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Abstract—The massive introduction of video capturing devices
in Internet of Things (IoT) environments leads to development
of various video data based services. In this paper, we consider
the need and background on the video data based services in IoT
environments. Based on the smart spaces approach, we introduce
the architecture and distributed configurations to construct such
services using primarily local devices and to deliver such services
using smartphones. We discuss possible data models that can be
used on such mediatory components as a local video server and
a semantic information broker.

I. INTRODUCTION

The mobile and Internet of Things (IoT) technologies
enable development of advanced digital services, e.g., see [1],
[2]. The IoT supports deliver of such services as personalized
information assistance and online recommendations in our
daily life [3], [4]. Mobile services provide the end-user with
ubiquitous access to the Big Data sensed in current IoT
environment and further processed and accumulated as valued
information resources in the global Internet [5], [6]. Video
capture data form a valuable class of IoT sensed data.

This paper considers the development problem of video
data based services, where the video data are captured in
local IoT environment. We expect that an essential part of
data can be processed locally and nearby using appropriate
devices. Our approach is supported with the two emerging
IoT-enabled paradigms: Edge-centric Computing [7] and Fog
Computing [8]. In particular, such services are in demand for
mobile health systems used in everyday patient life for health
monitoring, prevention, and assistance [9], [10].

The basic processing capacity for local construction of
video data based services is provided by everyday personal
mobile devices (smartphone, tablet). Modern smartphones are
relatively powerful and IoT-friendly, making them reasonable
devices for data processing and service construction [22].
Many smartphones are based on open platforms (e.g., Sailfish
OS or Tizen OS), which supports easier programming. We
argue in this paper that existing desktop and mobile technolo-
gies for programming surrounding IoT devices allow creating
a powerful distributed system for processing video data in the
local IoT environment.

In our previous work [11], we studied the basic de-
velopment opportunities of connecting and interacting video
cameras with other IoT devices. In particular, we analyze
development of a video surveillance system, where cameras
provide video data for further processing on user’s smartphone.

In this paper, we continue our study and propose a distributed
architecture deployable in IoT environments with presence of
many personal mobile devices. We introduce possible device
configurations in respect to what devices can be involved into
the distributed system. The proposed configurations show how
to advance the system with more device classes to take data
processing tasks.

The rest of the paper is organized as follows. Section II
introduces preliminaries on the video data based services
and technologies for IoT environments. Section III describes
the architecture and possible device configurations to deploy
the service-oriented system in IoT environment. Section IV
considers the enabler desktop and mobile technologies that
can be used for video data based services. Section V presents
our data models for video data processing in the proposed
architecture. Finally, Section VI concludes the paper.

II. PRELIMINARIES

Now we observe the massive emergency of many video
capturing devices [11]. Smartphones and tablets have digital
cameras. Urban and rural areas have cameras embedded stati-
cally with a rotary function. Online daily use cameras appear
at many homes and public areas.

Various digital services can be constructed based on the
video capturing. The most topical case relies on online process-
ing, when Internet is used to transfer the video data between
the capture point and the service clients. The simplest case is
when a pure video recorder is used; it transfers the recorded
video further to processing and consuming point (e.g., for
persistent storage at a remote server or for live watching
by clients). More advanced case is when so-called “smart”
devices are employed [12]. They use recorded video as a form
of sensed data. The device performs own data processing to
understand the current situation, to extract valued information,
and to provide the result (as a service) to clients.

In addition to video capturing devices, some additional
(mediatory) computers can be introduced to perform data
processing. Video server is a computer that in some way pro-
cesses and/or stores information from a video camera (storing
records and pictures, processing and recognizing images). In
some cases, the video server can be located on the same
device that is recording. For instance, smartphone seems a
promising devices for this purpose. This approach follows the
vision of fog computing [8] and edge-centric computing [7],
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Fig. 1. Application problem domains for video data based services

when appropriate local and mediatory devices are involved to
perform data processing near the data sensing place.

In an IoT environment, video capturing devices generate
many video flows. With every flow certain semantic informa-
tion can be associated to describe the activity on the data (e.g.,
who and how made video data processing) and the obtained
results (e.g., interpretations and conclusions from video data).
Interrelation of flows as well as relation with other context
information provide semantics that can be used in services.
According to the smart spaces approach [1], this task is
delegated to semantic information broker (SIB), which creates
a shared view on available resources of the IoT environment.
SIB runs on some available and relatively powerful device.
The SIB task is to make linking for dynamically appearing
information fragments (e.g., links to the corresponding videos,
their description, and interpretations). This information is
represented using the model of a semantic network [5]. Video
data processing tasks are performed by agents running on some
devices. The agents make semantics extraction and publish the
obtained information in the semantic network via the SIB.

Video data processing is based on the automated acqui-
sition of various image data sequences from video capture
devices. Many algorithms exist for this type of processing, e.g.,
see the HOG method (Histogram of Directed Gradients), which
is widely accepted for object recognition [13], [14]. Video
surveillance systems implement processing of live data streams
from video cameras to reason about the real environment [15],
[16]. Topical problem domains for considered video data based
services are depicted in Fig. 1.

• Smart safety and security [15], [17]: geo-spatial ter-
ritory monitoring for protection. Video security is
necessary at the world level. Many crimes, thefts
and disasters are noticed thanks to video capturing.
Moreover any security system must have “remote
eyes” based on at least one video camera.

• Ambient Assisted Living [18], [16]: smart assistance
to patients in their everyday life, including social and
health care aspects. Elderly people need assistance
because of the reduction in motor and cognitive func-
tions. Video data processing supports monitoring the
state of these human functions.

• Smart homes [19], [4]: digital assistance to people in
their everyday processes at home (a kind of smar-
tification of our houses and other buildings). The

popularity of smart homes is increasing; they aim at
improving the quality of people’s lives and saving time
for many “everyday” activities. Also, home safety in
such systems is of high priority. Video data processing
supports monitoring the state and context of those in-
home activities.

• Event detection [20], [21]: monitoring of production
equipment and service personnel during the operation.
Video data processing identifies events and analyze the
current situation in the context of previous actions.
Video based event detection can be used in other
problem domains, e.g., for personalized assistance of
the participants during their collaborative work [3].

The progress in IoT technologies has led to such paradigms
as edge-centric computing and fog computing [6], [8], [7],
as evolution of cloud computing. The following examples
from the recent literature show the applicability of these
paradigms for creating video data based services in emerging
IoT environments.

The ePrivateEye platform [13] is an edge-enabled version
of PrivateEye. The original PrivateEye defines a generic two-
dimensional special shape that is easy for users to draw, e.g.,
on a piece of paper, on a whiteboard, or within a projected
presentation. Marker-recognition is performed locally on a
recording mobile device in real-time. The idea of ePrivateEye
is offloading the marker detection to an edge server. The video
data processing delegation, despite small losses in the response
(delay), leads to more effective computation than the mobile
device can perform, e.g., analyze 50% more frames.

The LAVEA platform [14] considers the tradeoff problem
between network core (where powerful computation resources
are available) and the edge (where most of the data is pro-
duced). Data processing at the edge reduces response time,
improves bandwidth usage, and increases energy efficiency.
LAVEA offloads computation between clients and edge nodes,
collaborates nearby edge nodes. As a result, low-latency video
analytics is provided at places closer to the users.

III. SMARTPHONE-ORIENTED VIDEO DATA BASED
SERVICE SYSTEM DESIGN

Consider the proposed architecture and system design
solutions for deploying video data based services in IoT
environment, following the smart spaces approach [1]. The
basic architecture of the system is derived from our previous
work [11], see Fig. 2. The system supports participation (in
the local wireless network) of many video capture devices
(cameras, either embedded or mobile) and mobile clients (run-
ning on smartphones, tablets, laptops, etc.). Each participating
device acts as a knowledge processors (KP), representing
computational resources of the edge. SIB is used for collecting
the semantics and its sharing among the participating KPs.

A. IoT Environment Configurations

The proposed architecture supports the following functions
needed in construction of video data based services: (i) video
data capture using multiple devices in the IoT environment,
(ii) local data processing using edge IoT devices, and (iii) se-
mantic data mining in available information. The studied
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Fig. 2. Distributed architecture for using semantics in video data: the semantics are discovered by KPs, collected at SIB, and applied in service construction

Fig. 3. Extensibility vision on IoT environment configurations in respect to involved resources in construction of video data based services

configurations of IoT environment are shown in Fig. 3. All
the configurations assume that user’s smartphone (or similar
personal mobile device) is the primary access point (client) for
the user to consume constructed services [22].

The basic configuration corresponds to “smartphone–
camera” interaction in service construction and delivery. This
configuration can be extended with more resources as follows.

• Local video server is employed for video data pro-
cessing and storage.

• SIB for collecting results of video data processing
(e.g., results from the video server) and other context
into the semantic network.

• Additional KP agents for video data processing and
data mining in addition to the video server.

• High-performance computing resources for advanced
data processing (e.g., made on such remote computing
facilities as cloud systems and data centers).

Video capture is oriented to “everyday” cameras, which
now are widely distributed in human surroundings. Examples
include webcams on laptop and desktop computers, static
installed cameras in public areas, rotary IP cameras for in-door
environments. Such a camera is connected to the Internet using
local wireless network (typical case is Wi-Fi), either directly
(the device has own IP address) or through the host computer.
To construct services in the smartphone–camera configuration,

the smartphone needs to connect to one or more cameras in the
local network, then to receive and process the video streams.

When the smartphone computing capacity is not enough
the configuration is extended with local video server, i.e.,
an additional relatively powerful edge device is involved into
service construction. For example, such a video server stores
information about most important pictures and video records
(made by the camera) or calculates the usage statistics (con-
nection history to the camera). In this configuration, the video
server performs the essential part of video data processing,
and clients (on smartphones) consume the achieved results of
data mining in the processed video streams. Each KP client
may compose results related to several individual streams or
to distant time periods by own resources, i.e., making certain
contribution to the service construction.

The above type of composition can be delegated to an
additional intermediary when the configuration is extended
with SIB. The latter is typically installed on a local computer,
i.e., similar to the local video server. An additional layer is
provided on top of the processed video streams, which is forms
a shared view on available resources [3]. A simple example of
this “semantic role” is that SIB keeps the access information
about online cameras and their properties. Any client uses this
rendezvous mechanism to access the appropriate camera. Oth-
erwise, the client has to independently solve the complicated
camera discovery task in the local network.

Additional KP agents act on behalf of various smart
devices, including sensors, boards, smartphones of other users.
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TABLE I. PERFORMANCE REQUIREMENTS

Problem domain Smartphone Data processing Semantics
At-Home Lab low medium medium

Face recognition medium high high

Equipment monitoring low medium high

low, medium, high: the level of required computations

The role is in augmentation of captured video data with
available context information and in provision of auxiliary
computational resources to data processing. In particular, such
agents can relate recognized objects in video streams with
the temperature in the location of those objects or with other
information on the observed situation.

When complicated data mining is needed then the function
of video server and SIB can be (partially) delegated to the
remote facilities. They implement known big-data oriented al-
gorithms Important results may return to the local environment
and be shared using the in the local video server and/or SIB.

B. Capabilities for Service Construction

Consider the capabilities the introduced IoT environment
configurations provide in respect to particular problem do-
mains. The computing resources are used for video data
processing and mining, including semantics discovery and
analysis algorithms. Table I shows the performance require-
ments for deploying video data based services of the selected
problem domains.

• At-Home Lab [9], [11]: AAL-enabled personalized
healthcare services provided at home settings, where
everyday cameras are used for video capture. The
services analyze the human motor activity in “natural”
everyday life conditions. The cost is the reduced
analysis result precision compared with medical and
healthcare laboratories having professional equipment.

• Face recognition [23], [24]: A person can be identified
and verified based on her/his digital image in video
snapshots or streams. The video data are coming from
multiple cameras installed in a spatial area (building,
out-door, public space). The cameras are typically of
heterogeneous characteristics.

• Equipment monitoring [25], [20]: Detection of devia-
tions in equipment operation. In addition to cameras
installed near the equipments, the personnel may use
smartphone camera to observe the current operation
situation.

The Sailfish OS currently provides an efficient and fast
mobile OS IoT-friendly ecosystem. The system is based on
Linux kernel and includes most of required basic primitives
for accessing low-level functions and interfaces. The open
architecture allows developing and integrating the missing
primitives to the system core. As a result, the Sailfish OS based
smartphones are the best candidates for use in the studied IoT
environment configurations [22]. Another property of Sailfish
OS is its priority to the privacy and usability. This priority is a
valuable bonus feature that the mobile OS can deliver to video
data based services.

TABLE II. DESKTOP PLATFORMS

TABLE III. MOBILE PLATFORMS

IV. CLIENT PLATFORMS

Let us analyze mobile and desktop technologies available
now on the market. Our analysis provides insights on selecting
platforms for developing clients of the video data based
services.

A. Technology Parameters

Consider the following parameters that influence the devel-
opment of service clients.

1) Market share (%)
2) Release year
3) Accessibility for end-users
4) Access to low-level functions
5) Complexity of programming
6) Processing speed and computation complexity
7) Support for various libraries
8) Prevalence

We summarized the above parameters in Tables II and III
the analytical reviews from the following Internet resources.

• COMSS.ONE for Russian market, www.comss.ru.

• NetMarketShare for global market, netmarketshare.
com.

B. Desktop Platforms

Table II shows available desktop platforms for develop-
ment of service clients. The Windows platform is the main
competitor on this market. It has many versions (Windows
7, 10, 8.1 are now most popular). The forecast is that the
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number of Windows 7 users is decreasing since they move
to Windows 10. The same trend is the Windows 8 decrease.
Likely that MAC OS and Linux will occupy a similar position
on the market in near future.

The advantage of the Linux platform is the possibility to
access low-level functions. Also, Linux provides a relatively
flexible way for programming, since implementation of many
functions and libraries is similar to the architecture of this
platform. However, the flexibility can lead to ambiguity, which
makes programming more difficult in some cases.

In terms of the processing speed, the key competitors are
Windows 7 and Linux. If we assume that major data processing
is not on the client then the difference between the target
platforms becomes negligible.

C. Mobile Platforms

Table III shows possible mobile platforms. The two main
leaders are clear: Android devices (Samsung, Huawei, Xiaomi)
and Apple devices Apple (on iOS). The share of Windows
Phone, Sailfish OS, and Tizen is essentially smaller.

Advanced versions of Android have been released since
2016. They are supported by many applications. iOS is in
a similar situation; new versions are released even more
frequently than Android. Nevertheless, the transition to the new
version of iOS is sharper; many functions may stop working.
Sailfish OS seems interesting from research point of view,
since it provides easy ways for programming and piloting
innovative development.

Although Android version numbers came out some time
ago, smartphones with Android 4.x–6.x are still among the
most popular devices, as well as being relatively cheap.
Many Android devices implement the accessibility to low-level
features. In contrast, iOS has almost no access to low-level
primitives or the access is limited.

The widely accepted opinion is that iOS provides an easy
way for programming. User interface is friendly and simple,
leading to intuitive applications. Nevertheless, the Android
platform shows fast progress in advancing the programming
techniques and user interface mechanisms.

V. CONCEPT DATA MODELS

Consider the data models for using at primary data pro-
cessing components of the proposed architecture (see Fig. 2
above): video server (data processing) and SIB (semantics and
data mining). The presented high-level data modeling solutions
follow the requirements introduced in our previous study [11].

A. Data Processing

In the basic configuration, the client on smartphone con-
nects to one or more cameras and performs video data pro-
cessing of the incoming stream. In this case, KP client also
implements the service construction. Due to the low capacity,
complicated data processing and data mining are not possible.
Thus, the case is limited with simple services, when the KP
client implements lightweight video analytics algorithms. In
fact, this approach is close to so-called Internet of Video

Things [26], i.e., smart activity of cameras is observable as
services for clients.

In construction of more advanced services, the major part
of data processing has to be performed on a local video server
or on remote facilities. The server (KP Video server) receives,
processes, and stores video data as well as context information.
The data are received from the following participants: KP
Clients, KP Sensors, and KP Cameras.

Video data processing is based on existing algorithms and
their implementations. In particular, for face recognition, KP
Video server receives a stream of images from the cam-
era. Faces in the incoming images can be recognized using
improved Haar Cascade Filter [27]. Recognized images are
augmented with special visual effects, e.g., an oval surrounds
any recognized face on every image. Consequently, the initial
stream is modified and can be forwarded to appropriate clients
(as a service) or stored at the server for later use.

Therefore, the basic data model is fusing of several data
streams (video and other data) into a single video data stream.
This stream is subject to:

• direct service provision to clients, which visualize/play
the stream to the user or react on detected events,

• collection of data processing results (discovered infor-
mation) for later use, e.g., offline video or statistics.

This type of video server model is suitable for the needs
of At-Home Lab, face recognition, and equipment monitoring,
as we discussed in Section III.

B. Semantics for Data Mining

The video server makes data processing based on anal-
ysis of individual data flows. The derived results also form
some sequences (e.g., video streams, events flow, time-period
statistics). On top of this information, the semantic layer can
be constructed using the model of semantic network. A node
of the semantic network correspond to problem domain flow-
based data (e.g., video stream), to a meaningful element in
these data (e.g., recognized face), or to a participant (e.g.,
camera).

The semantic network construction is based on activity of
interacting KPs, as illustrated in Fig. 4. Such KPs discover new
information and integrate it into the semantic network using
SIB. KP cameras and KP Video server provide information
discovered in source video data. KP sensors provide context
measurements (as analysis results of time series). KP clients
provide control information (control of the camera or server
storage, processing requests). The collected semantics are
shared and further used by KP clients to receive services.
For instance, clients can find access details of an appropriate
camera for direct communication or detect events for notifying
the user.

The following information assigned with the participants
can be represented in the semantic network.

• Client: identifier (e.g., login name), statistic on pre-
viously used cameras, statistics on performed actions
(service usage).
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Fig. 4. SIB supports the service construction as connecting resources with their consumers

• Camera: network access information, current state
(e.g., monitored area), current observations (e.g., rec-
ognized people) control queue (commands to execute:
turn, adjust brightness, etc.).

• Sensor: aggregated characterization of measurements.

• Video server: summary characteristics of the video
data collection, online video streams.

Therefore, the basic data model is relation of available
resources. Using this semantic vision, each client can consume
a video data based service from one or more cameras (and
augment the video data with sensor measurements), either
directly accessing the cameras or indirectly via access of
processed information from the video server. In both cases,
the SIB implements the rendezvous function when the service
is constructed as connecting resources with their consumers.

VI. CONCLUSION

This paper considered video data based services and the
problem of their development for IoT environments. We dis-
cussed the possible architecture and its extendible configu-
rations depending on the classes of participating computing
devices. We showed potential desktop and mobile platforms
available for service clients. We presented concept data models
for video processing implemented using a local video server
and for data mining implemented using a semantic information
broker.
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