
Approach to Rapid Software Design of Mobile
Applications’ User Interface

Vyacheslav Chernikov
Voronezh State Technical University

Voronezh, Russia
slava@binwell.com

Abstract–Mobile applications have a lot of unique challenges
during the development process. One of them is monolith
architecture that can’t be skipped even for large Mobile
Enterprise applications. Software engineer should keep mind the
whole source code structure to be effective. This article will
introduce an approach to Rapid Software Design that allows to
make a working documentation related to code and
understandable by all team members. Rapid Software Design is
suitable for Waterfall/Agile processes of developing applications
with graphical user interface (web, mobile, desktop, embedded)
and initially was created for mobile projects. This article contains
only the description of User Interface related documentation
despite the whole Rapid Software Design also covering the usage
of architecture patterns, business logic, services, features of
mobile operation systems and writing automated tests.

I. INTRODUCTION

During the process of software development, it is necessary
to consider the interests of several groups of participants:
business customers, software and graphic designers, testers,
and developers. One of the specifics of mobile business
applications is their low complexity in comparison to corporate
backend-services.

Most of software development teams face the following
problems during the long-term development of a project [1],
[2], [3]:

1) The absence or non-observance of architectural patterns,
which leads to a chaotic arrangement of files in the structure of
the solution. It increases the so called ‘technical debt’ when
it’s became hard to maintain and improve the source
code.

2) The lack of a single documentation (except for
Requirements and Backlog) for the whole team, which would
be pretty compact and accessible, while at the same time
making it easier to find a ubiquitous language.

3) "Documentation separately, code separately" - names
from the documentation used in the code rarely, which
complicates its development and progress. Also, it makes a
barrier in communication between business and engineering
teams – every team use its own documentation and terms
(naming mind algorithms).

This article describes a step-by-step process of preparing
technical documentation that will allow software engineers to
create a "skeleton" for the source code based on the user

interface. The article is focused on the simple online
documents which the team members can use in communication
and development process. Main questions covered by the
article are:

1) How to expand the software product documentation so
that it is easier for the developer to prepare the source
code structure?

2) How to use the technical documentation for rapid
software design?

3) How to organize team communication with a technical
documentation during the software design process?

4) How to use the technical documentation as a checklist
with possible automation of code review process?

 Described approach allows to combine the software design
with writing technical documentation. This approach was
created for Mobile Enterprise applications and it’s is easy to
learn and use. Also, it can be applied to any business
applications with Graphical User Interface (web, desktop,
embedded).

II. SOFTWARE PROJECT DOCUMENTATION

The core idea of the approach to Rapid Software Design is:
a mobile application is primarily a Graphical User Interface
(GUI) with low “under the hood” complexity – large data and
complex business logic should be implemented on the backend
online service.

In fact, the Business Domain Model within mobile
application can be described by the User Interface. Software
Designer should consider only those data (and their derivatives)
that are entered by the user, displayed on the screen, and
control the application behavior. Business scenarios are also
directly tied to the behavior of the user interface.

At the same time, most Requirements/Technical
Specification docs are prepared for business customers and
describe whole business scenarios and functional blocks but no
not specific screens or classes. Requirements documentation
and graphic design specifications are used by the development
team. Software and Quality Assurance engineers should create
its own documentation for making a high-quality software.
This documentation includes Architecture description and Test
Cases. In the following chapters the minimum required set of
additional documents will be described.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

First of all, let's look at the development process as a whole.
For simplicity, we've chosen a Linear development process -
Fig. 1.

Fig. 1. Linear development process

So, the project usually allocates the following tasks:

Analysis
Design
Coding
Testing
Operations

At the Analytics stage business analyst should gather
general requirements for the application - the Specifications
document. These requirements are used during the Design
phase (design of User Experience (UX), Graphic Design and
Software Design).

Approach to Rapid Software Design suppose that
development team already has the Specifications Document
and all screens/pages UI design or at least rough schemes.

Fig. 2. Screens list from graphical designer

The Graphic Design is actually derived from UX and fills
the original screen schemes with emotions, composition,
animations and other aspects of visual behavior. The screen
schemes itself already create the structure of the application
and data models – which data to display on the screen, how
data fields will be grouped, and how they will affect the
interface behavior.

Fig. 3. Initial list of artifacts from regular Design phase

When the Design phase is complete a set of necessary
specifications will be created. These documents and artifacts
include:

Technical and Business requirements document
Graphic design of all screens/pages
Graphic Style Specifications
Architecture overview
Fonts, Images and other graphic files

In most cases development team have only this set of
artifacts. Rapid Software Design should be added to the end of
Design phase. In the next chapter Rapid Software Design will
be introduced.

III. RAPID SOFTWARE DESIGN

Let's remind once again that mobile applications are
primarily a user interface. It is necessary to determine steps
that the user has to go through in order to obtain the desired
result/goal. Business applications are created for a specific set
of key scenarios (user interaction sequences) to achieve
business goals. These goals are related to initial use Tasks or
Intents – Fig. 4.

Fig. 4. User scenarios

The average time of user contact with a smartphone is only
a few minutes [4] – Fig. 5. That is why the number of steps in
mobile applications should not be large. User should be able to
get a necessary result with only a few steps. It’s better to split
the application into relatively short scenarios of not more than
10 steps each.

Rapid Software Design embrace this concern to provide a
set of additional documents. One of them, Map of Transitions
and States, is used to visualize user scenarios.

First step of Rapid Software Design is screens/pages
grouping, naming and numbering.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 106 --

Fig. 5. User scenarios duration

A. Screen Grouping, Naming and Numbering

Let’s remind that whole mobile project team typically
includes a number of sub-teams: business customers, analysts,
graphical designers, development and testing engineers and
marketing team to gather and analyze user feedbacks and
behavior. Every sub-team prefer using its own terms and
naming algorithms. To use ubiquitous terms for the whole
team it is necessary to start with screen grouping, naming and
numbering. Page names and numbers should be used in project
documentation.

Graphical designers provide the set of transitions between
screens/pages – Fig. 6.

Fig. 6. Screen transitions from graphical designer

Rapid Software Design starts with splitting the application
into parts (sections of the Business Domain Model) based on
the screens list. Mobile applications are primarily an interface
with the user, that’s why screens/pages directly reflect the
domain model available to user.

The first step is to select screens that are linked together –
Fig. 7. Usually such screens are already logically grouped
within user scenarios. For example, in most applications
Account section can be distinguished where use can view or
edit personal information – Fig.8.

After this step Screens List document will be created. An
example above contains the following sections:

1. Account
2. Help
3. Checkout
4. Catalog

Fig. 7. Screens grouping for developers

Fig. 8. Screens group with numbers, names and short description

Each section must have a name and number. Section names
should be used to horizontally split the Data Access Layer,
Business Logic and User Interface. For example, the Data
Access Layer (groups of methods for interacting with server
APIs and accessing to local database) will be divided into
sections, and each of them will serve its own set of screens:

DAL\DataServices

AccountDataService

HelpDataService

CheckoutDataService

CatalogDataService

Each of the data services can completely hide all the work
with the server, disk cache and local database. Data service

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 107 --

should be a kind of a “black box” and provide external methods
described in Table of Screens covered by section B.

Then it is necessary to number and name every screen/page.
This step will create a flat tree-like interface structure without
nesting and transitions – Fig. 9.

Fig. 9. Screens tree

Screen names will be used in class names. For example,
with MVVM (Model-View-ViewModel) architecture pattern
it’s necessary to have 2 classes: View (or Page/Screen) and
ViewModel. These classes will have the common part from the
Screens List:

1.1 Profile

ProfilePage

ProfileViewModel

1.2 EmailLogin

EmailLoginPage

EmailLoginViewModel

Using this naming algorithm, it’s possible to create almost
complete project structure:

Classes for every data service with name from Screens
List (section name is the name of the Data Service)
Classes
and folders for every ViewModel/Controller
Classes, folders and XML description of user interface
per page.

After this step, the development team will get a “project
skeleton”. This “skeleton” should also rely on architecture and
base classes (e.g. BasePage, BaseViewModel).

An example of the project structure is shown below.

User Interface (UI)

UI\Pages

 \Account

 ProfilePage

 ...

Business Logic (BL)

BL\ViewModels

 \Account

 ProfileViewModel

 ...

Data Access Layer (DAL)

 DAL\Models

 ProfileModel

 ProductModel

 ...

 DAL\DataServices

 AccountDataService

 ...

Now it’s possible to focus on the behavior of every
screen/page. To achieve this goal, it’s necessary to use online
Table of Screens.

B. Table of Screens

During the development process software engineer should
not only keep in mind the whole project structure (folders and
classes) but also a full text description of every screen/page.
This information could be gathered in Table of Screens (regular
Google Sheet or Microsoft Excel Table) – Fig. 10. The key
columns of the table are:

A. Screen number and Section color

B. (Name) Short Name

C. (States) List of possible states

D. (Validation) Input fields for Validation

E. (Behavior) Text description of the screen and its
behavior

These columns provide all necessary “external”
requirements for the page. It’s better to mark every section with
unique color - this will simplify the work with the Map of
Transitions and States described in section “D. Map of
Transitions and States”.

Additionally, the following columns can be added to this
table:

F. (AutomationId) UI-control identifiers (e.g. LoginButton)
for writing automated UI-tests.

G. (Styles) Style names for nested page controls and views.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 108 --

H. (Models) Models that are used on the screen/page - e.g.
ProfileModel.

I. (DAL Methods) DAL methods that are used on the screen
to get ready-to-use Models.

Every column, except Behavior, contain minimum of the
information required for coding. The Behavior column should
contain a detailed screen/page description.

Fig. 10. Table of Screens sample

C. Screen/Page states

Most of mobile applications receive data over the Internet
and should display the downloading state correctly:

Display loading progress bar/indicator
Display loaded data
Display a message about offline mode (smartphone
have no Internet connection)
Display an error message when server is unavailable or
return error response
Display a message when server returned no data (e.g. an
empty products list)

Fig. 11. Screen states

“State” is a set of UI controls/views that should be
displayed to user within a single screen. Business Logic
(ViewModels/Controllers) should switch screen from one state
to another during the data loading process. This states
transitions can be animated to improve user experience.
Negative states can be tracked with diagnostic tool (e.g. online
error tracking service for mobile applications). Samples of
screen states – Fig 11. There are 2 types of states:

1) “Good states” don’t break the user scenario – user can go
father and achieve his goal (e.g. Loading and Normal states).

2) “Bad states” brake the user scenario (e.g. Error,
NoInternet, NoData)

Using states is mandatory with Rapid Software Design
approach. States should be added to Table of Screens
document.

With screen sections, names, numbers, colors, states and
transitions it is possible to create a Map of Transitions and
States.

D. Map of Transitions and States

Map of Transitions and States reflects the user journey map
where every step is represented by a single screen. User go
from one screen to another to achieve desired goals. Map of
Transitions and States can also be used for better understanding
of user scenarios.

Map of Transitions and States begins with the starting point
- the moment an application was launched by the user. There
can be several starting points, for example, one point for an
authorized user, another for an unauthorized user, and a third
one for launching from Push notification.

Every screen of an application consists of colored (section
color) rectangles (one screen/page = one rectangle) and
transition arrows. Also, it’s possible to add AutomationIds of
the buttons or events that caused the transition. Optionally, it’s
possible to add navigation data that passes from one screen to
another (e.g. “email” or “questionId”).

Also, Map of Transitions and States should display all
possible states for every screen. “Good states” are marked with
“+” (plus = good) and “Bad states” with “-” (minus = bad).
There is no need to add the "back" arrows because “back
navigation” is available for all screen by default on mobile
platforms. Sample of Map of Transitions and States shown on
Fig. 12.

Fig. 12. Sample Map of Transitions and States

It’s mandatory to use colors, numbers, names and states
from Table of Screens within Map of Transitions and States.
AutomationIds and navigation data are optional.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 109 --

IV. USER SCENARIOS

All applications are creating to solve specific user tasks. To
achieve goals user should go through screens and make action
on that screens (button click, selecting an item from list, etc.).
That’s why it’s necessary to indicate screen numbers, names
and AutomationIds within user scenarios description. Typical
user scenario description displayed on Fig. 13.

Fig. 13. Sample of user scenario description

Screen names and AutomationIds will be used in automatic
UI testing when QA engineer write scripts (e.g. with Appium
framework) that mimic the user behavior. These scripts are
used as a part of Continues Integration/Continues Delivery
pipeline.

V. THE FINAL SET OF SOFTWARE DESIGN DOCUMENTS

With the described set of documents engineering team
(development and testing) gets the complete vision of
application structure. It’s possible to use regular and familiar
tools to create these online documents:

Text editor (e.g. Google Docs)
Table editor (e.g. Google Sheets)
Graphic editor (e.g. Draw.io)

The preparation of each document takes only one or two
days, but it greatly simplifies the process of development and
testing of the product.

As a result of Rapid Software Design phase team gets a
complete set of documentation required by software engineers
and understandable by business and marketing sub-teams –
Fig. 14.

Fig. 14. Final set of design artifacts with Rapid Software Design

VI. CREATE A PROJECT SKELETON WITH RAPID SOFTWARE
DESIGN

Every experienced developer has a set of known base
classes and architecture understanding. These classes will be
used in project skeleton.

With the Rapid Software Design, it’s possible to create a
complete project skeleton in step-by-step way:

Step 1. Create an empty application with create base classes
and empty folders for every architecture module (one
architecture model = one folder; nesting of folders should also
be kept in mind).

Step 2. Add subfolders for each section for
ViewModels/Controllers and screens/pages. Add empty classes
of every ViewModel and Page from Screens List.

Step 3. Add transitions between screens and their states
based on the Map of Transitions and States. For that purpose,
buttons like “Go to screen Login” should be added on every
page.

Step 4. Add empty Data Services (all methods returning
dumb results) and complete Models based on the Table of
Screens.

Step 5. Add and implement all styles based on Table of
Screens and Style Specifications by graphical designer.

Step 6. Implement Data Services with Mock data. Every
Data Service method should return complete Model with data
loaded from local JSON/CSV file.

After these steps developers will get the complete project
skeleton. It takes one or two days to create a solid project
skeleton that already have templates for all screen/pages and
data services with real data. On the next steps developers can
focus on single screens and implementing business and data
access logic (accessing to server APIs and using local cache or
database).

VII. CONCLUSION

This article completely the Rapid Software Design part
related to User Interface. It takes 1-3 additional days (that’s
why it was called ‘Rapid’) to complete the Software Design
phase and create a project skeleton based on the
documentation. This dramatically reduce the complexity of the
project and ‘entry’ barrier for new team members.

Brief description of documentation from major Rapid
Software Design steps:

Sections of grouped screens list. This document is used
for grouping, naming and numbering screens
Table of Screens. Allows to get a complete description
of every single screen. Names this table correspond to
the class and properties names in the code
Map of Transitions and States. Allows to see all
possible user scenarios and the entire user interface map
User Scenarios. Describe the interaction with the user in
“user action” – “system reaction” way

Rapid Software Design approach simplify the development
of mobile applications and can be used for automatic

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 110 --

generation of code from the documentation and documentation
from the code. Also provided set of documents can be used as a
checklist for manual/automated code reviews and quality
assurance.

Rapid Software Design approach was used in mobile
projects by Binwell company since 2015 with teams of 2-7
software engineers. Results of using Rapid Software Design:

Whole team including business and marketing get a
solid and simple documentation to manage product
development process
Whole team use ubiquitous language (names and
numbers from the documentation) to communicate,
terms from documentation are used in code
Development team gets a project skeleton to speedup
the process of creating a new product, reduce
uncertainty and keep low technical debt
Testing team gets a documentation-based checklist for
manual testing. Also, this documentation is used for
writing automatic user interface tests
Described set of documents reduce “jumpstart” period
for new team members.

REFERENCES

[1] J. Ousterhout, A Philosophy of Software Design. Yaknyam Press,
2018.

[2] R. Hoda, J. Noble, S. Marshall, “Documentation Strategies on Agile
Software Development Projects”, Agile and Extreme Software
Development, vol.1, no.1, 2012, pp. 23-37.

[3] D. Verma, J. Gesell, H. Siy, M. Zand, “Lack of Software Engineering
Practices in the Development of Bioinformatics Software”, ICCGI
2013: The Eighth International Multi-Conference on Computing in
the Global Information Technology, 2013, pp. 57-62.

[4] The Statistics Portal, Average mobile app session length as of 4th
quarter 2015, by category (in minutes), Web:
https://www.statista.com/statistics/202485/average-ipad-app-session-
length-by-app-categories.

[5] W. Behutiye, P. Karhapää, D. Costal, M. Oivo, X. Franch, “Non-
functional Requirements Documentation in Agile Software
Development: Challenges and Solution Proposal”, PROFES 2017:
Product-Focused Software Process Improvement, vol. 10611, 2017,
pp. 515-522.

[6] C. J. Satish, M. Anand, “Software Documentation Management
Issues and Practices: a Survey”, Indian Journal of Science and
Technology, vol. 9(20), 2016, pp. 1-7.

[7] V. Chernikov, “Methodology of Developing Cross-platform User
Applications”, Voronezh State Technical University, in press.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 111 --

