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Abstract—The actual work is devoted to the construction of
an individualized mathematical model of the spine, based on the
X-ray images in the frontal and sagittal projections using deep
learning convolutional neural networks. The semantic
segmentation of X-ray images using the convolutional neural
network U-Net is performed, also justifying the choice of network
parameters and architecture. All stages of the individualized 3D
model building are described, the results of each stage are
presented. The model is constructed to subsequently determine
the type and the extent of scoliosis with the aim of designing and
implementing of the Cheneau corset.

[. INTRODUCTION

The paper presents the results of constructing an
individualized spine mathematical model based on the X-ray
images in projection using deep learning convolutional neural
network. The model is constructed to identify the scoliosis type
and extent for the further development and implementing
Cheneau corset. The initial data to construct the model are X-
ray images in the frontal and sagittal projections.

The spine is the supporting element of the human skeleton,
consisting of 32-34 vertebrae divided into five regions. There
are cartilaginous interlayers, called intervertebral discs, located
between vertebral bodies. The spine can be considered as a
kinematic chain, whose links are vertebrae and intervertebral
discs. The spine model is constructed based on the descriptions
of vertebrae and intervertebral disc. However, the information
about intervertebral discs is not available while constructing the
model based on X-ray images. Therefore, the model includes
only the characteristics of the vertebrae: the measurements,
inclination, the displacement of the vertebral bodies relative to
each other, the angles between the vertebral bodies [1]. All the
parameters are calculated both in the sagittal and frontal planes.
In this work, we present a construction of a three-dimensional
graphical interpretation of the spine model, shown as a
simplified representation of the vertebrae, based on the values
of the described parameters. This model will further be used to
determine the type and degree of scoliosis, and also to calculate
the pressure on the deformed backbone, using mathematical
modeling methods, to determine corrective actions.

Further on, the graphic interpretation will be used to
determine the type and extent of scoliosis. Currently, the
standard method of measuring the angle and degree of
curvature in international practice is the Cobb’s method.
Fergusson’s and Lekum’s methods are also known. These
methods have a number of significant disadvantages. They
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reflect the curvature only in one dimension and do not consider
the rotation. So, they cannot accurately describe the spatial
deformation. The accuracy of the measurement angle is often
affected by the factors such as the choice of the vertebrae to be
measured and the quality of the image. The results of
measurements performed on the same image could be affected
by a high inter-observer variability. Therefore, it is necessary to
use the mathematical methods to perform reliable quantitative
scoliosis assessments.

The current research will redound to the benefit of the
medical community since it satisfies the growing demand for a
system that would provide a 3D model of the spine and test it
for scoliosis. The spatial three-dimensional model,
supplemented by data on the scoliosis measurement by various
methods and by the future results of mathematical modeling,
will facilitate the decision-making process and the choice of
treatment for scoliosis. On the further stage, we are planning to
supplement the model with the description of a body surface,
which will permit to develop and implement Cheneau corset.
The further implementation of the project will allow to produce
Cheneau corsets in Kemerovo Region, which will lead to their
cheaper and faster implementation and will ultimately
increasing the availability of Cheneau corsets for the scoliosis
correction. Within the initial part of the project, the
individualized 3D spine model is constructed.

Radiography plays an important role in the visual diagnosis
of diseases affecting the human musculoskeletal system. It is
also the most accessible way of research and it is often
prescribed for the children in the initial diagnosis of scoliosis.

X-ray image is a sufficiently complicated subject of the
research, since it displays all the bones covered by the X-ray
image area. The images of ribs, hip bones, and arm bones in the
lateral projection can overlap the images of the spine, which
significantly impedes its recognition. In the image, the spine
has the same brightness as the bones shielding it, which causes
extra difficulties. In addition, any notes made on the X-ray film
by hand, as well as metallic elements of clothing, may be
displayed on the images. Therefore, the primary objective of
the construction of the spinal model is to locate the spinal
column and to separate vertebrae.

II. RELATED WORK

Machine learning methods are increasingly being used to
solve the problems of detection and recognition of objects on
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medical diagnostic images. The work on analyzing images of
the medical diagnostics in general and analyzing images of the
spine in particular can be roughly divided in this research using
deep learning neural networks and all others. Since the advent
of neural networks is based on deep learning and libraries that
enable the use of such networks, in particular Keras, the multi-
layer neural networks have become widely used in the medical
diagnostics in a wide variety of contexts. A number of works
are devoted to the analysis of the spinal images. Most of them
analyze the images of computed tomography (CT) and
magnetic resonance imaging (MRI). These images are layered,
more detailed and contain substantially less noise. In addition,
in the vast majority of such works, the neural network solves
the regression problem by determining the coordinates of the
desired points. The research [2] is devoted to the use of neural
networks to recognize the coordinates of the centers of the
vertebrae on the CT images. Authors in [3] describe how to use
ConvNet together with the Sobel operators to search the
coordinates of the spine damages on the CT images. The work
in [4] discusses the use of convolutional neural network on the
basis of ConvNet with the additional layers of boosting to
analyze the X-ray images and the search for the coordinates of
the vertebrae. Some of the works are devoted to the use of other
type of network: these networks perform semantic
segmentation of images, i.e., they determine the points of the
image that belong to the objects of interest. [S] describes the
model of a convolutional network U-Net, used for the
segmentation of ISBI cells on light microscopy images. The
idea of the U-Net model was the continuation of the ConvNet
model used to classify images. A distinctive feature of U-Net is
that in this network, in a forward motion, the image represented
by a three-dimensional feature card is folded in size but
increases in depth, after which a convoluted network intended
for classification has a fully connected layer that performs this
function. In the U-Net, a completely connected layer is
missing, instead of it, the reverse deployment of the image is
performed on the reverse of the network. A similar approach is
used in [6] to determine the contours of the heart, lungs and
clavicles on the X-ray; this work describes the application of
three different convolutional networks, other than U-Net, to
solve this problem, and gives the recommendations on the
choice of the parameters for convolutional networks.

The novelty of this work is that it uses the semantic
segmentation approach to determine the spine, in contrast to
most works solving the problem of regression. The result of the
neural network activity is the image of the vertebrae in white
on a black background. In this case, the classification is
performed for each pixel in the image. This approach preserves
more information, which can be used in further analysis and in
particular to determine the contour.

There are few papers devoted to the study of X-ray images
without the use of neural networks. The paper [7] discusses
automatic recognition of vertebrae represented in the
projections by polygons. The method proposed in the paper
automatically detects the convex angles of these polygons. The
key points that can be vertex angles are detected by building
the SIFT descriptors, after which the model is learning, being
based on the support vector method. In the research [8] the
Cobb’s angle is calculated from the x-ray images using a
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structured vector regression. The article [9] describes a
combined filter to identify the features of the vertebrae. The
combined filter in this article is a combination of anisotropic,
sigma, and differential filters. After applying the method of
differential boundary allocation to find the contours of the
vertebrae on the filtered image, the Cobb’s method is used in
the research to determine the degree of scoliosis. Nevertheless,
over the past few years, neural networks have made
tremendous progress in the image recognition, the
convolutional neural network approach is currently dominant,
including the recognition of medical imaging.

III. FOREMOST STAGES OF MODEL CONSTRUCTION

The construction of the spine spatial model is a complex
multi-stage process; its sequence diagram is shown in Fig. 1.
The original image enters the preprocessing module, which
scales the image, converts the color of image to grayscale, and
increases its contrast. The result is saved in a file that serves as
input data for the recognition module. The recognition module
uses the trained U-Net network to determine the position and
the shape of the vertebrae in the projections. The result of this
module’s work is also a file with the recognized images of the
spine, which, in its part, enters the markup module. This
module marks up the contours of the vertebrae and computes
the rectangles describing them in the frontal and sagittal
projections. The result of the module’s work is a file containing
a description of the geometry of the vertebrae in the
projections, which, if necessary, can be additionally marked up
in the preprocessor interface of the program to work with 3D
model and resaved.

Within the framework of this project, a program has been
developed to work with the 3D model. This program is a
preprocessor and postprocessor to build a 3D model of the
spine. The preprocessor interface displays automatically
created markup, which the user can change if necessary. After
that, the module to construct the 3D model builds the spinal
model from the generated markup and displays it in the
postprocessor part of the program. The application was
implemented in C#. Image preparation, recognition and markup
modules were implemented in Python using Pandas, Keras,
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Fig. 1. Sequence diagram of the spine 3D model construction

IV. RECOGNITION OF THE SPINE

U-Net networks have spread in recent years and are often
used to analyze medical images [5]. The network architecture
used in this work is shown in Fig. 2. In this network, in a
forward motion, the image is minimized in size but increases in
depth. The image in this case is a three-dimensional array n [Jm
[k, where n and m are the original image sizes n=m=512, Kis




PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

the depth and for the original image is 1. The depth of the
image is 1, since the original image is converted to the shades
of gray in the range [0,1] without loss of quality. The
architecture of the convolutional neural networks takes into
account the fact that the input data are images; therefore, the
convolution layers have neurons located in three dimensions:
width, height, and depth. In the process of convolution, the
image passes through a set of blocks consisting of two
consecutive convolution layers and the subsequent pulling
layer. In the Fig. 2 the layers are represented by rectangles
indicating the type of layer and the size of the filter that it uses.
The dimensions of the incoming images are indicated near the
arrows showing the direction of image transmission. The
convolution layers are marked as conv. The parameters of the
convolution layer are chosen in such a way that the size of the
image NUIM does not change when passing through the
convolution layer. The image changes only in depth, if this is
the first of two successive layers, and does not change in size if
it is the second one. In different versions of the network at the
initial stage, when passing through the first block, 16 to 64 of
such layers are formed. When passing the next layers of
convolution, the number of layers doubles in depth each time
until it reaches 512 or 1024 in different versions of the
network. After two layers of convolution, the pulling layer is
located, and its function is to reduce gradually the spatial size
of the image. The pulling layer works independently on each
fragment of the input depth and changes it spatially, using the
operation of identifying the maximum, in the Fig. 2 such layers
are labeled as max pool.

As a result of passing through the layers of convolution and
pulling, the image essentially decreases in relation to the initial
size, but increases in depth. After convolving the image in the
forward direction, the image is re-deployed using both the two
convolution layers blocks both the transpose convolution
following them. The transpose convolution layers perform the
inverse of the direct convolution, in the Fig. 2 they are labelled
as transpose. The relationships between the size of the filters,
the zero padding and the filter step for the convolution and
transpose convolution layers are described in [10]. The network
architecture is nonlinear, since some layers use not only the
result of the previous layer, but also the computational result of
one of the earlier layers. These two results are glued together in
the third dimension, and thus additional layers are formed in
depth. In the Fig. 2, this action is labelled as concat. The last
convolutional layer uses sigmoid activation function and
performs the convolution of the image to its original depth
dimension. The result of the network is the image containing
the objects you are searching for.

While conducting the research, we have tested various
versions of the network architecture, as well as various values
of the U-Net parameters. In this paper, when describing the
network architecture, the number of layers on the first and
maximal depth convolutional layer is indicated, for example,
32-512. Since the training of one version of the network
requires significant computational costs, at the first stage, we
selected the optimal parameters on the 32-512 network. After
that the selected parameters were used to choose the optimal
network architecture. The values of selected testing parameters
were based on the analysis of works devoted to the image
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recognition using the neural networks ConvNet and U-Net for
the image recognition and classification.
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Fig. 2. U-Net network architecture

We considered the loss function and the activation function
of convolutional layers, with the exception of the latter, as
variable parameters. Three different activation functions were
considered: rectified linear unit ReLU, scaled exponential
linear unit SELU and exponential linear unit ELU. [5]
describes a network using the ReLU function, but in [6] it is
recommended to replace it with ELU. Testing was carried out
on a test set every 10 epochs. The results were compared by
means of the F1 score, which is the harmonic average of
precision P and recall R:

TP
P= v Fp
_ TP
R_TP+FN’
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=
where TP stands for ‘true positive’, i.e. the number of correctly
recognized white pixels of the image; 7N - ‘true negative’, i.e.
the number of correctly recognized black pixels of the image;
FN - “false negative’, i.e. the number of white pixels of the test
image that were mistakenly recognized as black; FP — ‘false
positive’, i.e. the number of black pixels of the test image that
were mistakenly recognized as white.

The Table 1 presents average values of the F'1-score for the
test set on the best epoch. Fig. 3 shows the graphs of the
average F'l-score values in relation with the epoch number and
obtained with different activation functions. The quality of
recognition at the initial stage rapidly increases, then the
functions noticeably oscillate. Moreover, we observe a
noticeable effect of retraining in the SELU and ELU functions,
while for the ReLU function this effect exists, but less
extended. The function ReLU shows a significantly better
recognition quality.

We considered the Dice D and Jaccard J score as a loss
function:

2TP

D= PPy EN
~ TP

J =PI FP PN

Although the use of the Jaccard score is recommended in [6],
testing conducted within this research has shown that the
choice of the metric has little effect on the learning of the
network and its generalizing ability. It should be noted that the
Dice and Jaccard metrics are similar, but the Jaccard metric
penalizes the network with more false positive and false
negative pixels. Nevertheless, the use of the Dice score gives a
slight advantage.

In all the considered variants of the network, the effect of
retraining is observed with a greater or lesser extent. The
maximum average value of F1 score is achieved for the
activation functions ReLU, ELU and SELU at the epochs 410,
100 and 50, respectively, when using the loss function Dice
score. In [11], a method is described for combating retraining
by adding dropout layers to the network. The dropout layers
randomly exclude from the training the network nodes with
their connections, thus weakening the joint adaptation of nodes
to learning. As shown in [11], this approach significantly
reduces retraining. To reduce this effect in this work, 2 dropout
layers were added to the network shown in Fig. 2 after the first
convolutional layers in blocks 1 and 4. The resulting averaged
values of F1 score are reported in Fig. 3 and labelled as 3. It
can be seen from the figure that adding dropout layers really
reduces the effect of retraining. In this case, the maximum
average value of F1 score is reached on the 910-epoch.
However, the network obtained using the activation function
ReLU without the use of dropout layers demonstrates the best
average values of the F1 score, which cannot be reached by the
networks with dropout layers even during the following 1000
epochs. In this paper, it was not possible to find the number and
position of the dropout layers able to lead to better.
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For the selected set of parameters, we have compared the
architecture of U-Net 16-512, 32-512, 32-1024 and 64-1024.
All these networks use the blocks of two successive
convolutional layers and the next layer of pulling in a forward
motion. In the reverse motion the pulling layer is replaced by a
layer of transpose convolution. Thus, in the networks 32-512
and 64-1024 on the forward and reverse motions, there are 4
blocks and one additional last block ending in the last
convolution layer, where 4 concatenations are performed, in
addition to other 5 in the networks 16-512 and 32-1024.
Therefore, their use is associated with greater computing costs.
The maximum average values of F1 score for approved
architecture variants are presented in Table 2. The resulting F'1
score for the different architecture variants in relation with the
epoch number is shown in Fig. 4. The architectures 16-512 and
32-1024 demonstrate a much better overall ability by using
more convolutions.

The calculations were carried out using a parallel version of
the TensorFlow library on the GPU server with Nvidia Tesla
P100 video card of the Center for Collective Use of High
Performance Computing Resources of Kemerovo State
University.

TABLE I. AVERAGE F1 SCORE VALUES FOR VARIOUS COMBINATIONS OF
NEURAL NETWORK PARAMETERS

Activation function
Loss function ELU SELU ReLU
Dice score 0.6490 0.6354 0.7106
Jaccard score 0.6288 0.6184 0.7103
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Fig. 3. Recognition accuracy for Dice score loss function and different
activation functions: 1 — SELU, 2 — ELU, 3 — ReLU with dropout layers, 4 -
ReLU

TABLE II. AVERAGE F'1 SCORE VALUES FOR DIFFERENT ARCHITECTURE

VARIANTS
Architecture 32-512 16-512 64-1024 32-1024
F1 score 0.7106 0.8694 0.7198 0.8778

As a result, we recognized 32-1024 with the activation
function ReL U and the loss function Dice score as the optimal
version of the network architecture. In all cases, the networks
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were trained using the Adams algorithm with an initial step of
10°. When using this network, the highest value of F1-score is
achieved at 200-epoch. An example of the recognizing result of
a test image in frontal projection, shown in Fig. 5a, is reported
in Fig. 5b. Fig. 6 shows the relation of FN and FP pixels with
the number of epochs referred to the total number of the white
pixels. It can be seen from the figure that in the learning
process the number of FP points is reduced, but the number of
FN points increases. This means that in the late stages of
learning the vast majority of erroneous points are the FN
points. It is worth noting that all the considered loss functions
equally performed in the same way in relation with the FN and
FP points. The penalty for F'N points needs to be increased.

09

F1 score

Fig. 4. Recognition accuracy for different architecture variants: 1 — 32-512, 2
—16-512,3 — 64-1024, 4 — 32-1024

We have used a set of 118 images in the frontal projection
for training and testing, 70 of which have been used to
construct the training set, and the remaining 48 as a test set.
Since seventy images are not enough for the network to learn,
these 70 images were the subject to augmentation, resulting in
1050 images being generated for the network training. The use
of augmentation to obtain an acceptable number of images for
training is a common practice and is described, for example,
in [5].

Since the images with the full image of the spine are not
sufficient, then for the training we used images on which
fragments of the spine consisting of several vertebrae are
depicted. Many of these pictures were used to recognize the
vertebrae in the sagittal projection. For the training we used 80
images with fragment and only 26 pictures with a full image of
the spine, as well as 18 complete images for testing. The
recognition of images in the sagittal projection produced worse
results than in the frontal surface. For the best version of the
network, the highest average F'l1 score for the frontal surface
was 0.8778, and for the sagittal surface was only 0.8085.
Special difficulties arose when the images of the vertebrae
appear partly overlapped with ribs ones.

V. CONTOURS COMPUTING AND A 3D MODEL CONSTRUCTION

The contour calculation module defines the contours of the
vertebrae using the functions of the Cv2 library, along with the
rectangles that describe constructed vertebrae. Fig. 7a shows
the original image of the spine in the frontal projection along
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with the contours manually (in black) and automatically (in
grey) generated. Although the contours do not completely
coincide, there is a good correspondence both along the
contours of the vertebrae. The result of the markup based on
the recognition results is shown in Fig. 7b. Fig. 8 shows the
results for the sagittal projection. As one can be se, the contour
obtained with the recognition matches in a worse way with the
manual contour, especially for the upper vertebrae.

(@ (b)

Fig. 5. Result
result

of image recognition: (a) - original image, (b) - recognition

share of error pgints

0.05

Fig. 6. Dependence of the erroneous points share on the number of the epoch:
1 — FP points, 2 — FN points.

The construction of a 3D model is based on the information
about rectangles that represent vertebrae in projections. The
search for a descriptive rectangle for each vertebra is a two-step
procedure. The first stage involves a search for the minimal
convex hull according to the Jarvis algorithm. It is then
followed by a search for the minimal descriptive rectangle
according to the algorithm described in [12]. After the
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minimum rectangles have been detected for all the vertebrae,
the adjacent rectangles are checked for an overlap. Overlapping
rectangles are reduced so as to eliminate the overlap. Besides,
at the preparatory stage, the images are scaled to coincide
vertically with the examined part of the spinal column: then the
differences in the data obtained from the sagittal and frontal
projections will be minimal.

The images themselves and the description of the vertebrae
in the form of rectangles are the input data for the program for
constructing a 3D model. The preprocessing part of the
program visualizes the images in projections with
superimposed rectangles that can be corrected manually. For
each vertebra, the program determines dimensions, center
position, axial tilt relative to the axes of coordinates, and the
rotation of the vertebra relative to its own axis. Since the
vertebrae are tilted relative to the vertical axis, their height is
displayed with distortion on the frontal projection. Therefore,
the height of the vertebrae and the coordinates of their central
points along two axes are determined from the sagittal
projection. To determine the rotation of the vertebrae according
to the Raimondi technique, it is necessary to determine the
attachment points of the transverse processes to the vertebral
body in the frontal projection, which has not yet been realized
in this research. Therefore, at present all the vertebrae are
considered to be unturned. It should be noted that all listed
parameters are calculated precisely for vertebral bodies.

The present research employed a standard model of the
spine to calculate the individualized model or its fragment. The
standard model takes into account the structures of the
vertebrae in various regions of the spine. The program stores
previously described 3D models of all types of vertebrae that
make up the spine. When constructing an individualized model,
individual parameters of vertebral bodies that have been
computed as a result of recognition and marking of images are
transferred to this standard model. However, the shape and
position of all the processes are taken from the standard model
since this information is not extracted from the X-ray
images.

Part of the pictures used for testing in this work contained
images of not all vertebrae. Most of the images did not include
the cervical section, in addition, often the upper part of the
image turned out to be lighted and it was not possible to
recognize the upper vertebrae. When building the model in the
application, you must manually specify the number of the
highest marked vertebra to form the correct vertebra
configuration, taking into account the spine sections. Thanks to
the use of this approach, it is possible to construct a realistic
representation of the final spinal model. The Fig. 9 shows the
visualization of the spinal model for a vertebral column of 9
vertebrae, presented in the figures earlier.

The generated 3D model is visualized in a separate
application window, while viewing the model, standard tools
are available to zoom in and rotate around the central axis. The
resulting model is saved in the universal obj format. The model
can be opened and edited in one of the popular 3D modeling
programs or printed on a 3D printer.
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In the future, it is planned to calculate and take into account
the rotation of the vertebrae in the model, as well as the
addition of a module for analyzing the type and degree of
scoliosis using various methods for their determination.

@

(b)

Fig. 7. Result of frontal projection markup: (a) - overlapping of manual
marking contours (black color) and contours obtained during recognition (gray
color) to the original image, (d) - markup based on recognition results.

VI. CONCLUSION

In this paper, we presented an approach to construct an
individualized spinal model based on X-ray images in
projections. The model takes into account the measurements,
inclination, curves and position of the vertebrae relative to one
another.

The U-Net neural network is used for the X-ray images
recognition. In the paper, we described the parameters and the
network architecture selection, as well as the preparation of
images for recognition. The network was successfully trained,
it demonstrated an acceptable generalizing ability in frontal
projection images and markedly worse for sagittal projection.
Currently, work on the way to improve the quality of image
recognition, including the selection of methods for pre-
processing images, as well as the selection of a loss function
that takes into account the proportion of erroneous FP and FN
points. In addition, the markup module of the images obtained
as a result of recognition is being further developed, as well as
the 3D model building module.

The overall program obtained as a result of this work will
be used in Kemerovo medical institutions for analyzing X-ray
images, determining the type and degree of children’s scoliosis.
On the further stage, we are planning to supplement the model
with the description of a body surface, which will allow to
develop and implement Cheneau corset.
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Fig. 8. Result of sagittal projection markup: (a) - overlapping of manual [5]
marking contours (dark gray color) and contours obtained during recognition

(light gray color) to the original image, (b) - markup based on recognition

results.

(6]

(7]

(8]

[9]

[10]

[11]

[12]
(a) (®)

Fig. 9. 3D model based on recognition results: a - front view, b - side view
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