
An Object-Oriented Model for Smart Devices in
Internet of Things

Boris Ulitin, Eduard Babkin
National Research University Higher School of Economics

Nizhny Novgorod, Russia
bulitin, eababkin@hse.ru

Abstract—The heterogeneity of interconnected devices and
communication technologies in the Internet of Things (IoT)
domain courses the problem of impossibility to synchronize
several different objects in one scheme of the smart space
effectively and automatically. Such diversity of technologies
results in the need to have special skills in order to reach once
created behavior for the smart space. In addition, there are many
platforms, which allows to interconnect different devices, but
only if they fulfill their protocols. All these lead to the idea, that a
new, unified approach to the smart devices representation is
needed, which allows to represent objects in a compact form by a
platform-independent way. In this article we propose an object-
oriented model for representation of the smart devices and
demonstrate its efficiency by the simple case of smart space
scenes adaptation.

I. INTRODUCTION

Smart objects are electronic devices, which allow to work
interactively and autonomously with other objects, using
network interfaces. The main strength of such smart devices
relies not on their hardware, but on the capabilities to manage
interactions among them, that results in orchestrated behavior
of the whole smart space.

The concept of smart spaces originates from the definition
of ubiquitous computing, which is given in [4] as “a physical
world that is richly and invisibly interwoven with sensors,
actuators, displays, and computational elements, embedded
seamlessly in the everyday objects of our lives, and connected
through a continuous network”. This definition shows, that
smart space can be represented as a set of interconnected
objects (devices), using which users can improve their life
and/or experience.

Taking into account the widespread expansion of
smartphones, which can be used as a “command center”, smart
devices also seems to become popular with an expected
diffusion of ~50 billion of things by 2020 [1]. Such a
significant increase in the number of devices creates difficulties
for users to operate all possible features and complicates the
organization of orchestrated work within the united smart
space. As a result, there is no opportunity to create personalized
smart spaces effectively because of their complexity.

On the other hand, the trend in computing is moving to
cheaper, smaller and faster devices in general. However, it
comes with its own challenges. First of all, the dominant mode
of communication in IoT is wireless and there are already

diverse variety of such protocols [1]. In addition to protocol
differences, there are platform and format variations that limit
the integration possibility [2]. This differences force system
developers to utilize a range of tools and require various skills
to program. For instance, interoperability middleware [3] are
common solutions.

Furthermore, there are two types of interoperability:
technical and application. The first one is interoperability on
the device level, when we support this process using different
standards and unified technical protocols (eg. IEC ISO/IEC
JTC 1/SC 41 [16], CoAP (RFC7252) [18], etc.), while the
application interoperability means the ability to represent the
device capabilities in a structured manner for using them as
scenarios, applicable for different smart spaces. The application
interoperability needs the conceptual scheme for device
capabilities representation in order to ensure the independence
of scenarios from the specific implementation of the smart
spaces with the preservation of its personalization. As a result,
this type of interoperability cannot be provided by standards,
which define more technical aspects of the interoperability,
than their conceptual representation.

All these leads us to the idea, that in order to simplify the
procedure of personalization of the smart spaces, we have to
create the unified representation for every device, which
participates in it. Such an object-model for the device will
allow not to orchestrate initially every new device in the space,
but to adapt it according to its unified representation. As a
result, the user will have more opportunities to organize a truly
personalized smart space without the need to redefine all
connections after adding new devices.

In this paper we propose such an object-oriented model that
can be used by an autonomous system to help users to
personalize a smart space and to provide an automatic
adaptation of a “personalization”, when moving to another
environment. Prior to going into the details, in Section II the
limitations and challenges in smart spaces and IoT are
reviewed to motivate the importance of proposed approach.
Then procedure of the device personalization in the smart space
(Section III) and description with some analysis of the object-
oriented device model are presented (Section IV). We conclude
the article with validation of the proposed approach
(Section V), introducing the idea of scene distances (Section
VI) and specification of the future researches.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

II. CHALLENGES IN SMART SPACES AND IOT
Inside any smart space there is some IoT concept. As a

result, in order to improve the quality and effectiveness of
smart spaces, a quick and simple real-time coordination of all
devices in terms of IoT have to be provided. However,
realization of such coordination procedure faces the many
challenges, existing in IoT.

First of all, there are many types of devices in IoT, with
different architectures, which are controlled by different
operating systems (or, sometimes, even without them), and
which have to be inter-connected through a wide specter of
communication protocols. Furthermore, some devices get
deployed in remote locations or embedded in physical objects,
that makes it difficult (or, at worst, impossible) to bring and
configure them. This results in really high dimension of
heterogeneity in development of effective IoT-based
implementation.

There are some efforts in the area of interoperability by
introducing a middleware [3] to hide the underlying platform
and protocol variation. However, most of them require special
skills in programming languages and device settings [2].

Furthermore, new standards in IoT also allow to unify and
simplify the process of interactions between different devises.
In particular, IEC ISO/IEC JTC 1/SC 41 [16] describes the
recommendations on semantic and network connectivity, and
ITU-T Y.2066 [17] contains network and data management
requirements. Unfortunately, these standards contain only
general recommendations and do not propose any adaptations
for a concrete area of IoT application.

There are some attempts to resolve this problem. For
example, Constrained application protocol CoAP (RFC7252)
[18] and MavHome [19] allow to provide interoperability
among smart devices in a smart home using a web-application
protocol (similar to HTTP). According to MavHome
architecture, there are 4 layers of interoperability: decision,
information, communication, physical. Physical layer consists
of all the physical objects and its interfaces within the smart
home environment. Communication layer is responsible for
transferring the information between objects and also to the
user. Information layer aggregates the data from sensors and
actuators to be used for decision making and analysis. Decision
layer extracts the knowledge from the information gathered and
also uses the information implicitly provided for making
decision of what action needed in what kind of scenario. First
three levels are mostly described in ISO and ITU-T standards,
while the detailed specification of the fourth layer requires
further research. In our article we focus on this layer and try to
describe the most natural way to represent the capabilities of
devices, needed for IoT scene scenarios activating.

One more global problem in smart spaces and IoT,
connected with the decision layer, is a problem of
personalization, which means the process of changing
functionality, interface information content, or distinctiveness
of a system to increase its potential relevance to an individual
[5]. In other words, personalization is a process of adapting a
space to its dwellers. Based on who initiates this process, three
types of personalization can be defined:

1) Explicit personalization: takes place, when the user
his/her-self configures the environment;

2) Implicit personalization: takes place, when the
environment configures itself according to users’ preferences;

3) Predictive personalization: can be provided by both the
user and the environment independently according to previous
users’ preferences.

It is fair to note that now explicit personalization enabled
through a wide range of smart objects (especially for “smart
home” automation [6]) that work in cooperation with
smartphones, using frameworks that facilitate the
communication [7] (for example, Apple HomeKit [13], Google
Brillo [14], MECCANO [7]). The core approach for these
frameworks is the same – a smartphone discovers objects in a
smart space and acts as a mediator during the configuration
using the event-condition-action (ECA) parading, orchestrating
the interactions among objects.

The increasing number of smart objects stresses the need of
modeling these devices in unified manner in order to have
opportunity to synergize their behavior and to control them
using a single framework, which provides a standard process to
design new ones. Object-oriented approach can be an effective
instrument for achieving this goal. But in order to show it, we
have to analyze what the nature of smart devices is and how
they are implemented in smart spaces.

III. LIFECYCLE OF A DEVICE IN THE SMART SPACE

As it was mentioned before, the smart space is usually a set
of devices, which are connected to the smartphone, used as a
key device to configure the smart objects and coordinate their
tasks by the users. A group of configured tasks is called a
scene, execution of which produces a particular case of
coordinated behavior of several objects in the smart space.

Usually scenes are configured using the Event-Condition-
Action (ECA) paradigm [3]. In general, the ECA paradigm
stands on the representation of any behavior as triple (Event,
Condition, Action), which can be interpreted as follows:
WHEN an event occurs, IF a condition is satisfied, THEN do
an action. According to this paradigm, every new smart object,
included in the smart space, passes through three stages of the
lifecycle before being ready to operate (see Fig 1).

Discovery
Manual Automatic

Personalization

Scene creation
Recommendation

StatisticalAdaptation

Interaction

Fig. 1. The lifecycle of the device in the smart space

1) Discovery: during this phase the smartphone identifies,
what devices surround it and their capabilities. For this goal
different download modules can be used which contain a
driver of the object and formal specification of its’

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 264 --

capabilities. Discovery can be manual, initiated by the user
through interaction with the target object (e.g. NFC or QR
reading), or automatic when the process needs no user
intervention;

2) Personalization: upon successful identification of the
object, the user can create a personalized behavior, mashing up
the capabilities of different devices with respect to the ECA
paradigm. For the one specific scene the cardinality of Event is
1, of Conditions is 0..* and Actions is 1..*. In other words, in
order to describe the scene, we have to identify at least one
action for every event with optional reference to some
additional conditions. Similar to the Discovery phase,
Personalization can also be provided by both the user (scene
creation) and an automatic system (recommendation). The last
one can be achieved in two different ways: through adaptation
of the existing scene to a current space or through statistical
analysis of shared scenes with respect to user’ preferences to
find the most suitable for application to the current
scene;

3) Interaction: when the personalization finished, the new
behavior can be performed. The control procedures are
fulfilled in a transparent way by the user. Through this phase,
when the smartphone receives the trigger event, it decides to
check the conditions (if there are any) and then enables the
actuators to do some actions.

It's obvious that when the actual scheme and interfaces of
the device are used, flexibility and opportunity to create an
effective orchestrated infrastructure are lost. Much simpler and
effective decision consists of defining a single structural
scheme for the device representation. Such scheme defines all
its components and functional capabilities in one manner. In
addition to defining the behavior of different devices in a
standardized way, that approach also allows to involve the user
in the process of configuration of the smart space without
special skills in programming languages and device
settings.

IV. THE OBJECT-ORIENTED MODEL FOR SMART DEVICES

A. Device Object Model (DOM)
The concept of DOM is influenced by the Document Object

Model [15], which is a platform and a language independent
interface exposed so that programs can manipulate its elements.
It allows to update and format elements of the document in
dynamic way. For example, in [2] there is an example of using
Document Object Model for manipulating HTML documents at
run-time.

Analogically, DOM represents resources and capabilities of
the device in structured manner. Resources can be as hardware
resources, and shared resources of the external environment
such as sensor reading, private resources of storage, etc.
According to this, three components can be allocated in any
device in order to build DOM conceptualization (see Fig. 2).

The first group of resources includes resources that are
closed from other participants in the environment and defines
the hardware limitations of the device: network protocol,
memory and battery values, etc. The second group is formed by
functional components, which are used by the device to interact

with other objects in the space and allows to define the
behavior of the device: sensors (allow to monitor changes in
the device environment), actuators (to react to the changes,
caught by sensors) and events (identify in what cases actuators
have to be used). The last group of resources identifies the
relevant information about the device (e.g. context, location,
environmental conditions, identifier tags, etc.).

Fig. 2. The concept scheme of Device Object Model

Taking into account the idea of the device personalization,
the most useful for us components of the device are represented
in the second group of its elements. Namely sensors, actuators
and events allow us to set the behavior of the device within the
ECA paradigm: Sensors – for Conditions definition, Actuators
– for Actions and Events – for itself. If we can formalize the
structure of Sensors, Actuators and Events, we can identify the
device behavior in unified manner and adapt once created
scene to another devices, conditions and spaces.

Furthermore, while the metadata of all devices depend on
their hardware, their properties and behavior can be formalized
in a platform-independent manner using the object-oriented
approach. Such approach replaces every device with its
conceptual model, which aggregates properties and functional
aspects of the device irrespective of their physical realization.

B. Object-oriented Model
Before analyzing the object-oriented model for smart

devices, we should pay attention to the fact, that every smart
device is an improved version of its physical object. A physical
object exists for some specific goals, which are achieved
through observing or using “passive” functionality of such
objects by users. These capabilities are “passive” because of
impossibility to use them without external user, who calls
them.

In contrast to such physical ones, smart objects have the
ability to expose their own behavior without any external
interference. For they have communication interfaces, which
enable direct interactions with other participants of the smart
space, smart objects can permit autonomous behavior. It is for
this reason that the user's access to the specific capability of the
smart device is not the fact of calling the corresponding
procedure, but a request to a specific interface that ends in the
internal processing the call. To do that, the smart object uses a
set of processing mechanisms with a set of states [7], which
convert the original request into a real device behavior.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 265 --

Following Goumopoulos [8], we identify the processing
mechanism of the device as a functional scheme, and a set of its
states as a state vector. The second one defines at every
specific time moment current conditions (or state) of every
device’s component (sensors, actuators, etc.), while functional
scheme is responsible for transitions between different states,
determining the rule for state vector change according to the
data, received from device’s components. Under these
conditions, it can be argued that the functional scheme is the
implementation of capabilities, structured in the way of
differentiation of the access to them. When a user calls a
device’s capability, the functional scheme tries to execute this
capability and change the state vector of the corresponding
device [6]. Capabilities become defined during the discovery
phase of the device lifecycle, and the functional scheme is the
result of the personalization stage.

In our case, we perceive the component structure of devices
not as representation of their technical parts, but as a
conceptual model of their capabilities, encapsulated in the
respective objects. This view of the smart device is completely
consistent with the approach proposed by Sebastian in the [20],
where the following levels of IoT architecture are
distinguished: Device (contains physical description and
implementation), Communication (performs the
communication between devices), Services (serves various
types of functions for device discovery, modeling, control,
etc.), Management, Security and Application (provides
necessary modules to control, and monitor various aspects of
the device and IoT system in general). In what follows, we pay
attention only to the layer of applications and services, as
having the greatest importance for personalizing the smart
space and organizing its behavior in the form of generalized
scenarios and scenes. As a result, when we tell about technical
capabilities, we mean not their concrete implementation, but
the corresponding service (method), allowing to activate the
corresponding capability of the device (or its part).

Obviously, the implementation of the aforementioned
features requires appropriate technical capabilities,
implemented in the corresponding hardware components,
which can be separated into two categories: core components
and supporting components.

Core components enable to define and run scenes in the
smart spaces. These components can be conceptualized and
adapted from one smart space to another. This group is
organized by the next objects:

Sensors – devices, which allow to detect changes (or
events) in the smart space. As a rule, two modes of the
sensing are available: on demand or continuous. Sensors
are objects, responsible for checking conditions,
demanding on physical parameters of the space.
Actuators – opposite to sensors, these objects do not
react to changes in the space but provide them.
Actuators change state vectors of other devices in the
space, that is the result of changing in the state vector of
the actuator’s device. Together with sensors, actuators
create a closed space change system: sensor change
switchers of the state vector, and actuator respond to
these changes.

On the other hand, there are hardware elements, which are
responsible for physical implementation of the scene. These
elements are supporting, since they do not introduce anything
new into the scenario of the scene, but only trace the
commands embedded in it on the physical level of the devices.
Although conceptualization of such devices is quite difficult,
the set of supporting devices includes:

Processing module – is a component, responsible for
execution of the functional scheme. Depending of the
device it can be CPU, GPU, a microcontroller or a
combination of many of them.
Storing module – is used to store the state vector and/or
historical data (events, scenes, evolution of the state
vector, etc.), configurations, etc.
Communication component – this component allows
devices to interact between themselves and can locate
the objects within a space during the discovery phase.

Analyzing the aforementioned structure of the device
components, we can find opportunity to draw the parallel
between it and object-oriented program. In the same way, as an
object has data and code, the core components of the device
interact with the state vector and the functional scheme.
Furthermore, the scene for the smart space can be represented
as an algorithm with a declarative section (which is a result of
discovery phase) and a sequence of operations/calls to
methods, which are performed by supporting components [7].
As a result, we can formalize the generic structure of the device
in the class diagram (see Fig. 3).

In this diagram a device is represented by the abstract class
SmartObject, and its core components (sensors and actuators)
by the abstract classes of the same name. As a consequence, the
object is represented as an aggregation of its own sensors and
actuators. Attributes of classes represent the state vector, and its
methods represent the functional scheme. In these
circumstances, the real smart object will be modelled as an
inheritor of the SmartObject class. As for sensors and actuators,
they can be typed using a system of heirs, and not just using a
single abstract class. Examples of such typification, based on
the goal and main tasks of the objects, were provided in more
details in [7] and [2].

Fig. 3. UML-representation of the object-oriented device model

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 266 --

In the diagram above some fields and methods are also
reported, which basically are needed for effective interaction
with any device. Their presence is not mandatory and can be
ignored by the physical object realization, and therefore they
are marked as protected (except sensors and actuators, which
represent the core components of the device).

SmartObject class is characterized by the next set of fields:

id – stores a unique identifier of the object (e.g. MAC
address, UUID, etc.);
location – stores the actual location of the object, or
fixed by the user (e.g. TV in the kitchen, etc.), and can
be used as an equivalent for the id in cases, when id is
difficult for user recognition;
sensor[] – represents the list of capabilities, provided by
the sensors, which the device contains;
actuator[] – represents the list of capabilities, provided
by the actuators, which the device contains.

isSensoring field in Sensor class and isActing filed in
Actuator class correspondingly identify whether the component
is working or not.

As for the fields, classes also have some methods with
public or protected modifiers to interact with the devices.
SmartObject class contains the next set of methods:

publish() – guarantees the opportunity to identify the
object and its components during discovery phase;
getId() and getLocation()– return the value of the
identifier and location fields of the current object
correspondingly;
process() – represents the ability to run the process,
using the processing module of the object;
read() and write() – are used for interactions with the
memory module;
configure() – provides the opportunity to set and change
the state of the current object;
send() and receive() – provide access to the
communication component and support
interconnections between objects.

Sensor and Actuator classes also have their own methods,
which simplify the process of their behavior implementation.

Because the main goal of sensors is to catch changes in the
environment state, Sensor class has two methods:
startSensing() and stopSensing(), which correspondingly
initiates and finishes the process of analyzing the environment
changes respectively. When the sensing is initiated, we can
read a physical indicators of the environment using methods
getValue() for manual controlling of the indicator value and
getContinuousData() for continuous monitoring of changes in
environmental indicators. After changes are fixed, we have to
report this information to actuators and other objects using
setEventCallback() method, which generate an event related to
the environment indicator.

In terms of the ECA paradigm and scene definition, the last
method is the most interesting, because it allows to identify the
event trigger to the event, which in turn, can be verified by
means of getValue() and getContinuousData() methods.

Analogically, Actuator can initiate the process of the
environment’s changes using startAction() and stopAction()
methods. In both cases actuator has to notify other participants
in the environment about provided action. For this goal
methods setActionStartedCallback() and
setActionStoppedCallback() are used. And finally the current
state and the actions of the actuator can be controlled by the
control() method.

Being members of abstract classes, all these methods are
virtual and have to be implemented or hidden in the real
objects. We also do not concretize any return types and
parameters for methods in order to do them as generic as
possible. A user can specify them during the personalization
stage, for example, specific return types for getValue() and
getContinuousData() methods; input parameter for control()
method and conditional clauses as an input parameter for
set*Callback() methods.

Such proposed object-oriented model becomes an effective,
clear and simple tool to extension of representation for the
smart devices. If a user needs to add a new device to the smart
space, he/she has only to inherit a corresponding abstract class
and define all needed components during its personalization.
On the other hand, once created the scheme of the smart space,
can be transferred into another physical implementation of the
space without need to repeat all stages of the devices’ lifecycle.
In this case the user can only define, what new devices are
physical equivalents to stored abstract components and initiate
the similar behavior in a new environment in real-time.

V. VALIDATION

Taking into account that the scene for the smart space is an
algorithm over capability of devices, we will represent it using
a pseudo-code for the scene and a UML class-diagram for
devices’ components.

We will use simple scenarios in validation part, because the
main application domain for our model is Smart Home, where
the number of devices is limited, but which are very
heterogeneous because of different goals for their application.
In case of large-scale IoT systems the application of scene
adaptation by the user seems not the most effective way and, as
a consequence, goes beyond the boundaries of this study.

In order to show the effectiveness of the proposed object-
oriented model we will use the next scenario: WHEN the
temperature is more THEN 25ºC THEN turn the ventilator
AND set the speed to 1000 rpm.

Imagine a user in the smart space. The user discovers two
objects: the smart thermometer iTerm and the smart ventilator
Smart Fan. The user received modules for both objects, which
contain a list of capabilities, a parent class definition and a list
of relations between the components and the object, and creates
the scene. The thermometer can generate the event when the
temperature exceeds the upper limit of 25ºC, which is
performed by the Thermal sensor, which is the inheritor of the
Sensor class (iTermThermalSensor->ThermalSensor->Sensor).
In its turn, the ventilator can change its speed using SmartFan
Speed actuator (SmartFanActuator->Ventilator->Actuator).
Both the actuator of the ventilator and the sensor of the
thermometer have implementations of the abstract methods

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 267 --

included in the model. The scene in such conditions can be
represented in terms of a pseudo-code like in Algorithm 1.

This code is produced during the personalization stage and
can be created both manually by the user, or automatically by
the recommender system [9]. Once defined, this scene can be
used for adaptation in the future smart space. This process can
be organized through statistical analysis or adaptation of the
scene to new devices. In our work we concentrate on the
second one way for adaptation.

Algorithm 1 Pseudo-code of the scene
1: SmartThermometer iTerm = new
SmartThermometer(“iTerm”);
2: SmartVentilator smartFan = new SmartVentilator
(“smartFan”);
3: ON
4: iTerm.sensor[iTermThermalSensor].setEventCallback
(temperature > 25);
5: THEN
6: smartFan.actuator[SmartFanActuator].start();
7: smartFan.actuator[SmartFanActuator].control(speed =
1000);

The main idea of such adaptation is to reconfigure the
created scene according to capabilities of new devices. Here we
also use the principle from the object-oriented programming.

It is assumed that we have already built a conceptual (or,
virtual) scheme for the scene and devices, participated in it.
And in the stage of personalization we only concretize the
abstract classes with its physical implementations. As a result,
we use principles of inheritance and polymorphism from the
object-oriented approach. Taking into account the fact, that
these concepts fulfill the Liskov substitution principle (LSP),
we can tell, that in the process of scene adaptation, smart
objects, sensors and actuators are exchanged with other ones,
saving the relation, described with the abstract model and, as a
result, obtaining the same behavior.

According to this, two phases of scene adaptation can be
defined: generalization, the main idea of which is to generalize
the created scene by replacing all physical implementations
with its abstract parent classes, and direct adaptation, where
abstract classes are replaced with its inherited new physical
components implementations.

If we apply that approach to our example, at the beginning
we should create the scheme for components, participating in
created scene (see fig. 4). In this scene we represented all
components as UML-classes with corresponding names, fields
and methods. We also saved the relations between created
classes and its parent abstract classes, which are, in common,
the inheritors of the general abstract classes Sensor, Actuator
and SmartDevice. In addition to these, the diagram contains the
abstract class Scene, which contains several smart objects and
is a representation for our physical smart space.

Now we start generalization of the created scene. First of
all, we rewrite its pseudo-code representation with a new, more
abstract version, which is based on abstract classes instead of

physical implementations of components. This abstract version
of a pseudo-code is represented in Algorithm 2.

In this version of the scene scenario, it loses importance,
who actually perform the corresponding capability. It can be
any example of Thermometer with the ability to measure the
temperature with any example of Ventilator. Furthermore,
these devices can be replaced with equivalents from the point
of the functionality, for example, an air conditioner in the car
and mobile application for measuring temperature.

This means, that this scene can be adopted not only to other
devices, but to the new smart environment. And once created
behavior can be applied to any device, inherited from the
corresponding typified abstract class (a sensor or/and an
actuator).

Algorithm 2 Pseudo-code of the abstract scene version
1: ON
2: SmartObject.sensor[ThermalSensor].setEventCallback
(temperature > 25);
3: THEN
4: SmartObject.actuator[Ventilator].start();
5: SmartObject.actuator[Ventilator].control(speed=1000);

Updated, the generalized diagram, is represented in fig, 4
(the framed part). Here we see only abstract classes, without its
physical inheritors. In order to implement this generalized
scene to the new smart space, user have to identify only, what
new physical objects are inheritors of the generalized scene
abstract classes and after it permit corresponding behavior
embedded inside the generalized scene.

What is more important, the user can not only build in a
new environment a mirror image of the previously created
scene but adopt it to the new devices and its restrictions. For
example, if a new specific Ventilator does not support the
speed setting capability, user can delete corresponding
command from the scene (see Algorithm 3) and apply the
updated one to the physical implementation.

Algorithm 3 Pseudo-code of the updated scene version
1: ON
2: SmartObject.sensor[ThermalSensor].setEventCallback
(temperature > 25);
3: THEN
4: SmartObject.actuator[Ventilator].start();

Such adaptation can be provided in semi-automatic way,
using the idea of distance between the generalized scene and its
physical implementation, describing in the next section.

VI. AUTOMATION OF THE ADAPTATION USING DISTANCE
BETWEEN THE SCENES

Before introduction the concept of the distance definition,
we have to identify the formal representation of the scene for
the smart space.

From the formal point of view, any scene can be
represented as a set of sensors and actuators, which capabilities

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 268 --

are embedded in it. It means, that Scene = (S,A), where A Obj
and S Obj, and Obj = {obji : obji = (T, F,M), where T is a type
of the obji, F = {attrj}, j = 1..N and M = {methodk}, k = 1..S}.

As a result, the scene can be described as a set of its sensors
and actuators, which, in its turn, are defined using their type

(which allows to define the opportunity to replace one object
with another), attributes and methods. Such definition has
advantages, because allows to formalize the process of the
automated scene adaptation and evaluate its possibility,
identifying the need of user’s interventions.

Fig. 4. UML-representation of the created scene and its abstract generalization

In what follows, we will also need the next statement. Two
objects (sensors or actuators) are equivalent, if their types are
equals: Obj1 = Obj2 if T1 = T2.

Now, using these statements, we can provide the definitions
of the compatible and adaptable scenes.

Definition 1: Two scenes Scene1 and Scene2 are compatible
iff S1 S2 = S1 and incompatible otherwise.

This definition states, that one scene can be transformed
into another in the case, when they have an equivalent set of
sensors. It is logically correct from the position of the ECA
paradigm, because if the original scene has a sensor which is
absent in the target scene, it is impossible to check all
conditions for execution of the scene scenario. If two scenes are
compatible, then we can try to adopt the first one (original) to
the second (target) without user’s interventions, because can
check all the conditions of the original scene in the new smart
space.

We can reformulate this Definition 1 using the idea of
distance between scenes. In order to achieve this, the next
definition is fixed.

Definition 2: Sensor distance between two scenes Scene1
and Scene2 is a value: DimS (Scene1, Scene2) = |S1| - |S1 S2|.

Using this, we can reformulate the Definition 1 as follows:
Two scenes Scene1 and Scene2 are compatible iff DimS (Scene1,
Scene2) = 0 and incompatible otherwise.

Now, when we introduced the concept of compatibility of
two scenes, the formalization of the adaptation can be
identified through the distance between two scenes. In order to
make this, all possible cases of differences between scenes’
actuators have to be analyzed.

The first, and the simplest, case here is the situation, when
actuators of two scenes are equivalent: all actuators of the
original scene are available at the target scene. In this case we
have only to compare attributes of our actuators and define,
which are different. When all attributes are equivalent, no
changes to the original scene and its scenario are required.
Otherwise, we have to adopt the scenario according to the idea
– all commands, which use attributes of actuators, absent in the
target model, have to be dropped from the scenario. After it our
original scene will be adopted to the new smart space and can
be implemented within it dynamically, without any action by
the user.

In order to increase the efficiency of this procedure, we can
identify, how many differences are between two scenes: the
more of them, the higher the likelihood of having to interfere
with the user's manual adaptation of the scene.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 269 --

Keeping these ideas in mind, we introduce the next
definition.

Definition 3: Two scenes Scene1 and Scene2 are adaptable
iff they are compatible and A1 A2 Ø.

Our approach does not impose a more stringent condition
similar to sensors (for example, all actuators of the original
scene have to be saved in the target one), because an actuator
defines only the actions for some specific scene. If one ore
more actuators are absent in the target scene, we can remove
actions, which depend on them, from the scene scenario. But
the nature of the scene will be saved: when a specific condition
is fulfilled, the action is provided. It is exactly what can be
named the adaptation of the scene to the new smart space.

However, in comparison with the idea of the compatibility
of scenes, their adaptability requires a more accurate
evaluation. The greater the difference between the sets of
actuators of the two scenes, the more actions are needed in
order to adapt one of them to another. Therefore, the next
definition of the actuator distance can be made.

Definition 4: Actuator distance between two scenes Scene1
and Scene2 is a value:

1 2(,)A i
i

Dim Scene Scene k

where

1 2

1

| | | |, : 2 1
| |,{ a a j ii j

a i

F F if j a a
i F otherwisek

where a1i A1 and a2j A2.

This definition shows, that the distance between two scenes
is defined as the number of attributes of its actuators, which are
in the first scene (original), but are absent in the second one
(target).

In our case, for example, if in the new space there is no a
smart thermometer, we cannot implement previously created
scene, because in the new space we cannot check conditions for
the activation of the scene behavior. As a consequence, in this
situation, we will have to ask a person to adopt the scene
manually, identifying the equivalent of the smart thermometer
in the new space.

Another situation is, when we have the thermometer in both
smart spaces, but in the new one there is a ventilator, which is
able only to be turned on/off, without specification of its speed.
From the formal point of view, this means, that we have a
difference in actuators and the actuator distance between them
is 1 (only one attribute – speed – is absent in the new scene in
contrast to the original, the others attributes coincide). This
fully corresponds to the fact that from the script of our program
we have to delete one command, which uses the lost attribute.

As you can see, the proposed concept of distances between
scenes allows not only to more effectively determine the
possibility of their adaptation to each other, but also to unify
the cases when such adaptation can be carried out in automatic
mode without user intervention.

VII. CONCLUSION

In our article we proposed the object-oriented model for the
smart objects and corresponding qualitative measures of
similarity. Together they allow not only to define the structure
of any smart space in unified way, but also provide the
opportunity to adopt once created scene of the smart space to
new conditions.

Summarizing, we can say that using object-oriented models
simplifies the process of adaptation scenarios for the smart
spaces. Instead of three stages of this process (discovery,
personalization, interaction), only two last can be provided. In
addition, the personalization can be organized in semi-
automatic way against manual in current conditions.

In contrast to the existing approaches, provided by
Fernandez-Montes et al. in [10] and by Strohbach et al. in [11],
which are based on fixed programs and notations, our model is
platform-independent and is focused on the components, which
are important to define the behavior of the smart space.

Thus, the main focus shifts from the technical
interoperability to the behavioral interoperability, which
consists in unifying the scenarios for different smart spaces at
the application and services layers. Furthermore, using the
concept of the distance between the scenes, the automation of
the adaptation process can be provided.

We consider, that the separation of distances into two
classes of sensor distance and actuator distance is really
important. The first one shows the ability of the previously
created scene to be implemented in the new one, while the
second one provides the ability of the evaluation for difficulty
of the adaptation realization and allows to evaluate the needed
number of transformations between scene scenarios.

The effectiveness the proposed approach is shown by the
simple case of adaptation the Smart Home scenario between
two different smart spaces with absent objects (sensors,
actuators).

The application of the proposed approach is the most useful
in spheres of the quickly changing smart spaces, for example in
the case of industrial robots and/or smart houses, which have a
really high degree of the adaptation need.

The created object-oriented model can be successfully
implemented and in other spheres, because corresponds with
the Common Information Model (CIM) by Distributed
Management Task Force (DMTF) and can be extended to the
full Managed Object Format (MOF). It follows from the formal
description of the CIM model, which includes instances,
properties, relationships, classes and subclasses.

As you can see, the object-oriented model proposed
contains all these concepts: a smart object can be interpreted as
an instance; its components (sensors and actuators) are the
classes, described by the set of attributes and methods
(properties), which specify the original smart object and are
connected with it (relationships with subclasses); physical
implementations of sensors and actuators are the examples of
subclasses. This means, that our object-oriented model can be
used as a whole formal artifact, representing the domain of IoT.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 270 --

In the future we expect to extend the created approach by
analyzing the interfaces, which can be defined in the case of
IoT as a combination of different capabilities of the devices. In
order to achieve this goal, the ideas of object-oriented interface
representation from [12] can be used.

We also propose to consider the issue of interfaces
adaptation by the end users, in native way. For this goal ideas
of our object-oriented approach and DSL combination with IoT
can be examined.

REFERENCES

[1] F. Bonomi, R.A. Milito, J. Zhu, S. Addepalli, “Fog computing and its
role in the internet of things”, in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, August 2012, pp. 13-16.

[2] B. Negash, T. Westerlund, A.M. Rahmani, P. Liljeberg, H. Tenhunen,
“DoS-IL: A Domain Specific Internet of Things Language for Resource
Constrained Devices”, Procedia Computer Science, vol. 109, 2017, pp.
416-423.

[3] B. Negash, T. Westerlund, A.M. Rahmani, P. Liljeberg, H. Tenhunen,
“LISA: lightweight internet of things service bus architecture”, in
Proceedings of the 6th International Conference on Ambient Systems,
Networks and Technologies (ANT 2015), the 5th International
Conference on Sustainable Energy Information Technology (SEIT-
2015), June 2015, pp. 436-443.

[4] M.Weiser, R. Gold, J.S. Brown, “The origins of ubiquitous computing
research at PARC in the late 1980s”, IBM systems journal, 38 (4), 1999,
pp. 693-696.

[5] J. Blom, “Personalization: a taxonomy”, in: CHI’00 extended abstracts
on Human factors in computing systems, 2000, pp. 313-314.

[6] J.C. Augusto, C.D. Nugent, Designing Smart Homes: The Role of
Artificial Intelligence, Springer, 2006.

[7] A.M. Bernardos, L.Bergesio, J.Iglesias, J.R. Casar, “MECCANO: a
mobile-enabled configuration framework to coordinate and augment
networks of smart objects”, J. UCS, 19 (17), 2013, pp. 2503-2525.

[8] C. Goumopoulos, A. Kameas, “Smart objects as components of
ubicomp applications”, International Journal of Multimedia and
Ubiquitous Engineering, 4 (3), 2009, pp. 1-20.

[9] E. Rukzio, G. Broll, K. Leichtenstern, A. Schmidt, “Mobile interaction
with the real world: An evaluation and comparison of physical mobile
interaction techniques”, in: Ambient Intelligence, 2017, pp. 1-18.

[10] A. Fernandez-Montes, J. Ortega, J. Sanchez-Venzala, L. Gonzalez-
Abril, “Software reference architecture for smart environments:
Perception”, Computer Standards & Interfaces, 36 (6), 2014, pp. 928-
940.

[11] M. Strohbach, H.-W. Gellersen, G. Kortuem, C. Kray, “Cooperative
artefacts: Assessing real world situations with embedded technology”,
in: International Conference on Ubiquitous Computing, 2004, pp. 250-
267.

[12] B.A. Johnsson, G. Weibull, “End-User Composition of Graphical User
Interfaces for PalCom Systems”, Procedia Computer Science, vol. 94,
2016, pp. 224-231.

[13] Apple HomeKit, Web: https://www.apple.com/ru/shop/accessories/all-
accessories/homekit.

[14] Google Brillo: Android Things, Web:
https://developer.android.com/things/index.html.

[15] W3C. Document Object Model (DOM), Web:
https://www.w3.org/DOM/.

[16] IEC ISO/IEC JTC 1/SC 41: Internet of things and related
technologies, Web:
http://www.iec.ch/dyn/www/f?p=103:7:0::::FSP_ORG_ID:204
86.

[17] ITU-T Y.2066: Common requirements of the Internet of things,
Web: https://www.itu.int/ITU-
T/recommendations/rec.aspx?rec=12169&lang=ru.

[18] CoAP (RFC7252): Neighbor discovery optimization for IPv6
over low-power wireless personal area networks (6LoWPANs),
Web: http://tools.ietf.org/html/rfc6775.

[19] D.J. Cook, M. Youngblood, E.O. Heierman, K. Gopalratnam, S.
Rao, A. Litvin, “MavHome: An agent-based smart home”, in:
Proceedings of the first IEEE international conference on
pervasive computing and communications, 2003,
pp. 521-524.

[20] S. Sebastian, P.P. Ray, “Development of IoT invasive
architecture for complying with health of home”, in:
Proceedings of I3CS, 2015, pp. 79-83.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 271 --

