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Abstract—The paper provides investigation of the numerical
effects in finite-difference models of RLC-shunted circuit
simulating Josephson junction. We study digital models of the
circuit obtained by explicit, implicit and semi-explicit Euler
methods. The Dormand-Prince 8 ODE solver is used for
verification as a reference method. Two aspects of the RLC-
shunted Josephson junction model are considered: the dynamical
maps (two-dimensional bifurcation diagrams) and chaotic
transients existing in the system within a certain parameter
range. We show that both explicit and implicit Euler methods
distort the dynamical properties, including stretching or
compressing the dynamical maps and changing chaotic transient
lifetime decay curve. Experiments demonstrate high reliability of
the first-order Euler-Cromer method in simulation of the shunted
Josephson junction model which yields data close to the reference
data. Obtained results bring new accurate chaotic transient
lifetime decay equation for the RLC-shunted Josephson junction
model.

1. INTRODUCTION

The systems with Josephson junctions [1] possess the
quantum properties of a superconducting state, the effective use
of which contributes to the development of many applications,
including  telecommunications and  high-performance
computing. The main advantages of superconducting
electronics, as an alternative to semiconductor logic circuits,
are low power consumption and record-breaking clock rates.
The last property allowed to create numerous ultrafast circuits,
e.g. rapid single flux quantum digital dividers operating up to
770 GHz [2], digital signal processors clocked at 20 to 40 GHz
[3], [4], and serial microprocessors, where operating
frequencies approach 20 GHz [5]. Cryocooled prototypes also
include router components working at 47 Gbs port speed [6]
and digital receivers utilized for satellite communications [7].

Since superconductive electronics still comprises a
prospective class of elements, only a few general purpose
design environments, e.g. SPICE-based simulators, include
models of such devices. Circuit simulation is usually performed
using circuit representation in a form of ordinary differential or
differential-algebraic equations. Some early attempts of
simulating inductively shunted Josephson junction were
undertaken by Whan and Lobb [8]. Their model, being one of
the chaotic Josephson junction based designs, was used as a
prototype for some other chaotic generators [9]. Taking into
account the progress in numerical analysis of dynamical
systems, several details in the original study [8] need some
refinement. Particularly, in the numerical experiments authors
applied the first order Euler integration method, which could
affect the obtained results in chaotic dynamics and bifurcation

patterns. This opinion is conditioned by the fact that recent
investigation of numerical effects in chaotic systems induced
by the application of forward and backward Euler methods [10]
reveals notable influence of discrete operators on chaotic
behavior. Additionally, among the numerical methods suitable
for more reliable chaotic system simulation, semi-explicit and
semi-implicit geometrical methods have shown promising
results [11], [12].

Therefore, the aim of the current study is to reconsider and
probably improve the results of Whan and Lobb [8] for a
simple RCL-shunted Josephson junction model using three
first-order numerical approaches including the explicit, implicit
Euler methods and the semi-explicit Euler-Cromer method. To
obtain a reference solution, the high-order explicit Dormand-
Prince 8 method was used.

Taking into account recent advances in numerical treatment
of chaotic problem, we put forward a hypothesis that
application of the semi-explicit method would result in better
correspondence to the reference and better reflect dynamical
features of the continuous system. We also pursued a goal to
manifest the updated experimental data describing chaotic
effects occurring in the considered circuit if some new of them
will be discovered.

II. RCL-SHUNTED MODEL OF JOSEPHSON JUNCTION

We consider the inductively shunted model of Josephson
tunnel junction (RCLSJ) that, being compared with the usual
resistively shunted junction model (RSJ), more accurately
describes the effects appearing in the circuit with high critical
current flow.

A.  Circuit equations
The circuit of the RCL-shunted model is shown in Fig. 1. It

comprises two parallel branches: the Josephson junction on the
left and the shunt on the right.

Fig. 1. Schematic sketch of the RCL-shunted Josephson junction circuit
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The set of circuit equations for the RCL-shunted model is
as follows:

potdr
2e dt
dv
[=C—+ + 1 .sin(y)+1 1
a Tron e () +1 (1)
V=LLZ;+ISRS

where y is the phase difference of the superconducting order
parameter, /o — critical current, C — capacitance and R(V) —
nonlinear resistance of the junction; L is the inductance and Rg
is the resistance of the shunt.

B. System equations

Applying the substitutions x; = y mod 2w, x, = V' / IcRs,
x3=15 / Ic and © = 2elcRst / h, Eq. (1) can be put into the
standard form:

&
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where fic = 2elcR3C / h is the Stewart-McCumber parameter,
fr = 2elcL / i is the dimensionless inductance, i = I / I is the
external bias current, g=Rs/R(V) is the tunnel junction
conductance. The resistance R(V) is set to the value Ry if
po| > Vg / (IcRs), else R(V) = R,. The parameters of the
Nb/AL03/Nb tunnel junction are V, / (IcRs) = 6.9, Rs/ Ry =
0.367, Rs / Ry = 0.0478.

III. SIMULATION RESULTS

We compare three one-step first-order methods of different
classes. The first one is the explicit Euler method, known as
the simplest but not very reliable and stable method for
solving ordinary differential equations. It is also known, that
Euler method decreases the parametric stability of the finite-
difference scheme in comparison to the continuous prototype
[10]. The second one is the implicit Euler method, which
possesses A-stability, but is known for suppressing chaotic
trajectories [10]. The third one is the semi-explicit Euler-
Cromer method, widely used for undamped oscillatory
problems, but recent experiments proved its superior
properties in solving damped chaotic equations [11], [12].
While the theoretical explanations of this superiority remain
incomplete, we propose that this would retain for a wide class
of chaotic systems, at least conservative ones.

When studying dynamical systems simulations, one needs
the reference solution to analyze obtained results. It is
extremely hard to obtain analytical solutions of nonlinear
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ODEs, thus, in our study we used the reference data obtained
with the 8th order accurate explicit Dormand-Prince method,
which belongs to the family of Runge-Kutta solvers.

The implementation of the semi-explicit Euler-Cromer
method applied to the equations (2) is given in Listing 1 in a
C-like pseudocode. Notice that the values of x[0] and x[2]
updated on the current integration step are directly used for
obtaining x/1] within the same step. This special feature
distinguishes semi-explicit and semi-implicit methods from
explicit and implicit methods. In Listing 1, the constants p[0]
+ p[5] are set according to the values of corresponding
parameters in the system (2).

Listing 1. Implementation of the Semi-implicit Euler-
Cromer method for the dynamical system (2)

x[0] = x[0] + h*x[1];
x[2] = x[2] + h*(1/p[0])*(x[1]-x[2]);
x[1] = x[1] + h*((1/p[1])*(p[2]-

-((x[1]>p[3]) ? p[4] : p[5])*
*x[1]-sin(x[0])-x[2]));

Listings for the forward and backward Euler methods are
not given since they are trivial.

A. Overview of the dynamics

The original paper [8] presented a dynamical map of the
system (2), which is a two-dimensional generalization of
bifurcation diagrams. Such maps are widely used for visual
localization of chaotic regions in a multiparametric space.
Each pixel of the dynamical map represents a number of
periods in the attractor. To verify previously obtained results
and to compare three abovementioned numerical methods, we
constructed dynamical maps within the same parameter range
as in [8]. We also constructed a reference dynamical map with
the Dormand-Prince 8 method. All dynamical maps are shown
in Fig. 2. In the maps, the pixel tint represents the number of
periods, from value of 1 and less (simple periodic or non-
periodic behavior) to 20 and more (a chaotic attractor).

The numerical investigation reveals the predicted results.
The application of the explicit Euler method leads to the
expansion of chaotic regions, as can be seen in Fig. 2 (a). For
the implicit Euler method, its property to suppress chaos
induced visible decrease of chaotic regions, see Fig. 2 (b). The
dynamical map obtained with the semi-explicit Euler-Cromer
method closely resembles the dynamical map obtained with
the reference method, as it is shown in Fig. 2(c) and Fig. 2(d),
respectively. The integration stepsize was set to # = 0.05. Its
decrease obviously makes the dynamical maps more similar,
but one should notice that ability of the method to nearly retain
the original properties of the system within the broad range of
integration steps allows obtaining maps with a fine resolution
for a smaller computational time.
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Fig. 2. Dynamical maps of the discrete models of system (2), obtained with (a) explicit Euler, (b) implicit Euler, (c¢) semi-explicit Euler-Cromer, and (d) explicit

Dormand-Prince 8 method. Here the current i = 1.20, the stepsize /# = 0.05.

Fig. 3. Chaotic attractor of the system (2), where f. = 2.6, fc = 0.707,i = 1.20
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One of the possible shapes of chaotic attractor is given in
Fig. 3 for the parameters f; = 2.6, fic =0.707, and i = 1.20.

B. Chaotic transients

As it was shown by Whan and Lobb [8], dynamics of the
system (2) is characterized by chaotic transients preceding the
falling into periodic oscillations for an intermediate range of
parameter values, for instance, i = 29.215, fc = 0.707, i =
1.25. However, the paper [8] reports that the chaotic transient
is followed by only single type of periodic trajectory, as shown
in Fig. 4, top. More accurate numerical investigation reveals
another type of periodic trajectory with more complicated
dynamics. Thus, in a certain range of parameter values two
stable limit cycles coexist in the system (2). A typical transient
with the second type limit cycle is shown in Fig. 4 (bottom
left) and a periodic process in appropriate time scale is given
in Fig. 4 (bottom right).




PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 5900

5910 5920 5930 5940 5950 5960 5570 5980 5990 6000

T

Fig. 4. Chaotic transients (black) and two different periodic attractors (gray) of the system (2). Here ;. = 29.215, fc =0.707,i=1.25, h=0.01.

The investigation of the lifetimes of chaotic transients
shows a strong influence of the integration method on the
simulation results. The methodology of the experiment was as
follows. From a set of uniformly distributed initial conditions,
as it is shown in Fig. 5, trajectories were calculated by four
integration methods, namely, explicit Euler, implicit Euler,
semi-explicit Euler-Cromer, and explicit Dormand-Prince 8
method. The integration stepsize was similar for each method
and was set to & = 0.01. For each trajectory we measured a
time of chaotic transient. One possible method for detecting
the boundary of the chaotic transient is to calculate the largest
Lyapunov exponent, and a time interval where it was
confidently positive can be considered as a chaotic transient.
In practice, this method has strong limitations since the
existing largest Lyapunov exponent estimation algorithms
have certain latency and do not allow immediate detection of
oscillation mode change. A more reliable method is the peak
detection, when a set of thresholds is tuned to capture the
change in system behavior for both types of periodic solutions.
To illustrate this, we plotted lifetimes for 900 trajectories
obtained with the implicit Euler method in Fig. 5 (bottom).
One can see that the lifetime of the chaotic transient highly
depends on initial conditions. A law governing the number of
remaining trajectories after a time r was offered in [13] and
can be written as

3)

where (z,) is an average transient lifetime and N(0) is a
number of trajectories. The equation (3), describing the
exponential decay, is plotted in logarithmic scale as a line with
a negative slope. The average lifetime value found in [8] for
the first-order Euler method was (z,;) = 8293. Our numerical
experiments show that the decay law (3) is asymptotically

N(7) = N(©0)e )
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correct when the explicit and the implicit Euler methods are
used. Nevertheless, the values of (z,) are sufficiently different
and depend on the method, see Fig. 6 (a) and (b). For the
explicit Euler method, the average lifetime value was (z,) =
34206.6, and for the implicit Euler method (z,) = 14940.6.
This discrepancy can be explained by a notable difference in a
truncation error behavior of the explicit and implicit methods.
Despite the fact that the decay shape meets theoretical
predictions (3) well, these results cannot be accounted as
reliable.

In our previous papers [11, 12], the semi-explicit Euler-
Cromer method and semi-implicit composition methods were
shown to be more adequate in chaotic problems simulation.
Investigation of the transient time decay in the system (2)
simulated with the Euler-Cromer method have shown results
that are different from the results obtained with both forward
and backward Euler methods. The shape of the decay curve
here cannot be described by the rule (3). A nearly horizontal
line in the initial interval of the decay curve appeared,
indicating almost similar lifetimes for transients with duration
0-300, and the succeeding exponential decay acquired more
steep slope than was predicted by the law (3), see Fig. 6 (¢).
The more accurate decay law, obtained by fitting the
experimental curves, comprises a sum of two Gaussian
distributions, namely

2 2
e
N@)=Ne @7 +Nye * @
where coefficients Ny, N,, ¢, ¢, 71, 7o are found numerically.
For the semi-explicit Euler-Cromer method, they are
Ny =367.1, N, = 782.9, ¢; = 1.57-10%, ¢; = 5.51-10", 7, = 7772,
7, = —2.82:10". The law (4) gives root-mean-square error
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(RMSE) 5.51 against RMSE 66.59 given by the law (3) for the
experimental data.
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Fig. 5. Random distribution of initial conditions (top) and corresponding
lifetimes of chaotic transients obtained with implicit Euler method (bottom)

The decay law (4) persists when a higher order method is
applied. The explicit Dormand-Prince method gives almost the
same curve, with the average lifetime close to the one obtained
with the semi-explicit Euler-Cromer method, which clearly
confirms the correctness of the result.
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For the high order integrators, the construction of semi-
implicit composition methods [14] may appear more accurate
for this problem than the Runge-Kutta methods. However, in
practice, the law describing the current-voltage characteristics
in a real Josephson junction is more complex than one used in
our numerical study [15]. Therefore, the practical applicability
of the model (1) is restricted by errors in the superconductive
devices identification and the accuracy of the first order Euler-
Cromer method is enough for the practical purposes.

The results obtained in this section intersect with the data
reported in the previous section and prove our prediction that
the Euler-Cromer method is the most suitable method for
system (2) simulation among the first-order methods.

VII. CONCLUSION AND DISCUSSION

We investigated the numerical effects existing in finite-
difference RLC-shunted Josephson junction model obtained
by different integration methods. It was clearly shown that the
forward and backward Euler methods, often used for
numerical studies, lead to notable distortions of the model
dynamics. Among the first-order numerical integration
methods, the best results from the point of correspondence to
the reference data were performed by the Euler-Cromer
method. This method belongs to the class of semi-implicit
geometrical integrators, which were previously used mostly
for Hamiltonian problems. Therefore, our recent results give
promising evidence that such type of methods is highly
suitable for solving larger class of chaotic problems.
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Fig. 6. Decay plots and average lifetimes of chaotic transients, obtained with (a) explicit Euler, (b) implicit Euler, (c) semi-explicit Euler-Cromer, and (d) explicit

Dormand-Prince 8 methods. Here . = 29.215, fc = 0.707, i = 1.25, h = 0.01.
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Two main aspects of the RLC-shunted Josephson junction
model were investigated. First, the dynamical maps, or two-
dimensional bifurcation diagrams, were constructed. The
distortions clearly induced by explicit and implicit Euler
methods were nearly negligible in a case of semi-explicit
method. The reason of this superiority lies in phase volume
and energy conservation effect, typical for geometric
integrators applied to the conservative systems.

The property of phase volume distortion also affects the
second aspect of the investigated model dynamics, namely
lifetimes of chaotic transients in the Josephson junction. The
previously reported sensitive dependence of their lifetimes to
initial conditions was described by the statistical exponential
law. Our results revealed more complicated distribution,
representing a combination of two Gaussian terms instead of a
single exponent.

The proper model of the superconductive electronic device
based on Josephson effect is required for prospective
electronic device design, and as a consequence, for creating
modern computer aided design tools. One example of such
prospective  CAD was NioCAD environment, aimed at
development of quantum effects based superconductive
electronics [16], unfortunately cancelled later. In our study, we
consider only the partial effects of numerical simulation, but
some others were out of our consideration. For example, not
only truncation error but also round-off error sufficiently
affects the chaotic behavior [17]. We did not considered the
numerical schemes of higher order in this paper. Nevertheless,
taking into account obtained results, we can predict that semi-
implicit methods will retain their superiority. From the
theoretical point of view, an extensive proof of this fact is
required. The key feature of these methods is their influence
on phase space geometry, allowing them to conserve the
average divergence of the flow in more reasonable limits than
explicit or implicit methods for a certain class of dynamical
systems. With use of composition rules and reversible stepsize
controllers [14], efficient simulation tools can be obtained,
allowing to design reliable CAD environments for
superconductive electronic devices.

The major unresolved problems briefly outlined here will
be the topic of our future investigations. The main directions
of the works will be the investigation of high-order
composition methods, selection of appropriate fractal
composition schemes, experimental study of the other
superconductive devices, theoretical refinement of the special
features of semi-implicit numerical methods in their
application to chaotic problems.
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