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Abstracts—Convolutional neural networks for detection geo-
objects on the satellite images from DSTL, Landsat-8 and
PlanetScope databases were analyzed. Three modification of
convolutional neural network architecture for implementing the
recognition algorithm was used. Images obtained from the
Landsat-8 and PlanetScope satellites are used for estimation of
automatic object detection quality. To analyze the accuracy of the
object detection algorithm, the selected regions were compared
with the areas by previously marked by experts. An important
result of the study was the improvement of the detector for the
class “Forest”. Segmentation of satellite images has found
application at urban planning, forest management, climate
modelling, etc.

1. INTRODUCTION

The progress in the development of high-performance
computers with graphics processing units (GPU) allowed
researchers to work with convolutional neural networks
(CNNs) that have millions of parameters. In solving modern
problems of computer vision, modern approaches based on
CNN exceed traditional methods and work of image analysis
experts in different cases. CNNs demonstrated their advantage
in tasks of image classification, object detection and scene
recognition. Currently deep learning methods are used for
solving almost all problems of computer vision [1]. Image
segmentation is one of these tasks.

The problem of satellite images segmentation is
challenging. In machine learning applications, aerial image
interpretation is usually formulated as a pixel labeling task.
Nowadays the object detection for aerial high-resolution photos
is in the focus of research community. Meanwhile, the most
approaches to solve this problem is the use of a CNNs. The
features in these networks are formed automatically in the
process of training.

Nowadays, per-pixel satellite image segmentation requires
the use of deep learning algorithms. The use of such methods
instead of traditional approaches is non-trivial for some
reasons. Unique methods are needed to solve the problem of

the spatial extent of the detected objects and the invariance to
the rotation or the scale of the images [2]. These algorithms
must adjust for:

e Taking into account the small spatial extent of objects.
Detection of small objects in large images is one of the
main problems in the satellite images analysis. Unlike
the large objects captured in the ImageNet database,
objects on satellite images are often very small, but they
are densely grouped. The reason is that the resolution of
satellite image is determined based on the distance to
the ground. It determines what is captured on one pixel
of the image. The size of captured area on these images
usually ranges from 30 cm? to 16 m? This means that
the size of an object such as a car will only take 15
pixels.

e Being invariant to rotation. Objects on satellite images
have different orientation. For example, ships can be
rotated to any angle, while trees in the forest are located
vertically.

e Having sufficient amount of training images. For most
available datasets, such as LandSat [3] and Inria [4],
there is a shortage of annotated images. However, some
efforts to create a large number of learning samples,
such as SpaceNet [5], can solve this problem.

e Being able to work with high-resolution images.
Satellite images, which are used by algorithms of
machine learning, are high-resolution. For example,
some images from the DigitalGlobe satellite cover more
than 64 km?, which includes more than 250 million
pixels.

Image segmentation is the separation of image into
significant areas, which can be considered as a task of per-pixel
classification. The simplest (and slow) approach to solve this
problem is manual segmentation of images. Nevertheless, it is a
laborious and long process, which usually leads to make
mistakes. Currently, the great interest of researchers in the field
of machine learning is associated with the development of
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automatic image segmentation systems. This type of
segmentation allows to process images immediately after the
receiving. Such automatic systems must provide the necessary
accuracy to be useful in practical applications.

This article consists of seventh parts. The second part is
devoted to the related works concerning the problem of satellite
images segmentation. The third part is devoted to available
databases of satellite images. The fourth section describes
developed CNN architectures for image segmentation. Also in
this part there were described tools for building classifiers, as
well as the peculiarities of training process. The fifth and sixth
sections show the results of numerical experiments for
developed models on different databases. Then, in conclusion
there could be found summarizing and suggestions about the
possible improvement of proposed classifiers.

II. RELATED WORKS

In recent years, various methods for creating CNN have
been proposed, which can produce segmentation for the entire
input image. One of the most successful algorithms is based on
fully convolutional networks (FCNs). The basic idea of this
approach is to use CNN to extract the necessary feature values,
while replacing the fully connected layer with a convolution
layer with the output in the form of feature maps instead of
classification results [6]. This method allows you to train CNN
for the segmentation of images of different sizes.

Following this way, the authors of [7] present the
architecture of CNN named Mask R-CNN, using pre-trained
weights of COCO dataset. This algorithm is composed by two
networks: a Region Proposal Network (RPN) and a FCN. The
first model takes the whole input image and output the
transformed image with bounding box proposals of detected
objects. The second model uses the information from previous
network and performs the segmentation for transformed image.
This nonsimple method allowed to detect buildings on satellite
photos of Inria Aerial Images Dataset [4] exactly. The best
performance was 92.49%.

The method of using FCN was supplemented and now it is
known as U-Net. In paper [8] there is presented U-Net
architecture — a specific type of FCN, which had received a lot
of interest for segmentation of biomedical 2D and 3D images
[8, 9]. Later, this model has proven to be very efficient for the
pixel-wise classification of satellite images [10]. The U-Net
architecture uses skip-connections to combine low-level and
higher-level feature maps, which provides accurate localization
of objects. Using U-Net architecture, the authors of paper [10]
get the value of Sorensen-Dice coefficient is equal to 0.75.

The authors of [11] hold the similar method to solve the
problem of satellite images segmentation. They developed the
U-Net like architecture, which is using ResNet-34 weights in
the encoder. This algorithm shows excellent results of detecting
roads on satellite images of DeepGlobe database [12]. The best
public score is 0.64.

Classical neural network architectures, such as DeconvNet,
which contains only coders and decoders without merging
layers, are also very popular for solving similar problems [13].
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Such neural networks are usually initialized by network
weights preliminarily trained on a large dataset (for example,
ImageNet or ResNet). This approach allows to significantly
increase the efficiency of the learning process. In some
practical applications, such as cancer detection or traffic safety,
the accuracy of models plays the crucial role.

This article is a continuation of previous author’s work [14]
devoted for object detection and segmentation on aerial images.

III. DATABASES OF SATELLITE IMAGES

A standard database of images is the important part for
learning, efficiency evaluation and comparative analysis of
different machine learning algorithms. Nowadays, there are
some available databases of satellite images.

DeepSat database [15] contains two sets of annotated
images from different satellites: 500,000 Sat-4 images, divided
into 4 classes (“barren land”, “trees”, “grassland” and “other”),
405 000 Sat-6 images, divided into 6 classes (“barren land”,
“trees”, “grassland”, “roads”, “buildings” and “water bodies”).
All samples have a size of 28 x 28 px at a spatial resolution of
1 m/px and contain 4 channels (red, green, blue and NIR - near
infrared radiation). However, while this dataset is very useful
for preliminary preparation of more complex models, it does
not allow to take further steps for detailed analysis of
developed algorithms. The examples of images from the

DeepSat database are shown on Fig. 1.

Inria database [4] contains aerial orthorectified color
images, which cover the area of 810 km? of 10 cities (180
images and 405 km? for training and testing set) with a spatial
resolution of 0.3 m. Each photo has a size of 1000x1000 px.
All images are divided into 2 classes: “buildings” and “not
buildings”. The samples of the database cover dissimilar urban
settlements, ranging from densely populated areas to alpine
towns. As DeepSat database[15] this dataset is usable to assess
the generalization power of techniques of image segmentation.
The examples of images from the Inria database are shown on
Fig. 2.

DeepGlobe database [12] contains images in RGB format,
collected by DigitalGlobe’s satellite. Each image has a size of
1024x1024 px. In the training dataset of this dataset, each
image contains a mask for road labels. The mask is given in a
grayscale format, with white standing for road pixel, and black
standing for the background. The labels are not perfect due to
the cost of annotating segmentation mask, especially in rural
areas. In addition, in most cases small roads within farmlands
are not annotated. The training set contains 6246 photos and the
validation set contains 1243 photos. The examples of images
from the DeepGlobe database are shown on Fig. 3.

DSTL dataset contains lkm x lkm satellite images in
GEOTIFF formats. For the first time, this database was
provided in Kaggle competition “DSTL Satellite Imagery
Feature Detection” [15]. Images of DSTL dataset are labeled
on 10 different classes: “buildings”, “manmade structures”,
“roads”, “tracks”, “trees”, “crops”, ‘“waterway”, “standing
water”, “large vehicles” (e.g. lorries, trucks or buses) and
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“small vehicles” (cars, vans or bikes). All 50 samples have a  examples of images from the DSTL database are shown on
size more than 3300 x 3300 px. In spite of little amount of  Fig. 4.
images, extracting methods allow to crop smaller images. The
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Fig. 2. Examples of images from the Inria database

Fig. 4. Examples of images from the DSTL database

174




PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

Images obtained from the Landsat-8 satellites [20] are used
for estimation of automatic object detection quality. Landsat-8
images have a resolution of 30 meters per pixel. This is the
highest resolution from open sources aerial images. Also in this
research we use PlanetScope satellite imagery provided by
Russian Space Systems Agency. The PlanetScope satellite
group has 10 times better resolution than Landsat-8 — 3 meters
per pixel.

IV. CONVOLUTIONAL NEURAL NETWORK ARCHITECTURES

The paper presents developed models, based on CNNs —
special architectures aimed at the rapid and qualitative
detection of various objects [1]. CNNs are related to algorithms
of deep machine learning, which are popular now to solve most
modern problems of computer vision.

To implement comparative analysis of different algorithms
for a segmentation of satellite images there were created three
models, based on architectures of U-Net [18], SegNet [19] u
LinkNet [20] respectively. The research of working of
developed models continues the research, which was provided
in paper [14]. All created networks were carried out using
Keras library with Tensorflow framework as a backend. Keras
is an open source library written in Python. It is built on
Tensorflow framework and contains numerous
implementations of commonly used neural network building
blocks such as layers, activation functions, optimizers, and
ready tools to preprocess images and text data. Keras offers a
higher-level, more intuitive set of abstractions to develop deep
learning models regardless of the used computational backend
[21]. Moreover, this library allows to train networks on GPU.

As shown on Fig.5 U-Net consists of two parts: an encoder
(on the left) and a decoder (on the right). The encoder
represents the typical architecture of CNN and contains four
blocks of layers. Every such block consists of two
convolutional layers with a 3 x 3 filter, following one by one,
ReLU activation functions, followed after each convolution,

copy

copy

copy

maxpooling 2x2 ¢
maxpooling 2x2 *
maxpooling 2x2 ¢

and a maxpooling operation with a filter size of 2 x 2 in steps
of 2 for downsampling. At each step of dimension reducing, the
number of channels is doubled. The decoder contains the same
amount of blocks as an encoder. Every such block consists of
upsampling operation, which reduce the number of channels,
using a 2 x 2 filter (deconvolution), merging operation with the
corresponding features map from an encoder, two
convolutional layers with a 3 x 3 filter and ReLU activation
functions, followed after each convolution. The last layer uses a
1x1 convolution to match each component vector to classes. In
general, the network has 19 convolutional layers, 18 ReLU
activation functions, 4 maxpooling operations, 4 upsampling
operations and 4 merging operations.

As in the case of U-Net architecture, SegNet has an
encoder, a decoder and a final pixelwise classification layer.
The architecture of this model is shown on Fig. 6. The encoder
consists of 13 convolutional layers, 13 batch normalization, 13
ReLU actication functions, 5 maxpooling functions for
downsampling and 5 upsampling functions. All convolutional
layers of encoder corresponds to the first 13 convolutional
layers in the VGG16 network for object classification. SegNet
is initialized by the weights of this network. Each layer of
encoder has a corresponding layer in the decoder. So the
decoder consists of the same layers as an encoder, except
maxpooling functions, which were exchanged to the same
number of upsampling operations. The final output layer is a
multiclass softmax classifier, which help to predict class
probabilities for each pixel independently.

Also there was developed LinkNet-like architecture
(TLinkNet) based on the model from paper [18]. The difference
between TLinkNet and the network from [19] consists in the
absence of one encoder and one decoder block before Encoder
Block 3. This fact is explained by the difference in the size of
input images corresponding to the problem. As other developed
algorithms, TLinkNet has two parts: an encoder and a decoder.
Both parts, encoder and decoder, consist of 3 blocks.

conv 1x1

T
]

upsampling 2x2 *
upsampling 2x2 *

upsampling 2x2

conv 3x3 + RelLU

Fig. 5. U-Net neural network architecture
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Encoder
conv + BN + ReLU + pooling

Fig. 6. SegNet architecture

Every encoder block contains 4 convolutional layers, 2
merging and 1 maxpooling operation. According to encoder
block, each decoder block has the same architecture, except a
maxpooling function, which was exchanged to an upsampling
operation. The architecture of modified TLinkNet is shown on
Fig. 7.

The approach based on CNNs has high resource
consumption. To accelerate neural network operations, the
training and testing processes were performed on a large
number of independent streams on GPU using parallel
computing technology NVIDIA CUDA. This technology is
cross-platform and is supported by all modern NVIDIA
graphics cards [21]. The developed CNNs were launched on
the graphic processor of the video card. The learning rate was
set equal to 1073, As a numerical optimization algorithm,
Adaptive Moment Estimation optimizer (Adam) was chosen.

Encoder Block 3

Decoder Block 3

[
f Encoder Block 2 \ / Decoder Block 2 \
A
) 4
Y
Encoder Block 1 Decoder Block 1

)

max-pool [(3x3), /2]

v

full-conv [(3x3), (64, 32), *2]

conv [(7x7), (3, 64), /2] conv [(3x3), (32, 32)]

full-conv [(2x2), (32, N), *2]

Fig. 7. Transformed LinkNet architecture

1]

upsampling + conv + BN + ReLU
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Decoder

This effective optimizer uses averages and the second
moments of the gradients to maintain a learning rate that
improves performance on problems with sparse gradients [22].
As a loss function, binary cross entropy function was chosen.
This function is a generic approach to combinatorial
optimization of weights for machine learning algorithms [23].
On every training iteration the model updated its weights using
the batch of 64 samples. The classifier ended its training after
completing 256 epochs.

V. SIMULATION RESULTS ON DSTL IMAGE DATABASE

Numerical experiments for developed algorithms were
performed on images of DSTL database. For an experiment
from the initial dataset there were extracted smaller images In
spite of little amount of training images, pulling methods allow
to crop smaller images with size of 160x160 pixels and
corresponding masks, which were received from csv file. As a
result the training set contains 3955 photos and the test set
contains 600 photos. Train and test samples did not have same
pictures. For prepared images there were taken into account

only 3 classes: “trees”, “crops” and “waterway”’.

The launch of the CNNs was carried out on the
supercomputer NVIDIA DGX-1 and lasted around 1 hour. As a
result of numerical experiments, accuracy (A) of model was
calculated according to the following formula:

P
A=-,
N

(D
where P is a quantity of right classified images and N is the
size of test sample [24]. The results of numerical experiments

on validation set cite in Table 1.

TABLE I. TESTING RESULTS OF CONVOLUTIONAL NEURAL NETWORKS

Model Accuracy (A)

SegNet 93,59%
TLinkNet 94.53%

U-Net 94.66%
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According to presented results, all algorithms show high
value of accuracy, so this metric is not sufficient to measure the
efficiency of networks. This fact can be explained by the little
size of objects of different classes for segmentation. For each
model the value of accuracy keeps the stability after some
epochs (E) of training. Moreover for every network the value of
loss function is insignificant, which decreases with the increase
of completed training iterations.

As a rule, the quality of algorithms for image segmentation
is evaluated by special coefficients for comparing the similarity
of predicted and true masks. To estimate developed models
there was used Dice similarity coefficient (DSC). This index is
binary measure of similarity, possesses the value from [0, 1]
and can be calculated by the following formula:

DSC = %, 3)
s
where I = |X NY| is a power of intersection and S = |X| +
|Y| is an sum of powers for real mask X and predicted mask Y.
In other words, DSC equals twice the number of common
elements to both sets divided by the sum of the number of
elements for each set. In our task, numerator [ and
denominator S can be calculated by following formulas
I'= Yxexxy, S = Yxex(x +), 2

YEY YEY

where x,y are values of pixels from [0, 1] for real mask X and
predicted mask Y respectively. Graphs of dependency DSC
value from the number of epochs for 3 types of neural networks
were shown on Fig. 8.

According to testing results presented at Table II, the worst
algorithm of image segmentation was SegNet, whereas the best
result was shown by U-Net. This fact can be explained by the
difficulty of architectures of developed networks. TLinkNet
and U-Net architectures throw features from encoder to
decoder as opposed to SegNet. This peculiarity of these models

allows to take advantage of using more useful information from
input data.

TABLE II. TESTING RESULTS OF CONVOLUTIONAL NEURAL NETWORKS

Dice similarity
Model
coefficient (DSC)
SegNet 0.45
TLinkNet 0.68
U-Net 0.75

VI. SIMULATION RESULTS ON LANDSAT AND PLANETSCOPE
DATABASES

For continue the investigations we have manually marked a
new set of pictures for retraining a previously created detector
based on U-NET convolutional neural network. The marking of
satellite images was carried out by 3 independent experts in a
web application “Supervise” [26]. A new training set of images
contain 30 satellite scenes. We used an average contour for
each coordinate in the training of the neural network. Each
image in the training set is a tile of a satellite image with a
width of 26 km (8600px) and a height of 17.5 km (5800px).

Initially, we were faced with the problem of low detection
accuracy of the class "Forest" on satellite imagery of
PlanetScope. This was due to the increased detail of tree
crowns and the exact boundary of the forest belt. The average
accuracy of the detector, which was trained on Landsat-8
satellite imagery, was 73.84% in forest class on satellite
imagery PlanetScope. To improve the situation, we retrained
the detector on a new training set, which contains images of
Landsat-8 and PlanetScope mixed and split into patches for 300
images measuring 224x224 pixels. For the purity of the
experiment, the network structure did not change and the
training was conducted in 60 epochs.
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Fig.8. Dependencies of Dice coefficient to training epochs on validation set for convolutional neural networks
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The approach for mixing images from 2 allowed to create a TABLE II1. TESTING RESULTS OF DETECTOR BASED ON U-NET
universal detector that works on Landsat-8 and PlanetScope. CONVOLUTIONAL NEURAL NETWORK
The results of testing a new detector on 3 classes of objects are Landsat-8 PlanetScope
presented in Table II1. Average Average
As a result, the class "Forest" has an accuracy of 92.14% on Class Detection | percentage | Detection | percentage
satellite imagery of PlanetScope, which is 18.3% more accurate accuracy of accuracy of

than the previous detector [14]. The remaining classes of this
experiment also increased the accuracy of the detection due to
the increase in the accuracy of the boundaries and the reduction
in the error price, which decreased by a factor of 10 due to a
reduction in the area per pixel of the image from 30m to 3m. Water 90.87% 81.64% 90.98% | 82.14%
Examples of detecting images of “Forest” class are shown in ) 0 0

Fig. 9I.) These ﬁguresghighI%ght areas not related to the forest Agriculture 94.35% 96-32% 96.52% | 96.88%
class. The selection of precisely such areas usually causes the
main difficulty in such experiments.

intersection intersection

Forest | 89:03% | 92.54% | 92.14% | 93.21%

Fig. 9. Examples of detector operation on PlanetScope satellite images of “Forest” class
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VII. CONCLUSION

Experiments of efficiency evaluation for developed
algorithms were performed for the aerial photos of DSTL
database. Derived results show that the use of complicated
CNN allows to increase the quality of segmentation of satellite
images. Despite the high values of accuracy (A) for each
model, Dice similarity coefficient (DSC), shows the difference
in application of various developed algorithms. The greatest
value of DSC is equal to 0.75 and was given by using U-Net.

For simulations on another databases we have manually
marked a new set of pictures for retraining a previously created
detector based on U-NET convolutional neural network. The
marking of satellite images was carried out by 3 independent
experts in a web application “Supervise”. The average accuracy
of the detector, which was trained on Landsat-8 satellite
imagery, was 73.84% in forest class on satellite imagery
PlanetScope. To improve the situation, we retrained the
detector on a new training set, which contains images of
Landsat-8 and PlanetScope mixed and split into patches for 300
images measuring 224x224 pixels.

As a result, the class "Forest" has an accuracy of 92.14% on
satellite imagery of PlanetScope, which is 18.3% more accurate
than the previous detector. The remaining classes of this
experiment also increased the accuracy of the detection due to
the increase in the accuracy of the boundaries and the reduction
in the error price, which decreased by a factor of 10 due to a
reduction in the area per pixel of the image from 30m to 3m.
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