PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

Decision Support Service Based on Dynamic
Resource Network Configuration in Human-
Computer Cloud

Alexander Smirnov, Maksim Shchekotov, Nikolay Shilov, Andrew Ponomarev

SPIIRAS
St.Petersburg, Russia
{smir, shekotov, nick, ponomarev} @iias.spb.su

Abstract—Recently, there is an upsurge of systems where a
human plays not only a role of a consumer, but serves as an
integral part of information processing workflow, providing some
services to other parts of a system. The concept of a human-
computer cloud aims to mitigate development of such systems by
providing a unified resource management environment that
could serve as a basis on which any human-based application
could be deployed. One of the most important upper-level
applications of such human-computer cloud environment is an
ability to form dynamic networks of human contributors and
software resources to solve ad hoc tasks given by the end user.
This paper discusses main models, methods and algorithms
leveraged for building such task-driven resource networks.

L INTRODUCTION

Large-scale distributed human-computer systems, where
humans play not only a role of consumers of information and
services, but also participate in their provisioning are becoming
more and more numerous. Slightly different types of these
systems have received a bunch of names: crowdsourcing,
crowd computing, human computations, social machines,
hCAS (hybrid collective adaptive systems) are some of them.
These systems are currently applied to variety of information
processing problems in which solely computational approaches
still don’t work well.

Common problem with the systems that require human
attention and human input is that each of these systems usually
needs a large number of contributors to function, while
collecting this number of contributors may require significant
effort and time. This problem is partially alleviated by
crowdsourcing platforms (like Amazon Mechanical Turk,
Yandex.Toloka etc), that provide tools for requesters to post
tasks and an interface for workers to accomplish these tasks.
However, existing platforms bear two main disadvantages: a)
most of them implement only ‘pull” mode in distributing tasks,
therefore not providing any guarantees to the requester that
his/her tasks will be accomplished, b) they are designed for
mostly simple activities (like image/audio annotation). The
ongoing project is aimed on the development of a unified
resource management environment, that could serve as a basis
on which any human-based application could be deployed
much like the way cloud computing is used nowadays to
decouple computing resource management issues from
application software. The proposed human-computer cloud
(HCC) environment addresses all three cloud models:

infrastructure, platform and software. Infrastructure layer is
responsible for resource provisioning, platform layer provides a
set of tools for development and deployment of human-based
applications, and on top this environment there are several
software services leveraging human problem-solving abilities.

Previous research on the HCC was concentrated primarily
on the design and refinement of the foundational concepts and
mechanisms of the HCC environment as well as on the
development of some proof-of-concept human-based
applications leveraging the functions of HCC. For example, see
[17 for the general structure and use cases, [2] for description of
Platform-as-a-Service for deployment of human-based
applications and [3], [4] for a number of applications in
tourism. Those applications implemented some pre-defined and
fixed information processing workflows. It is quite typical and
can be used in many contexts, but may be limiting in case of
decision support systems. Decision-making often requires some
experimentation and iterative (and interactive) exploration of
the problem, when a decision-maker deepens his/her
understanding of a problem, possible alternatives and various
information that can affect the decision. Therefore, it can be
hard or even impossible to foresee and implement a priori all
possible services a decision-maker can find useful during such
exploration.

To meet these specific requirements arising from decision-
support applications, this paper focuses on an upper-level
functionality provided by the HCC platform, namely, the
ability to dynamically build networks of available (human and
software) cloud resources to solve domain tasks given by the
end user (usually, a decision-maker). The proposed solution is
to give a decision-maker a toolset, which can help to build
missing services via an automated composition of the existing
ones. This functionality complements the PaaS layer of the
HCC which allows to deploy various human-based applications
(applications that leverage human abilities at some point of
execution) and handles the situation when there is no
service/application to solve the exact task the decision-maker
has. Task analysis and network building are implemented in
René service provided according to SaaS cloud model and
leveraging the resource management mechanisms of the
underlying layers of the HCC.

The rest of the paper is structured as follows. Section II
presents discussion of the related work, connected to the

ISSN 2305-7254

PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

problem of dynamic workflow formation. Section III briefly
describes the organization of the HCC necessary to understand
dynamic workflow methods. In Section IV the approach to task
decomposition is presented, showing how the task provided by
the end user is transformed to the set of sub-tasks assigned to
various resources with a help of task ontology. Section V
describes the proposed algorithm for distribution the subtasks
among human-computer cloud resources.

II.

This section describes main developments in the area of
automatic transformation of task hierarchies, and building
possible decompositions and workflows from them.

RELATED WORK

The problem of decomposition of a complex tasks into
subtasks is usually solved with a help of tasks and methods
ontology, allowing to reuse problem-solving knowledge coding
in with a help of standardized dictionary [5], [6]. This ontology
defines roles played by different pieces of knowledge in the
process of logical inference [7], [8], [9]. Like in the cited
works, task decomposition in the proposed approach is also
based on the task ontology. l.e., general and problem domain
oriented tasks are described in the ontology, as well as their
input and output values. However, unlike in the papers above,
there are no explicit methods in the ontology, because it is
assumed that a method is anything that the service provided by
a resource does. So, instead of methods there are resources
being some kind of “black boxes” exposing interfaces with
semantically annotated inputs and outputs.

The problem of distributing a number of subtasks among
resources varying by some parameters (quality, cost,
performance) in order to maximize some overall quality
function is also a very acute problem that raises in a variety of
distributed systems (see, [10], [11]). The problem is
computationally complex, therefore in most practical cases
heuristics are used. In the areas of work distribution between
robots or agents most similar to the one under consideration,
one of the most common methods is the instantaneous task
allocation method [12], focused on a dynamic uncertain
environment. It is a greedy method which assigns the task to
resources that currently provide the maximum ‘“benefit”
according to given priorities. However, it does not take into
account that at some point all resources possessing the required
competencies can be occupied, as a result, it is usually
supplemented by some heuristics specific to the specific area of
the application [13]. Also, mechanisms based on the theory of
coalition games (e.g., [14], [15]), evolutionary algorithms (e.g.,
[16], [17]) and probabilistic models (e.g., [18]). In this paper,
an algorithm based on the multi-agent modeling and elements
of the coalition games theory is adapted to the task distribution
in human-computer cloud.

111

This section provides a brief overview of concepts and
architecture of the HCC, necessary to understand the role of
decision support service deployed on top of it and the context it
works with.

MAIN CONCEPTS OF THE HCC

363

A. Architecture overview

Although NIST recommendation document [19] identifies
five types of actors, the proposed HCC architecture adopts two
most important of them (i.e., Cloud Consumer and Cloud
Provider) and adds one new specific actor for humans who
provide their resources via cloud environment. Therefore,
following actors are identified:

Cloud consumers, who use the applications and services
deployed in the cloud environment (and provided by Cloud
providers). Further, this category of actors can be divided into
End users and Service developers. This division is mostly
determined by the kind (and a level) of services a consumer
deals with. For example, when using the cloud for decision
support in tourism, possible end users are travelers or tourism
managers, because they use cloud services (mostly, on the SaaS
layer) to solve domain specific tasks. Service developers use
the services of the platform layer to create application services
for the end users.

Contributors, i.c., citizens, who are available to serve as
human resources in a HCC environment.

Cloud providers, individuals or organization who own and
maintain the required hardware and software infrastructure
provided to Cloud Consumers. This includes, for example,
system administrators.

All the three models of cloud computing (IaaS, PaaS, SaaS)
can be adapted to include human resources.

Infrastructure layer: Infrastructure layer unifies different
types of capabilities: traditional computing and storage
capabilities, sensing capabilities and human expertise
capabilities. Contributors can join HCC and define the
resources they can provide, time and load restrictions, a type of
tasks they may participate. In the infrastructure layer resources
(including human resources, or contributors) are not locked to
some particular domain. Instead, they describe their
competencies and possible kinds of activities using some of the
available ontologies to leverage the resource identification
phase that happens when some application that require human
participation is deployed in the cloud environment. Ontology-
based resource discovery service performs ontology search
involving ontology matching techniques as necessary.
Infrastructure layer ~management monitors contributor
connections and disconnections, collects information about
effectiveness of each contributor (separately for each skill a
contributor is allocated by) and uses it in further allocation
requests.

Platform layer: This layer consists of a set of multi-
purpose utility services that can be leveraged for building
applications relying on human expertise, and development tools,
that are used to deploy and run human-in-the-loop services in
the cloud environment.

Development tools of the platform layer allow to deploy
services in cloud environment and to monitor them. Each
service being deployed includes an ontology-based descriptor,

specifying:

e building/configuration instructions;

PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

e hardware and software requirements of the service
(what platform services it relies on, e.g., database

service, human workflow service, etc.);

human resource requirements (if any), specifying what
human skills and competencies this service need to
function. These requirements are also resolved during
the service deployment, but as (1) resolving these
requirements employs ontology matching which may
result in some tradeoffs, (2) human resources are much
more limited than hardware/software, the status and
details of the requirements resolution are available to
the developer and can be browsed via the management
console;

description of the service functions and entry points to
be published in the application domain service
repository and used by the ad hoc dynamic workflow
service.

Typical interoperability scenario that is initiated in the
platform layer during deployment is the following: the human
resources connected to the cloud environment describe their
capabilities using some problem-specific dictionaries. Each
application/service that is deployed in this cloud environment
contains a description of its requirements (including the
requirements to the resources), which is expressed in terms of
the most appropriate ontology selected (or even designed) by
the application developers. It is very unlikely that human
resources have used this exact ontology to describe their
capabilities when connecting to the system. However, the
advantage in using ontologies here is that due to the formal

semantics inherent to them different ontologies can be matched.

Hence, in the process of service deployment, human resources
that are potentially able to fulfill the human requirements of the
service are identified (despite the fact that they are not
described initially in terms of the application ontology). Later,
during the functioning of the service, the participants’
description can evolve, because his/her performance in the
capabilities required by the service (and expressed in terms of
service’s ontology) is recorded and processed. For each further
service that is deployed in this environment, the process of
aligning requirements with the capabilities of human resources
becomes easier, as human resources definition becomes more
and more detailed.

Software layer: This layer consists of a suite of (potentially
human-based) services and applications designed for a
particular problem area.

B. René: General Scenario

The René decision support service is an application,
running on top of the human-computer cloud infrastructure
exposed as a SaaS and leveraging some features of the platform
(e.g., resource management and provisioning). Expected user
of René is a decision-maker who passes some task specification
to the service to build an on-the-fly network capable of
performing the task. It should be noted, that René exposes an
API, by which ontology-based structured representation of the
task specification is passed. The problem of creating such
specification (for example, as a result of text analysis) is out of
the scope both of this paper and of René functions.

364

To decompose a task specification into a smaller tasks René
uses a problem-specific task ontology, where domain tasks and
their input and output parameters are described. Clearly, the
decomposition is only possible when the task specification is
written in terms of the same ontology. That is why a) task
ontology is a common knowledge of René and decision-maker,
b) if the ontology is not familiar to the decision-maker he/she
may need some automatic helpers in the process of creating
task specification (these helpers are out of the scope of the
paper). The method and algorithm of the decomposition are
described in detail in Section I'V.

After performing the decomposition René tries to distribute
the elementary subtasks among the available resources. The list
of available resources is taken by API from underlying layers
of the environment, which monitors all the contributor’s
connections and disconnections and software resource
registrations. The resource management service under the hood
treats human and software resources a bit differently. Human
resources (contributors) describe their competencies with a
help of ontology and receive advertisements to join human-
based applications if their requirements are compatible to the
declared competencies of the user. In this sense, René is one of
these human-based applications and may only distribute
subtasks to those contributors who agreed to work with it.
Software services are made available to René by their
developers and maintainers by placing a special section into
deployment descriptor. All the resources available to René are
modeled as agents in the process of subtask distribution that is
described in detail in Section V. Practical assignment is also
done via interfaces of underlying resource management layer,
aware of the current status and load of the resources and terms
of their digital contracts.

Finally, René monitors the availability of the resources (via
the underlying layer) during execution of the subtasks and
rebuilds the assignment if some of the resources fail or become
unavailable.

1IV. TASK DECOMPOSITION

This section describes the proposed approach to task
decomposition, which is the first step for building the resource
network. Main operation that drives the decomposition is (a bit
ironically) task composition, i.e. deriving chains of tasks
connected by input/output parameters. Furthermore, task
decomposition in this approach can be viewed as finding such
composition of basic tasks defined in the ontology that is
equivalent to the task given by the user.

A. General approach for task composition

For the purposes of decision support system, the structure
of the task ontology is proposed, consisting of a set of tasks and
subtasks, sets of input and output parameters of task, sets of
valid values of parameters, as well as the set of restrictions of
belonging subtasks tasks in the hierarchy of task

composition, and sets of wvalid values

parameters:

parameters

O=(T,IP,OP, L E) (D

where T is set of tasks and subtasks, /P — set of input task
parameters, OP — set of output task parameters, / — set of valid

PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

parameter values, £ — restrictions on membership of the sub-
tasks of a task hierarchy task composition, the parameters of
the task and domain parameters.

Unlike task decomposition ontology containing
relationships between task and their subtasks in explicit form
[20], task composition ontology is implemented so that the
relationships are implicit. Such principle of ontology structure
allows on one the hand to specifying task and subtasks in the
same axiomatic form, and on the other hand to derive task
composition structure by reasoning tools. Thus, the proposed
ontology opens the possibility to describe a number of different
tasks in the same form and after that to construct a number of
their compositions using appropriate criteria.

For the purpose of task composition ontology development
the ontology language OWL 2 is used. The ontology is
expressed by ALC description logic, which is decidable and has
PSpace-complete hardness of concept satisfiability [21] and
ABox consistency [21] in the case when TBox is acyclic. In
addition, SWRL-rules are specified for composition chain
deriving. The main concepts of the ontology are “Task”,
“Parameter”. The concept “Parameter” is used to describe a
task semantically. The main requirement for TBox definition is
to it doesn’t contain cyclic and multiple definitions, it contains
only concept definitions specified by class equivalence.

The task should have at least one input and one output
parameter. The parameter taxonomy in the OWL 2 ontology is
presented by a number of subclasses of the class “Parameter”.
The type of parameters related to their input or output role are
defined by appropriate role construct. The corresponding
OWL 2 syntax expression is the Object Property. In the
ontology the appropriate object properties are
“hasInputParameter” and “hasOutputParameter”. The domain
of the properties is “Task” and the range — “Parameter”.
Thereby the parameter could be input parameter of one task
and output parameter of another. The task definition is
expressed formally as follows:

T = (3RIP,N3R.IP, ... N 3R.IPy) N

2
(3R.OP, M 3R.OP, ... M AR.OPy) @
where T is the task, /P; — the input parameter subclass, OP; —
the input parameter subclass, R — the appropriate role.

The proposed task definition (2) is used for task
composition process because there is the notion that one
parameter is the input for the one task and output for the other
one. This knowledge is used to construct task composition by
the SWRL rule. The corresponding SWRL rule specifies input
and output parameter match condition in the antecedent and the
result relationship in the consequent. For this purpose the
object property “nextTask” is created which binds two tasks,
where the domain is the previous task and range — the next one.
Neither task is connected by the property explicitly. Thus, the
rule of task composition can be expressed as follows:

hasInputParameter(?ta, ?p)*

hasOutputParameter(?tb, ?p) — nextTask(?th,?ta) 3)

365

where hasInputParameter, hasOutputParameter, nextTask are
the mentioned object properties, ta — the next task, /b — the
previous task, p — the parameter.

The proposed rule (3) allows to deriving all task
connections by the object property “nextTask”. The example of
task composition is presented in Fig. 1. The abbreviation “ip”
and “op” denote input parameter and output parameters
accordingly.

The advantage of the described approach is the possibility
to easy expressing the tasks, dynamical deriving task
compositions. The shortcoming are the possible deriving
complexity and the lack of the support of alternative task
compositions.

Task 1

Task 3
nextTask

Task 4

nextTask

Task 2

nextTask

Fig. 1. Task composition structure

s

B. The example in domain “e-Tourism’

This section illustrates the proposed approach applied to
building a tourist itinerary. Typical context of this task is that a
tourist would like to see the most interesting attractions in the
area in some constrained time and in most convenient way.
Itinerary planning requires not only information about the
popular attractions in the area of interest, but also user
preferences as well as transportation options. There are
currently various approaches to build itineraries both by
software services and by humans. The proposed HCC offers a
way to implement and deploy itinerary planning that leverages
both software and human (contributor) resources for different
subtasks.

TABLE I. SUBTASKS FOR ITINERARY CONSTRUCTION

Symbol Subtask description Input Output
parameters | parameters
a Collect context information d,, dy dy
Search for attractions based R
a, d, d; ds
on preferences
u Improve the list of attractions dode do
: based on context information 95 s
Create candidate itineraries,
as respecting local context ds’ de
information
as Refine candidate itineraries ds ds

Formally, input parameters for the itinerary planning are
(simplified): tourist (user) preferences (Preference), location of

PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

a tourist itinerary (d,), time for the itinerary being planned (ds),
context information (dy), set of attractions (ds), ranked list of
attractions (ds’), ranked plans of tourist itineraries (ds).
Parameters ds (set of attractions) and ds’ (ranked list of
attractions) have the same structure, but different semantics.
Subtasks for the itinerary construction, as well as their input
and output parameters are shown in Table 1. Note, the task as
has the same type of parameter (ds) both as input and output. It
makes sense as the workflow is evaluated not only based on the
number of subtasks, but on time, cost and artifacts quality.

Class: Concext_collecc1on

EquivalentTo:
(hasInpuctParameter some
and (hasInputParameter
and (hasInputParameter some Tour duration)
and (hasInputParameter some Weather)
and (hasOutputParameter some Context)

Place)
some Temperature)

SubClassOf:
Task

Class: Atnractzcn_search

EquivalentTo:
(hasInputParameter some
and (hasInputParameter
and (hasInputParameter
and (hasInputParameter
and

AttractionDB)

some Attraction List)
some Place)

some Preference)

SubClassOf:
Task
Class: Atcraction_list_improvement
EquivalentTo:

(hasInputParameter some Attraction List)
and (hasInputParameter some Context)

(hasCutputParameter some Ranged Attraction List)

and (hasQutputParameter some Ranged Attraction_List)

SubClassOf:
Task

Class: Tour_generation

EquivalentTo:
(hasInputParameter some Ranged Attraction_List)
and (hasCutputParameter some Toutﬁplan}

SubClassOf:
Tasﬂ

Fig. 2. Task description using Manchester syntax

According to the model, the task of planning a tourist
itinerary is determined by the output parameter “tourist
itinerary”. In the proposed example, the user can choose, for
example, a variant with the input parameter “ranked list of
attractions” from the possible subtasks, which will lead to the
need to solve only one subtask a4 (Create candidate itineraries,
respecting local context information), or, a variant in which to
solve the task it is necessary to solve all the subtasks defined
above (discussed here). Based on the analysis of input and
output parameters, it can be concluded that the subtasks a
(Collect context information) and a, (Search for attractions
based on preferences) are independent and can be solved in
parallel. The solution of the subtask a; (Improve the list of
attractions based on context information) should be preceded
by the solution of subtasks @; and a,, and the solution of the

366

subtask a4 (Create candidate itineraries, respecting local
context information) is the solution of subtask a3 (Fig. 3). The
subtask as (Refine candidate itineraries) can be performed only
the last.

The task description example related to this domain
description is implemented is presented in Fig. 2 using
Manchester syntax.

After the decomposition of the task, resources (represented
by agents — see Section V) start to negotiate which resource
will accomplish what subtasks. If the process of the
negotiations succeeds, each task will be performed by one
resource in the resulting schedule.

V. SUBTASK DISTRIBUTION

A. General approach of task distribution

The specifics of the distribution of tasks in cloud computing
systems lies in the fact that the presence of a very large number
of available computing resources, which are usually
interchangeable (alternative) [10],[11]. The research is focused
on the solution of specialized tasks (subtasks) that require
certain competencies, which on the one hand narrows the range
of resources capable of solving these subtasks, and on the other
hand requires taking into account these competencies.
Therefore, the algorithms used in this field cannot be used
directly.

In the areas of distribution of tasks among the robots or
agents that are most similar to those under consideration, the
most common approach of instant distribution of tasks
(instantaneous task allocation) [12],[13] focused on the
dynamic uncertain environment. This approach involves tying
tasks to resources that currently provide the maximum
“benefit” according to the given priorities. This approach does
not take into account that at some point all resources with the
required competencies may be occupied. Thus, it is usually
supplemented by some heuristics specific to a particular
application area (see Section II).

Let, 4 —is a task, which contains several subtasks a;:

Az{ai}aie {15---5’1} (4)
Let, O — is the vocabulary of competencies:
O={01,02, ..., 0n} 5)

Thus, the matrix of competencies required to accomplish
subtasks can be defined as:

(ao;; € {0, 1, ...,100}),i € {1,...,n},j € {1,...,m} (6)
The set of human-computer cloud resources R is defined as:
Rz{rer)"'yrk} (7)

The set of resource characteristics (speed, cost, etc) C is
defined as:

®)

Thus, each resource r; is described by the following pair of
competencies and characteristics vectors:

C={cp, e ..., cpf

ri= ((roi,h ey roi,m)ﬂ (rcl',b ey rci,/)) (9)

PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

where i € {1, ..., n}, ro;; € {0, ..., 100} — is the value of
competency j of the resource i, and rc;; is the value of the
characteristic j of the resource i.

The solution of the task 4 describes the distribution of work
among system resources and is defined as:

SA :(Si,j)a S {15 LEES) n}s] € {17 :k}

where s;; = 1, if the resource j is used for solving subtask 7, and
s5;;= 0 otherwise.

(10)

The objective function, which also performs normalization
of various characteristics, is defined as follows:

F(S4) =fAF1(51.15 52,15 -+ Sn1)s (13)
Fo(S12, 5225 -5 Sn2)s -+
Fi(S14 824> -+ > Snk)) — Min
Specific formulas for calculating partial assignment

efficiency (F;) can use values of resource characteristics (e.g.,
speed or cost) rc;;, as well as competence values of both
resources (ro;;) and subtasks (ao;)).

The minimization must be performed with respect to the
following constraints. First, each subtask must be assigned to
some resource:

AN
Vi .ijlsi,j >1

(14)

Second, assignment can only be done if the competency
values of the resource are not less than the required
competency values of the subtask:

Vijq:((sij=1) = (10,4 2 ao;,)) (15)

B. Instantaneous distribution of tasks algorithm

Since the problem is NP-complete, it is not expedient to
solve it by an exhaustive search method in a reasonable time
(provided that a real-world problem is solved). As a result of
the analysis of existing methods it is proposed to use the
approach of instantaneous task allocation.

With regard to the problem, the algorithm based on the
approach of instantaneous distribution of tasks is as follows:

1) Take the first subtask from the existing ai, and exclude it
from the set of subtasks 4;

2) Select such resource j from the available resources to
satisfy all conditions and F(S,) — min, where Sy = (s, = 0,

cs ST 1, ...,s17k=0);

3) If a suitable resource is not found, assume that the
problem is unsolvable (the system does not have a resource
that meets the required competencies);

4) Repeat steps starting from step 4 until set 4 is empty
(i.e. all tasks are assigned to resources).

C. Multi-agent distribution of tasks

There are two types of agents that are used to perform
multi-agent modeling: the customer agent that is responsible
for generating jobs and making the final decision, and the
execution agents that represent the resources of the cloud

367

environment and perform on-premises optimization for each
resource. In the optimization process, agents form coalitions
that change from step to step to improve the values of the
objective function.

In the process of negotiations, agents of 3 roles are singled
out: a member of the coalition (an agent belonging to the
coalition), a leader of the coalition (an agent negotiating on
behalf of the coalition) and an applicant (an agent who can
become a member of the coalition).

At the beginning of the negotiations, each agent forms a
separate coalition (SC, which has the structure of the S4
solution), and is its leader. Suggestions of agents (tabular
representation F(sy, S21, ..., S,,1) are published in all available
agents repository of information on the blackboard (Fig. 3). In
this and subsequent figures, the agents are represented as black
circles, and the coalitions are outlined with a dashed line.

Fig. 3. [Initial state of multi-agent task destribution

At each stage of the negotiations, the agents analyze the
proposals of other agents, and choose those whose proposals
can improve the coalition: to solve a larger number of subtasks
or the same number of subtasks but with a better value of the
objective function (F(SC) > F(SC”), where SC is the current
coalition, SC’ — possible coalition). Coalition leaders make
appropriate proposals to agents, and the latter decide whether
to stay in the current coalition or move to the proposed one.
The transition to the proposed coalition is considered if one of
the above conditions is met: the proposed coalition can solve
more subtasks than the current one, or the same number of
subtasks, but with a better value of the objective function

(Fig. 4).

The process is terminated if at the next stage there is no
changes in the composition of coalitions, after a specified
time, when the permissible value of the objective function is
reached.

i ~ v VL A . N K \
K ~ [H LY ’ ; .
' L ' ! ~ - ’ ’
v AN P [ST . /
-~
\ v = / s - ’
. \ i S .- -
.. O—0 . @ o
~ 1 - ' -

........

Fig. 4. Example of agent transitions to coalitions

PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

VL

Several methods and algorithms for building “on-the-fly”
decision support tools in the human-computer cloud have been
proposed. Namely:

CONCLUSION

e A method and algorithm to decompose a task into
subtasks based on task ontology. As a result of applying
this algorithm, a (probably complex) task set by the
decision-maker can be decomposed into several simpler
subtasks that can be accomplished by resources — either
human or software.

e A method and algorithm to distribute the subtasks
among resources based on coalition games.

The proposed methods and algorithms are used to
implement decision support service René on top of the HCC,
which allows to decompose a task received from a decision-
maker and dynamically build a resource network (consisting of
both software and humans) for it, capable of solving the task.
René can be used in variety of domain areas characterized by
rapid changes of the situation for building flexible automated
decision support tools automatically configured by decision-
maker.

One of the primary directions for future work is to design
helper mechanisms for a decision-maker to mitigate building of
a formalized task description passed to decision support
service.

ACKNOWLEDGEMENT
The research is funded by the Russian Science Foundation
(project # 16-11-10253).
REFERENCES

[1] A. Smirnov, A. Ponomarev, N. Shilov, A. Kashevnik, and N. Teslya,

“Ontology-based human-computer cloud for decision support:

architecture and applications in tourism”, International Journal of

Embedded and Real-Time Communication Systems (IJERTCS), 2018,
vol. 9(1), pp. 1-19.

A. Smirnov, A. Ponomarev, T. Levashova, and N. Shilov “Ontology-
based cloud platform for human-driven applications”, in Proceedings
of the 21st Conference of Open Innovations Association FRUCT,
Helsinki, Finland, 6-10 November 2017, pp. 304-310.

A. Smirnov, A. Ponomarev,T. Levashova, N. Teslya, “Decision
support in tourism based on human-computer cloud”, in Proceedings
of the 18th International Conference on Information Integration and
Web-based Applications & Services (iiWAS2016), Singapore, 28-30
November 2016, pp. 127-134.

A. Smirnov, A.Ponomarev, N. Teslya, and N. Shilov, “Human-
computer cloud for the smart cities: tourist itinerary planning case
study”, Business Information Systems Workshops, 20th International
Conference on Business Information Systems (BIS 2017), Poznan,
Poland, 28-30 June 2017, LNBIP, vol. 303, pp. 179-190.

B. Chandrasekaran, J.R. Josephson, and V.R. Benjamins, “Ontology
of tasks and methods”, in Proceedings of the Eleventh Workshop on
Knowledge Acquisition, Modeling and Management (KAW'98). Inn,

(2]

(3]

(4]

368

(6]

(7]

[8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Banff, Alberta, Canada, 1998, Web:

http://spuds.cpsc.ucalgary.ca/KAW/KAW98/chandra/.

D. Dou, H. Wang, and H. Liu, “Semantic data mining: A survey of
ontology-based approaches”, 2015 IEEE International Conference on
Semantic Computing (ICSC), pp. 244-251.

J.U.Kietz et al.,, “Semantics inside!” But let’s not tell the data
miners: intelligent support for data mining”, European Semantic Web
Conference, 2014, pp. 706-720.

S. Balakirsky et al., “Towards a robot task ontology standard”, ASME
2017 12th International Manufacturing Science and Engineering
Conference collocated with the JSME/ASME 2017 6th International
Conference on Materials and Processing, 2017, pp. VO03T04A049-
V003T04A049.

E. Coelho and G. Lapalme, “Describing reusable problem-solving
methods with a method ontology”, in Proceedings of Tenth
Knowledge Acquisition for Knowledge-Based Systems Workshop
(KAW’96). Catelonia, Spain, 1997, Web:
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/coelho/kaw.html.

D. Ergu et al., “The analytic hierarchy process: task scheduling and
resource allocation in cloud computing environment”, The Journal of
Supercomputing, 2013, vol. 64, issue 3, pp. 835-848.

Y. Kong, M. Zhang, and D. Ye, “A belief propagation-based method

for task allocation in open and dynamic cloud environments”,
Knowledge-Based Systems, 2017, vol. 115, pp. 123-132.

P. Sujit, G. George, and R.Beard, “Multiple UAV coalition
formation”, in Proceedings of the American Control Conference,
2008, pp. 2010-2015.

M.H. Kim, H.Baik, and S.Lee, “Resource welfare based task
allocation for UAV team with resource constraints”, Journal of
Intelligent & Robotic Systems, 2015, vol. 77, issue 3-4, pp. 611-627.

P.S. Pillai and S. Rao, “Resource allocation in cloud computing using
the uncertainty principle of game theory”, IEEE Systems Journal,
2016, vol. 10, issue 2, pp. 637-648.

Y. Zhang and L.E.Parker, “Considering inter-task resource
constraints in task allocation”, Autonomous Agents and Multi-Agent
Systems, 2013, vol. 26, issue 3, pp. 389-419.

J. Yang et al., “Task allocation for wireless sensor network using
modified binary particle swarm optimization”, IEEE Sensors Journal,
2014, vol. 14, issue 3, pp. 882—-892.

N. Giilpinar, E. Canakoglu, and J. Branke, “Heuristics for the
stochastic dynamic task-resource allocation problem with retry
opportunities”, European Journal of Operational Research, 2018,
vol. 266, issue 1, pp. 291-303.

A.W. Palmer, A.J.Hill, and S.J. Scheding, “Modelling resource
contention in multi-robot task allocation problems with uncertain
timing”, 2017, Web: https://arxiv.org/abs/1607.04358.

P. Mell and T. Grance, “The NIST definition of cloud computing”,
Recommendations of the National Institute of Standards and
Technology, Special Publication 800-145, 2011.

RK.L. Ko, EW. Lee, and S.G. Lee, “BusinessOWL (BOWL) - a
hierarchical task network ontology for dynamic business process
decomposition and formulation”, [EEE Transactions on Service
Computing, vol. 5, issue 2, 2012, pp. 246-259.

F. Baader, M. Milicic, C. Lutz, U. Sattler, and F. Wolter, “Integrating
description logics and action formalisms for reasoning about web
services”, LTCS-Report 05-02, Chair for Automata Theory, Institute
for Theoretical Computer Science, Dresden University of
Technology, Germany, 2005, Web: http://lat.inf.tu-
dresden.de/research/reports.html.

