dynamic way. For example, in [2] there is an example of using 
Document Object Model for manipulating HTML documents at 
run-time. 

Analogically, DOM represents resources and capabilities of 
the device in structured manner. Resources can be as hardware 
resources, and shared resources of the external environment 
such as sensor reading, private resources of storage, etc. 
According to this, three components can be allocated in any 
device in order to build DOM conceptualization (see Fig. 2). 

The first group of resources includes resources that are 
closed from other participants in the environment and defines 
the hardware limitations of the device: network protocol, 
memory and battery values, etc. The second group is formed by 
functional components, which are used by the device to interact 

with other objects in the space and allows to define the 
behavior of the device: sensors (allow to monitor changes in 
the device environment), actuators (to react to the changes, 
caught by sensors) and events (identify in what cases actuators 
have to be used). The last group of resources identifies the 
relevant information about the device (e.g. context, location, 
environmental conditions, identifier tags, etc.). 

Fig. 2. The concept scheme of Device Object Model 

Taking into account the idea of the device personalization, 
the most useful for us components of the device are represented 
in the second group of its elements. Namely sensors, actuators 
and events allow us to set the behavior of the device within the 
ECA paradigm: Sensors – for Conditions definition, Actuators 
– for Actions and Events – for itself. If we can formalize the 
structure of Sensors, Actuators and Events, we can identify the 
device behavior in unified manner and adapt once created 
scene to another devices, conditions and spaces.  

Furthermore, while the metadata of all devices depend on 
their hardware, their properties and behavior can be formalized 
in a platform-independent manner using the object-oriented 
approach. Such approach replaces every device with its 
conceptual model, which aggregates properties and functional 
aspects of the device irrespective of their physical realization. 

B. Object-oriented Model 
Before analyzing the object-oriented model for smart 

devices, we should pay attention to the fact, that every smart 
device is an improved version of its physical object. A physical 
object exists for some specific goals, which are achieved 
through observing or using “passive” functionality of such 
objects by users. These capabilities are “passive” because of 
impossibility to use them without external user, who calls 
them.  

In contrast to such physical ones, smart objects have the 
ability to expose their own behavior without any external 
interference. For they have communication interfaces, which 
enable direct interactions with other participants of the smart 
space, smart objects can permit autonomous behavior. It is for 
this reason that the user's access to the specific capability of the 
smart device is not the fact of calling the corresponding 
procedure, but a request to a specific interface that ends in the 
internal processing the call. To do that, the smart object uses a 
set of processing mechanisms with a set of states [7], which 
convert the original request into a real device behavior. 
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Following Goumopoulos [8], we identify the processing 
mechanism of the device as a functional scheme, and a set of its 
states as a state vector. The second one defines at every 
specific time moment current conditions (or state) of every 
device’s component (sensors, actuators, etc.), while functional 
scheme is responsible for transitions between different states, 
determining the rule for state vector change according to the 
data, received from device’s components. Under these 
conditions, it can be argued that the functional scheme is the 
implementation of capabilities, structured in the way of 
differentiation of the access to them. When a user calls a 
device’s capability, the functional scheme tries to execute this 
capability and change the state vector of the corresponding 
device [6]. Capabilities become defined during the discovery 
phase of the device lifecycle, and the functional scheme is the 
result of the personalization stage. 

In our case, we perceive the component structure of devices 
not as representation of their technical parts, but as a 
conceptual model of their capabilities, encapsulated in the 
respective objects. This view of the smart device is completely 
consistent with the approach proposed by Sebastian in the [20], 
where the following levels of IoT architecture are 
distinguished: Device (contains physical description and 
implementation), Communication (performs the 
communication between devices), Services (serves various 
types of functions for device discovery, modeling, control, 
etc.), Management, Security and Application (provides 
necessary modules to control, and monitor various aspects of 
the device and IoT system in general). In what follows, we pay 
attention only to the layer of applications and services, as 
having the greatest importance for personalizing the smart 
space and organizing its behavior in the form of generalized 
scenarios and scenes. As a result, when we tell about technical 
capabilities, we mean not their concrete implementation, but 
the corresponding service (method), allowing to activate the 
corresponding capability of the device (or its part). 

Obviously, the implementation of the aforementioned 
features requires appropriate technical capabilities, 
implemented in the corresponding hardware components, 
which can be separated into two categories: core components 
and supporting components.

Core components enable to define and run scenes in the 
smart spaces. These components can be conceptualized and 
adapted from one smart space to another. This group is 
organized by the next objects: 

Sensors – devices, which allow to detect changes (or 
events) in the smart space. As a rule, two modes of the 
sensing are available: on demand or continuous. Sensors 
are objects, responsible for checking conditions, 
demanding on physical parameters of the space. 
Actuators – opposite to sensors, these objects do not 
react to changes in the space but provide them. 
Actuators change state vectors of other devices in the 
space, that is the result of changing in the state vector of 
the actuator’s device. Together with sensors, actuators 
create a closed space change system: sensor change 
switchers of the state vector, and actuator respond to 
these changes. 

On the other hand, there are hardware elements, which are 
responsible for physical implementation of the scene. These 
elements are supporting, since they do not introduce anything 
new into the scenario of the scene, but only trace the 
commands embedded in it on the physical level of the devices. 
Although conceptualization of such devices is quite difficult, 
the set of supporting devices includes: 

Processing module – is a component, responsible for 
execution of the functional scheme. Depending of the 
device it can be CPU, GPU, a microcontroller or a 
combination of many of them. 
Storing module – is used to store the state vector and/or 
historical data (events, scenes, evolution of the state 
vector, etc.), configurations, etc. 
Communication component – this component allows 
devices to interact between themselves and can locate 
the objects within a space during the discovery phase. 

Analyzing the aforementioned structure of the device 
components, we can find opportunity to draw the parallel 
between it and object-oriented program. In the same way, as an 
object has data and code, the core components of the device 
interact with the state vector and the functional scheme. 
Furthermore, the scene for the smart space can be represented 
as an algorithm with a declarative section (which is a result of 
discovery phase) and a sequence of operations/calls to 
methods, which are performed by supporting components [7]. 
As a result, we can formalize the generic structure of the device 
in the class diagram (see Fig. 3). 

In this diagram a device is represented by the abstract class 
SmartObject, and its core components (sensors and actuators) 
by the abstract classes of the same name. As a consequence, the 
object is represented as an aggregation of its own sensors and 
actuators. Attributes of classes represent the state vector, and its 
methods represent the functional scheme. In these 
circumstances, the real smart object will be modelled as an 
inheritor of the SmartObject class. As for sensors and actuators, 
they can be typed using a system of heirs, and not just using a 
single abstract class. Examples of such typification, based on 
the goal and main tasks of the objects, were provided in more 
details in [7] and [2]. 

Fig. 3. UML-representation of the object-oriented device model 
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In the diagram above some fields and methods are also 
reported, which basically are needed for effective interaction 
with any device. Their presence is not mandatory and can be 
ignored by the physical object realization, and therefore they 
are marked as protected (except sensors and actuators, which 
represent the core components of the device).  

SmartObject class is characterized by the next set of fields: 

id – stores a unique identifier of the object (e.g. MAC 
address, UUID, etc.); 
location – stores the actual location of the object, or 
fixed by the user (e.g. TV in the kitchen, etc.), and can 
be used as an equivalent for the id in cases, when id is 
difficult for user recognition; 
sensor[] – represents the list of capabilities, provided by 
the sensors, which the device contains; 
actuator[] – represents the list of capabilities, provided 
by the actuators, which the device contains. 

isSensoring field in Sensor class and isActing filed in 
Actuator class correspondingly identify whether the component 
is working or not. 

As for the fields, classes also have some methods with 
public or protected modifiers to interact with the devices. 
SmartObject class contains the next set of methods: 

publish() – guarantees the opportunity to identify the 
object and its components during discovery phase; 
getId() and getLocation()– return the value of the 
identifier and location fields of the current object 
correspondingly; 
process() – represents the ability to run the process, 
using the processing module of the object; 
read() and write() – are used for interactions with the 
memory module; 
configure() – provides the opportunity to set and change 
the state of the current object; 
send() and receive() – provide access to the 
communication component and support 
interconnections between objects. 

Sensor and Actuator classes also have their own methods, 
which simplify the process of their behavior implementation.  

Because the main goal of sensors is to catch changes in the 
environment state, Sensor class has two methods: 
startSensing() and stopSensing(), which correspondingly 
initiates and finishes the process of analyzing the environment 
changes respectively. When the sensing is initiated, we can 
read a physical indicators of the environment using methods 
getValue() for manual controlling of the indicator value and 
getContinuousData() for continuous monitoring of changes in 
environmental indicators. After changes are fixed, we have to 
report this information to actuators and other objects using 
setEventCallback() method, which generate an event related to 
the environment indicator. 

In terms of the ECA paradigm and scene definition, the last 
method is the most interesting, because it allows to identify the 
event trigger to the event, which in turn, can be verified by 
means of getValue() and getContinuousData() methods. 

Analogically, Actuator can initiate the process of the 
environment’s changes using startAction() and stopAction()
methods. In both cases actuator has to notify other participants 
in the environment about provided action. For this goal 
methods setActionStartedCallback() and 
setActionStoppedCallback() are used. And finally the current 
state and the actions of the actuator can be controlled by the 
control() method. 

Being members of abstract classes, all these methods are 
virtual and have to be implemented or hidden in the real 
objects. We also do not concretize any return types and 
parameters for methods in order to do them as generic as 
possible. A user can specify them during the personalization 
stage, for example, specific return types for getValue() and 
getContinuousData() methods; input parameter for control()
method and conditional clauses as an input parameter for 
set*Callback() methods. 

Such proposed object-oriented model becomes an effective, 
clear and simple tool to extension of representation for the 
smart devices. If a user needs to add a new device to the smart 
space, he/she has only to inherit a corresponding abstract class 
and define all needed components during its personalization. 
On the other hand, once created the scheme of the smart space, 
can be transferred into another physical implementation of the 
space without need to repeat all stages of the devices’ lifecycle. 
In this case the user can only define, what new devices are 
physical equivalents to stored abstract components and initiate 
the similar behavior in a new environment in real-time. 

V. VALIDATION

Taking into account that the scene for the smart space is an 
algorithm over capability of devices, we will represent it using 
a pseudo-code for the scene and a UML class-diagram for 
devices’ components. 

We will use simple scenarios in validation part, because the 
main application domain for our model is Smart Home, where 
the number of devices is limited, but which are very 
heterogeneous because of different goals for their application. 
In case of large-scale IoT systems the application of scene 
adaptation by the user seems not the most effective way and, as 
a consequence, goes beyond the boundaries of this study. 

In order to show the effectiveness of the proposed object-
oriented model we will use the next scenario: WHEN the 
temperature is more THEN 25ºC THEN turn the ventilator 
AND set the speed to 1000 rpm.

Imagine a user in the smart space. The user discovers two 
objects: the smart thermometer iTerm and the smart ventilator 
Smart Fan. The user received modules for both objects, which 
contain a list of capabilities, a parent class definition and a list 
of relations between the components and the object, and creates 
the scene. The thermometer can generate the event when the 
temperature exceeds the upper limit of 25ºC, which is 
performed by the Thermal sensor, which is the inheritor of the 
Sensor class (iTermThermalSensor->ThermalSensor->Sensor). 
In its turn, the ventilator can change its speed using SmartFan 
Speed actuator (SmartFanActuator->Ventilator->Actuator). 
Both the actuator of the ventilator and the sensor of the 
thermometer have implementations of the abstract methods 
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included in the model. The scene in such conditions can be 
represented in terms of a pseudo-code like in Algorithm 1. 

This code is produced during the personalization stage and 
can be created both manually by the user, or automatically by 
the recommender system [9]. Once defined, this scene can be 
used for adaptation in the future smart space. This process can 
be organized through statistical analysis or adaptation of the 
scene to new devices. In our work we concentrate on the 
second one way for adaptation. 

Algorithm 1 Pseudo-code of the scene 
1: SmartThermometer iTerm = new
SmartThermometer(“iTerm”); 
2: SmartVentilator smartFan = new SmartVentilator 
(“smartFan”); 
3: ON 
4: iTerm.sensor[iTermThermalSensor].setEventCallback 
(temperature > 25); 
5: THEN 
6: smartFan.actuator[SmartFanActuator].start(); 
7: smartFan.actuator[SmartFanActuator].control(speed = 
1000); 

The main idea of such adaptation is to reconfigure the 
created scene according to capabilities of new devices. Here we 
also use the principle from the object-oriented programming. 

It is assumed that we have already built a conceptual (or, 
virtual) scheme for the scene and devices, participated in it. 
And in the stage of personalization we only concretize the 
abstract classes with its physical implementations. As a result, 
we use principles of inheritance and polymorphism from the 
object-oriented approach. Taking into account the fact, that 
these concepts fulfill the Liskov substitution principle (LSP), 
we can tell, that in the process of scene adaptation, smart 
objects, sensors and actuators are exchanged with other ones, 
saving the relation, described with the abstract model and, as a 
result, obtaining the same behavior. 

According to this, two phases of scene adaptation can be 
defined: generalization, the main idea of which is to generalize 
the created scene by replacing all physical implementations 
with its abstract parent classes, and direct adaptation, where 
abstract classes are replaced with its inherited new physical 
components implementations. 

If we apply that approach to our example, at the beginning 
we should create the scheme for components, participating in 
created scene (see fig. 4). In this scene we represented all 
components as UML-classes with corresponding names, fields 
and methods. We also saved the relations between created 
classes and its parent abstract classes, which are, in common, 
the inheritors of the general abstract classes Sensor, Actuator
and SmartDevice. In addition to these, the diagram contains the 
abstract class Scene, which contains several smart objects and 
is a representation for our physical smart space. 

Now we start generalization of the created scene. First of 
all, we rewrite its pseudo-code representation with a new, more 
abstract version, which is based on abstract classes instead of 

physical implementations of components. This abstract version 
of a pseudo-code is represented in Algorithm 2. 

In this version of the scene scenario, it loses importance, 
who actually perform the corresponding capability. It can be 
any example of Thermometer with the ability to measure the 
temperature with any example of Ventilator. Furthermore, 
these devices can be replaced with equivalents from the point 
of the functionality, for example, an air conditioner in the car 
and mobile application for measuring temperature. 

This means, that this scene can be adopted not only to other 
devices, but to the new smart environment. And once created 
behavior can be applied to any device, inherited from the 
corresponding typified abstract class (a sensor or/and an 
actuator). 

Algorithm 2 Pseudo-code of the abstract scene version 
1: ON 
2: SmartObject.sensor[ThermalSensor].setEventCallback 
(temperature > 25); 
3: THEN 
4: SmartObject.actuator[Ventilator].start(); 
5: SmartObject.actuator[Ventilator].control(speed=1000);

Updated, the generalized diagram, is represented in fig, 4 
(the framed part). Here we see only abstract classes, without its 
physical inheritors. In order to implement this generalized 
scene to the new smart space, user have to identify only, what 
new physical objects are inheritors of the generalized scene 
abstract classes and after it permit corresponding behavior 
embedded inside the generalized scene. 

What is more important, the user can not only build in a 
new environment a mirror image of the previously created 
scene but adopt it to the new devices and its restrictions. For 
example, if a new specific Ventilator does not support the 
speed setting capability, user can delete corresponding 
command from the scene (see Algorithm 3) and apply the 
updated one to the physical implementation. 

Algorithm 3 Pseudo-code of the updated scene version 
1: ON 
2: SmartObject.sensor[ThermalSensor].setEventCallback 
(temperature > 25); 
3: THEN 
4: SmartObject.actuator[Ventilator].start(); 

Such adaptation can be provided in semi-automatic way, 
using the idea of distance between the generalized scene and its 
physical implementation, describing in the next section. 

VI. AUTOMATION OF THE ADAPTATION USING DISTANCE 
BETWEEN THE SCENES

Before introduction the concept of the distance definition, 
we have to identify the formal representation of the scene for 
the smart space. 

From the formal point of view, any scene can be 
represented as a set of sensors and actuators, which capabilities 
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are embedded in it. It means, that Scene = (S,A), where A Obj
and S Obj, and Obj = {obji : obji = (T, F,M), where T is a type 
of the obji, F = {attrj}, j = 1..N and M = {methodk}, k = 1..S}.

As a result, the scene can be described as a set of its sensors 
and actuators, which, in its turn, are defined using their type 

(which allows to define the opportunity to replace one object 
with another), attributes and methods. Such definition has 
advantages, because allows to formalize the process of the 
automated scene adaptation and evaluate its possibility, 
identifying the need of user’s interventions. 

Fig. 4. UML-representation of the created scene and its abstract generalization 

In what follows, we will also need the next statement. Two 
objects (sensors or actuators) are equivalent, if their types are 
equals: Obj1 = Obj2 if T1 = T2.

Now, using these statements, we can provide the definitions 
of the compatible and adaptable scenes. 

Definition 1: Two scenes Scene1 and Scene2 are compatible 
iff S1 S2 = S1 and incompatible otherwise. 

This definition states, that one scene can be transformed 
into another in the case, when they have an equivalent set of 
sensors. It is logically correct from the position of the ECA 
paradigm, because if the original scene has a sensor which is 
absent in the target scene, it is impossible to check all 
conditions for execution of the scene scenario. If two scenes are 
compatible, then we can try to adopt the first one (original) to 
the second (target) without user’s interventions, because can 
check all the conditions of the original scene in the new smart 
space.

We can reformulate this Definition 1 using the idea of 
distance between scenes. In order to achieve this, the next 
definition is fixed. 

Definition 2: Sensor distance between two scenes Scene1
and Scene2 is a value: DimS (Scene1, Scene2) = |S1| - |S1 S2|.

Using this, we can reformulate the Definition 1 as follows: 
Two scenes Scene1 and Scene2 are compatible iff DimS (Scene1, 
Scene2) = 0 and incompatible otherwise. 

Now, when we introduced the concept of compatibility of 
two scenes, the formalization of the adaptation can be 
identified through the distance between two scenes. In order to 
make this, all possible cases of differences between scenes’ 
actuators have to be analyzed. 

The first, and the simplest, case here is the situation, when 
actuators of two scenes are equivalent: all actuators of the 
original scene are available at the target scene. In this case we 
have only to compare attributes of our actuators and define, 
which are different. When all attributes are equivalent, no 
changes to the original scene and its scenario are required. 
Otherwise, we have to adopt the scenario according to the idea 
– all commands, which use attributes of actuators, absent in the 
target model, have to be dropped from the scenario. After it our 
original scene will be adopted to the new smart space and can 
be implemented within it dynamically, without any action by 
the user. 

In order to increase the efficiency of this procedure, we can 
identify, how many differences are between two scenes: the 
more of them, the higher the likelihood of having to interfere 
with the user's manual adaptation of the scene. 
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Keeping these ideas in mind, we introduce the next 
definition. 

Definition 3: Two scenes Scene1 and Scene2 are adaptable 
iff they are compatible and A1 A2  Ø.

Our approach does not impose a more stringent condition 
similar to sensors (for example, all actuators of the original 
scene have to be saved in the target one), because an actuator 
defines only the actions for some specific scene. If one ore 
more actuators are absent in the target scene, we can remove 
actions, which depend on them, from the scene scenario. But 
the nature of the scene will be saved: when a specific condition 
is fulfilled, the action is provided. It is exactly what can be 
named the adaptation of the scene to the new smart space. 

However, in comparison with the idea of the compatibility 
of scenes, their adaptability requires a more accurate 
evaluation. The greater the difference between the sets of 
actuators of the two scenes, the more actions are needed in 
order to adapt one of them to another. Therefore, the next 
definition of the actuator distance can be made. 

Definition 4: Actuator distance between two scenes Scene1
and Scene2 is a value: 

1 2( , )A i
i

Dim Scene Scene k  

where 

1 2

1

| | | |, : 2 1
| |,{ a a j ii j

a i

F F if j a a
i F otherwisek

where a1i A1 and a2j A2.

This definition shows, that the distance between two scenes 
is defined as the number of attributes of its actuators, which are 
in the first scene (original), but are absent in the second one 
(target). 

In our case, for example, if in the new space there is no a 
smart thermometer, we cannot implement previously created 
scene, because in the new space we cannot check conditions for 
the activation of the scene behavior. As a consequence, in this 
situation, we will have to ask a person to adopt the scene 
manually, identifying the equivalent of the smart thermometer 
in the new space. 

Another situation is, when we have the thermometer in both 
smart spaces, but in the new one there is a ventilator, which is 
able only to be turned on/off, without specification of its speed. 
From the formal point of view, this means, that we have a 
difference in actuators and the actuator distance between them 
is 1 (only one attribute – speed – is absent in the new scene in 
contrast to the original, the others attributes coincide). This 
fully corresponds to the fact that from the script of our program 
we have to delete one command, which uses the lost attribute. 

As you can see, the proposed concept of distances between 
scenes allows not only to more effectively determine the 
possibility of their adaptation to each other, but also to unify 
the cases when such adaptation can be carried out in automatic 
mode without user intervention. 

VII. CONCLUSION

In our article we proposed the object-oriented model for the 
smart objects and corresponding qualitative measures of 
similarity. Together they allow not only to define the structure 
of any smart space in unified way, but also provide the 
opportunity to adopt once created scene of the smart space to 
new conditions. 

Summarizing, we can say that using object-oriented models 
simplifies the process of adaptation scenarios for the smart 
spaces. Instead of three stages of this process (discovery, 
personalization, interaction), only two last can be provided. In 
addition, the personalization can be organized in semi-
automatic way against manual in current conditions. 

In contrast to the existing approaches, provided by 
Fernandez-Montes et al. in [10] and by Strohbach et al. in [11], 
which are based on fixed programs and notations, our model is 
platform-independent and is focused on the components, which 
are important to define the behavior of the smart space.  

Thus, the main focus shifts from the technical 
interoperability to the behavioral interoperability, which 
consists in unifying the scenarios for different smart spaces at 
the application and services layers. Furthermore, using the 
concept of the distance between the scenes, the automation of 
the adaptation process can be provided. 

We consider, that the separation of distances into two 
classes of sensor distance and actuator distance is really 
important. The first one shows the ability of the previously 
created scene to be implemented in the new one, while the 
second one provides the ability of the evaluation for difficulty 
of the adaptation realization and allows to evaluate the needed 
number of transformations between scene scenarios. 

The effectiveness the proposed approach is shown by the 
simple case of adaptation the Smart Home scenario between 
two different smart spaces with absent objects (sensors, 
actuators). 

The application of the proposed approach is the most useful 
in spheres of the quickly changing smart spaces, for example in 
the case of industrial robots and/or smart houses, which have a 
really high degree of the adaptation need.  

The created object-oriented model can be successfully 
implemented and in other spheres, because corresponds with 
the Common Information Model (CIM) by Distributed 
Management Task Force (DMTF) and can be extended to the 
full Managed Object Format (MOF). It follows from the formal 
description of the CIM model, which includes instances, 
properties, relationships, classes and subclasses.  

As you can see, the object-oriented model proposed 
contains all these concepts: a smart object can be interpreted as 
an instance; its components (sensors and actuators) are the 
classes, described by the set of attributes and methods 
(properties), which specify the original smart object and are 
connected with it (relationships with subclasses); physical 
implementations of sensors and actuators are the examples of 
subclasses. This means, that our object-oriented model can be 
used as a whole formal artifact, representing the domain of IoT. 
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In the future we expect to extend the created approach by 
analyzing the interfaces, which can be defined in the case of 
IoT as a combination of different capabilities of the devices. In 
order to achieve this goal, the ideas of object-oriented interface 
representation from [12] can be used.  

We also propose to consider the issue of interfaces 
adaptation by the end users, in native way. For this goal ideas 
of our object-oriented approach and DSL combination with IoT 
can be examined. 
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