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Abstract—The presence of tumour heterogeneity makes the
clinical oncological practice very challenging, since introduces a
great variability in tumours’ response to available therapies. For
this reason, in the last decade, quantifying the salient features
of the intra-tumoural heterogeneity has gained a great attention,
also leading to a re-emerging of the texture analysis. Tumour
heterogeneity represents the complex biology of tumour micro-
environment, characterised by both spatial and temporal vari-
ability, increased by the presence of chaotic blood vessels within
tumour tissue. Computed Tomography (CT) has always been
considered one of the reference technologies for morphological
analysis of organs and tissues, permitting to capture the “in
vivo” spatial tumour heterogeneity. The need to also detect
hemodynamic tumour features has stimulated the use of CT
perfusion (CTp), a promising functional imaging technique in the
oncological field. CTp allows detecting the presence of tumour
abnormal hemodynamic patterns, by analysing the tissue tempo-
ral variations occurring after an intravenous administration of
contrast medium. This work presents the extraction of meaningful
statistical and texture features from both baseline CT images and
perfusion maps of lung tumours, which could work as prognostic
image-based biomarkers.

I. INTRODUCTION

Non-small-cell lung cancer (NSCLC) is the leading cause
of cancer mortality worldwide [1]. Despite the introduction
of novel advanced therapies, NSCLC remains associated with
poor prognosis and overall survival (OS) [2]. Tumour staging is
probably the most important prognostic parameter for survival,
though different outcomes within the same stage grouping
suggest that also other factors influence survival [3]. One of
the challenges in this age of personalized medicine remains
the identification of more effective markers of prognosis for
a better stratification of NSCLC patients [4], with strong
implications in patient management, particularly as regards
treatment choices [5].

NSCLC tissues are highly heterogeneous at different scale,
reflecting the presence of angiogenesis, hypoxia, high cell
density, necrosis and hemorrhage [6], [7]. Angiogenesis is
a process that consists in the chaotic sprouting of blood
vessels from pre-existing ones [8], [9]. With the enlarging
of the vascularization, the tumour tissue is able to receive
nutrients, also creating paths for cells to leave or enter the
blood circulation. This process leads to the tumour growth
associated with an increased interstitial pressure, which may
lead to local reductions in blood flow (BF) and, consequently,

to an inadequate oxygen delivery for cells viability. This
condition is known as hypoxia and has a decisive role in the
tumour response to treatment [10].

By its very nature, quantitative tumour evaluation through
molecular characterisation, involving biopsies or invasive surg-
eries to get small tissue specimens, cannot adequately represent
the features of the tumour as a whole [11]. On the contrary,
imaging is able to provide voxel-based information for the
whole tumour [12]. It has the great potential to capture the in
vivo intra-tumoral heterogeneity non-invasively [13], paving
the way for a routine tumour monitoring and therapy response
evaluation.

Generally, the way images are clinically interpreted is
mostly visually [14]. The aim of the clinician is to detect
potential abnormalities, recognising patterns and linking the
perceived patterns with possible diagnoses. Therefore, the
success of a correct image interpretation strongly depends on
the skills of the clinician [15]. Consequently, a qualitative
heterogeneity evaluation will be prone to subjective variability.
As a result, despite tissue heterogeneity has been proved to be
strongly related to tumour aggressiveness [16], prognosis [17]
and survival [18], its quantitative evaluation is still not included
in the clinical practice.

In the last decade, several studies have focused on the
analysis of tumour heterogeneity to identify more accurate
prognostic biomarkers through texture analysis [14], [19], [20].
Texture analysis includes several different techniques, which
are not new in the medical field but date back to the early 70s,
when texture measures were suggested for the detection of lung
disease patterns [21]. The major advantage in clinical practice
is that these mathematical approaches can offer information
not visible by the human eye in an objective way, exploiting
data routinely acquired [22].

Recently, CTp has been accepted as a clinical technique in
the oncologic field, primarily for the early evaluation of tumour
response to anti-angiogenic therapies (i.e. therapies aiming
at reducing tumour vasculature) [23]. Indeed, CTp allows
capturing tumours vascular patterns through the analysis of
the time-concentration curves (TCCs), representing the tissue
density temporal variations [24], directly proportional to the
quantity of contrast medium within the tissue. One of the most
significant perfusion parameters is the BF, which permits to
detect the earliest functional changes on tumour vasculature
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even within the first week of anti-angiogenic therapy [25].
Moreover, this parameter has proved a high correlation with
the tissue biomarker micro-vessel density (MVD) [26], [27].

The analysis of BF maps could allow detecting abnormal
vascular patterns within tumour tissue. However, several fac-
tors may affect the reliability of BF maps. Among these, car-
diac and respiratory motion artefacts, physics-based artefacts
as well as partial volume artefacts may alter the calculation of
perfusion parameters. Therefore, a proper denoising is needed
to properly characterise the hemodynamic heterogeneity and,
finally, to derive quantitative features [28].

In this work, we analyse the intra-tumoral heterogeneity
of NSCLC, at diagnosis stage, emerging from unenhanced CT
images and BF maps. To this purpose, BF maps were computed
according to the Maximum-Slope method. A proper reliability
analysis of the BF maps was performed to automatically detect
and remove those pixels and regions undergoing high comput-
ing errors due to artefacts. The correlations between the OS
parameter and statistical feature-pairs computed on CT images
and BF maps were explored to assess whether these features
could work as prognostic image-based biomarkers for NSCLC.
The discrimination ability of the feature-pair was analysed in
comparison with the staging, since is commonly associated
with OS. The features derived from functional BF maps proved
a strong correlation with OS, resulting more effective than
those directly derived from CT images, this suggesting a
promising prognostic clinical application of CTp. Actually,
also the features extracted from non-contrast enhanced CT
images proved to be quite promising, being still more effective
than the stage parameter but also easily derivable from data
routinely acquired in clinical practice.

II. MATERIALS AND METHODS

A. Study population

As reported in a previous work [29], this study was ap-
proved by the Institutional Review Board that waived informed
consent for the retrospective data analysis of the patients. 36
consecutive patients (25 men, 11 women; age range 36-81
years) with primary NSCLC, subdivided in 28 adenocarci-
noma (AC), 6 squamous-cell carcinoma (SCC) and 2 large-
cell carcinoma (LCC),were enrolled for data analysis between
September 2010 and December 2012. According to the TNM
classification (seventh edition) of malignant tumours 2 patients
were diagnosed stage IB, 3 patients IIIA, 4 patients IIIB and
27 patients IV tumour stage. Patients inclusion criteria were:
(a) over eighteen years old; (b) with histologically verified
NSCLC; (c) no prior history of chemotherapy, surgery or
thoracic radiation therapy.

Exclusion criteria were: (a) clinically significant cardiovas-
cular disease; (b) pregnancy or lactation; (c) a known history
of deep vein thrombus or pulmonary embolus; (d) patients lost
to follow-up for unknown reasons (n = 8); (e) patients alive at
the time of the study (n = 4); (f) not having the longest axial
diameter of the lesion greater than 10 mm in at least one slice
(n = 3); and (g) examination hardly affected by physics-based
artefact (n = 2).

Finally, 19 patients were considered for the analysis. TNM
staging was considered as the reference to predict survival.

This variable was dichotomised so as to divide in early stage
patients (stage I – IIIA) likely receiving curative surgery
or curative chemoradiotherapy and advanced stage patients
(stage IIIB – IV) likely undergoing non-curative chemotherapy,
radiotherapy, or molecular therapies [29].

Table I reports the previous information, also including 
patients histological subtype (ACC, SCC, LCC) and OS data, 
which is defined a s t he t ime i nterval i n months b etween the 
date of the baseline CT examination and the date of death.
TABLE I. SUMMARY OF THE HISTOLOGICAL DIAGNOSIS, TUMOUR

STAGE AND OS DATA (MONTHS) RELATIVE TO EACH PATIENT.

Patient ID OS Diagnosis Stage
ID1 6 LCC IIIB
ID2 4 AC IV
ID3 14 SCC IB
ID4 13 AC IV
ID5 5 AC IV
ID6 5 AC IB
ID7 6 AC IV
ID8 10 AC IV
ID9 17 SCC IV
ID10 52 SCC IV
ID11 6 AC IV
ID12 6 AC IV
ID13 4 AC IV
ID14 8 AC IV
ID15 12 AC IV
ID16 11 SCC IIIB
ID17 12 AC IV
ID18 0 AC IV
ID19 7 AC IV

B. CTp protocol

At diagnosis, patients underwent axial CTp performed
on a 256-slice CT system (Brilliance iCT, Philips Medical
System, Best, The Netherlands) and laid in the supine(feet
first) position. An initial unenhanced low-dose full-body axial
CT scan was performed to identify the target lesion at base-line
condition. Then, an intravenous 50 mL bolus of contrast agent
(Iomeron, Bracco, Milan, Italy) was injected at 5 mL/s for axial
cine contrast enhanced CT. CTp scan of 25-second duration
was performed for each patient under breath-hold condition.
This protocol yielded 20 scans, each corresponding to different
sampling instants, with 55 mm of z-coverage (11 slices × 5-
mm slice thickness, 0.4-sec rotation time, at 80 kV, 250 mA).
Image data are reconstructed to 220 cine images (512 × 512
pixel, 11 slices, 350 mm × 350-mm, 5-mm slice spacing, 1.25-
sec temporal resolution).

C. Perfusion maps generation

The lesions and the arterial input were selected in consen-
sus by two radiologists (D.B. and G.G., > 25-year experience
each). For each lesion, the radiologists manually drew on a
reference slice the related region of interest (ROI). Then, a
3D rigid alignment was performed according to the following
procedure. The lesion ROI was translated on the slices of the
reference sequence, so as the contour of the lesion visually
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match. When opportune, adjacent slice levels were chosen by
the radiologists to achieve the best match with the reference
slice [30] and, consequently, the “best” sequence.

BF values were computed by considering the first-pass
phase [31] and modelling each voxel as a single-compartment
including both the intravascular and the extra-vascular spaces.
This permitted to perform short-time examinations, thus reduc-
ing motion artefact effects, since the patients had the possibility
to stay in apnoea. The model adopted is characterised by a
single inlet, the arterial input, with an arterial blood plasma
temporal concentration CA(t), and a single outlet, the venous
outlet, with a venous blood plasma temporal concentration
CV (t). CT (t) represents the TCC of the tissue. The relation
between CA(t), CV (t) and CT (t) can be expressed through
the Fick’s principle representing the conservation of mass:

dCT (t)

dt
=
BF

VT
[CA(t)− CV (t)] (1)

The assumption of no venous outflow during the measurement
period CV (t) � 0 (i.e., no contrast agent has reached the
venous side of the circulation yet) leads to the following
approximation:

dCT (t)

dt
=
BF

VT
[CA(t)− CV (t)] � BF

VT
CA(t) (2)

This implies that the slope of the tissue curve, dCT (t)/dt,
reaches a maximum (steepest slope) when the TCC of the
arterial input, CA(t), reached is peak density [32]. Thus, the
BF, expressed in mL/min/100 g, is given by

BF

VT
� [dCT (t)

dt ]max

[CA(t)]max
(3)

This is the single-compartment formulation also known as
Mullani-Gould model. The simplification adopted might not
hold for for organs characterised by a complex microcircula-
tion, such as spleen and kidneys [33] but is adequate for most
clinical applications [34].

The BF values of the reference slice are represented using
functional colorimetric maps, as shown in Fig. 1. Blue regions
point out low perfusion values, while regions characterised
by hottest colours highlight the presence of highest perfusion
areas. These maps provide a useful view of the perfusion
and the functional heterogeneity of the tumour, highlighting
for instance the presence of hypodense regions, hemorrhages,
blood vessels and bronchi.

In order to obtain the TCC signal for each voxel we adopted
a sigmoid-shape model, as reported in Fig. 2. Sigmoid is
modelled through the Hill Equation in Eq. (4), able to robustly
fit the main trend of the concentration samples [35]:

Y TCC(t) = E0 + (Emax − E0)
tα

(EC50 + t)α
(4)

where E0 is the baseline concentration of the tissue, that is be-
fore the arrival of the tracer, Emax is the saturation value of the

concentration reached after its arrival, EC50 is the time instant
at the half-maximum value of the concentration, and α is the
parameter which mainly affects the slope of the sigmoid curve.
The curve fitting is achieved using an in-house fitting algorithm
based on the nonlinear, least squares, Levenberg-Marquardt
minimization algorithm (lsqcurvefit, Matlab c©; MathWorks,
Natick, MA, USA).

D. Perfusion maps denoising

Denoising is a necessary step to be performed before
the features extraction. Essentially, it consists in detecting
and excluding unreliable BF values. BF values strictly lower
than 1 mL/min/100 g were automatically excluded, being con-
sidered improbable as physiological values and more likely
attributable to numerical errors, as the perfusion computation
algorithm forces BF values to be positive.

For each TCC signal, the quality of the fitting has been
assessed by considering the residuals (ε), computed as the dif-
ference between the observed samples YTCC and the relative
values obtained through the fitting Y TCC for each time instant
t. ε is defined as in Eq. (5):

ε(t) =
∣∣YTCC(t)− Y TCC(t)

∣∣ (5)

As a goodness-of-fit index for the single TCC, the temporal
mean value με of the residual ε relative to the considered pixel
has been computed. The distribution of this index has been
used to detect the BF values characterised by high fitting errors
in order to exclude them from the analysis, since they are
computed on TCCs not correctly fitted.

High errors are usually associated to the presence of noise,
artefacts and anatomical structures, such as bony regions, blood
vessels and bronchi. Through the use of this index, these
structures can be automatically excluded. As shown in Fig. 1,
at the end of this automatic denoising process, the removed BF
values appear highlighted in the colorimetric maps with the
pink colour. As one can see, the denoising method removes
also unreliable regions as the borders, which are affected
by partial volume effect, still keeping a wide range of BF
values [36].

E. Texture analysis

Feature generation and selection were performed using an
in-house software based on Matlab c© (MathWorks, Natick,
MA, USA). First- (histogram) and second-order (grey-level
co-occurrence matrix) statistical features were computed for
the reference slices on unenhanced CT images and BF maps.

First-order statistics are based on the histogram of pixels
intensity values in the image. The features derived from values
distribution depend only on single pixel values and not on
the interaction or co-occurrence of neighbouring pixel values.
They are global features, which describe how intensity values
within a ROI are distributed. Let x = {x1, x2, .., xN} be the
set of L values of the N voxels in the image. Let h = {h1, h2,
..hL} be the histogram with count ni of each intensity level
i in x. The occurrence probability pi for each intensity level
is pi =

hi

N . Accordingly, we can have the following definitions:
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Fig. 1. Unenhanced CT image (a) and corresponding BF map (b) of a lung tumour (squamous-cell carcinoma)

Fig. 2. Representation of the sigmoidal model used for the fitting procedure of Tumour voxel values, which belong to the temporal sequence of the reference slice

Mean μ

μ =
1

N

N∑

k=1

xk (6)

Standard deviation σ

σ = (
1

N

N∑

k=1

(xk − μ)2)
1

2 (7)

Skewness S

S =
1

N

∑N
k=1
(xk − μ)3

[ 1N
∑N

k=1
(xk − μ)]

3

2

(8)

Kurtosis K

K =
1

N

∑N
k=1
(xk − μ)4

[ 1N
∑N

k=1
(xk − μ)2]2

− 3 (9)

Coefficient of variation CV

CV =
σ

μ
(10)

Entropy E also known as Shannon entropy

E = −
L∑

i=1

pi log2 pi (11)

Uniformity U

U =
L∑

i=1

p2i (12)

Other parameters derived from the histogram analysis in-
clude: themedian, the intensity level that divides a distribution
in two halves, the minimum and the maximum, that is the
lowest and the highest pixel values.

Second-order statistics are based on the likelihood of ob-
serving pixels pairs of specific intensity values. These features
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belong to the textural features, since they can represent the
spatial distribution of image values. More specifically, these
features are based on the joint probabilities and provide co-
occurrence measurements performed on matrices, known as
grey level co-occurrence matrices (GLCMs), that reflect the
spatial grey-level dependence. Actually, these matrices may
contain any type of entity, besides grey levels. Each cell of
these matrices represents how often a couple of pixel values
(i, j) occurs, this being the basis for measuring the relationship
between pixels. Therefore, these matrices provide valuable
information about images since, as reported by Haralick et
al., tone and texture, which are always present in the images,
bear an inextricable relationship [37].

The features that will be extracted from GLCM provide
image statistical information regarding the distribution of pix-
els pairs along one of the image directions. GLCM provides a
new image representation [38] and is an estimate of the second-
order joint probability, pij , of the intensity values of two pixels
i and j, separated by a distance δ (δ = 1 for neighbouring
pixels) along a given direction θ, (where usually θ can be
horizontal, vertical, diagonal and anti-diagonal, i.e. θ = {0◦,
45◦, 90◦, and 135◦}). This joint probability can be represented
with a square matrix pij , with row and column dimensions
equal to the number of discrete intensity levels L in the image.
Each pij element contains the frequency of a combination of
intensity levels pairs, i and j, at a certain distance δ, along
a specific direction θ. The resulting GLCM is a symmetric
matrix, as shown in Fig. 3. For images tending to be flat, i.e.

Fig. 3. Small image (a) and relative co-occurrence matrix (b) for δ = 1 and
θ = 0◦. The joint probability is obtained dividing the matrix in (b) for the
total number of possible pixel pairs.

uniform with no texture, the resulting GLCM would be almost
diagonal. Contrarily, for images with increased local intensity
variations, i.e. with increased texture, the resulting GLCM will
result characterised by more off-diagonal values.

The features that will be derived from GLCM are local
features that should encode in an efficient way, useful for
classification tasks, the relevant information present in GLCM
structures. Some of GLCM features reported below have a
clear correspondence with human texture perception (e.g.,
coarseness, smoothness), while some others do not represent
some specific visual properties, but they still encode texture
information with high discriminatory power [39].

Joint maximum MJ is the probability corresponding to the

most common GLCM co-occurrence and is defined as

MJ = max(pij) (13)

Joint average μJ is the weighted sum of the joint proba-
bilities and is defined as

μJ =

L∑

i=1

L∑

j=1

i pij (14)

Joint variance σ2

J is a measure of the variability of the
GLCM co-occurrences and is defined as

σ2

J =

L∑

i=1

L∑

j=1

(i− μ)2 pij (15)

where μ = joint average.

Second order entropy EJ is defined as

EJ = −
L∑

i=1

L∑

j=1

pij log2 pij (16)

Angular second moment ASM [37], also called energy and
uniformity, is defined as

ASM =
L∑

i=1

L∑

j=1

p2ij (17)

Contrast C, a measure of the intensity levels variations, is
defined as

C =
L∑

i=1

L∑

j=1

(i− j)2 pij (18)

Inverse difference IDF is defined as

IDF =
L∑

i=1

L∑

j=1

pij
1 + |i− j| (19)

Inverse difference normalised IDFN is defined as

IDFN =
L∑

i=1

L∑

j=1

pij
1 + |i− j|/L (20)

Inverse difference moment IDM, a measure of the local
homogeneity, is defined as

IDM =

L∑

i=1

L∑

j=1

pij
1 + (i− j)2

(21)

Homogeneity normalised HN is defined as

______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 35 ----------------------------------------------------------------------------



HN =
L∑

i=1

L∑

j=1

pij
1 + (i− j)2/L2

(22)

Correlation CORR [37] is defined as

CORR =

∑L
i=1

∑L
j=1

ij pij − μxμy

σxσy
(23)

where

μx =

L∑

i=1

i

L∑

j=1

pij (24)

μy =
L∑

j=1

j
L∑

i=1

pij (25)

σx =
L∑

i=1

(i− μx)
2

L∑

j=1

pij (26)

σy =

L∑

j=1

(j − μy)
2

L∑

i=1

pij (27)

Autocorrelation A is defined as

A =

L∑

i=1

L∑

j=1

i j pij (28)

F. Statistical Analysis

The principal purpose of this work was to determine
whether statistical and textural features directly extracted from
non-contrast enhanced CT images and denoised BF maps could
work as surrogate prognostic biomarkers. Given the sample
size, to avoid overfitting, no more than two features were
analysed jointly. Feature selection was performed through a
k-means (k = 2) clustering algorithm, using the Squared
Euclidean distance as similarity measure. Then, to identify
the most promising prognostic feature-pairs, the correlation
with the OS parameters was analysed automatically. Mean
survival for the entire cohort of patients (μOS = 10.5) was
used as cutoff to separate patients with highest (OS ≥ μOS) and
lowest (OS<μOS) survival expectation. In order to determine
to what extent the feature means differ between the groups
identified by the clustering algorithm, a multivariate analysis
of variance (MANOVA) was performed (p-value < 0.001).
Sensitivity (SE), specificity (SP), positive predictive value
(PPV), negative predictive value (NPV) and accuracy (ACC)
were calculated to quantify the discrimination ability of both
features selected and staging, i.e. the variable used as reference
for survival prediction. In particular, a low survival expectation
and a high survival expectation were defined as condition true
and condition false, respectively. Advanced stage condition
is considered the positive prediction while the early stage
is considered the negative one. Consequently, patients with
advanced stage and low survival expectation belong to the
true positive (TP), patients with early stage and high survival
expectation are the true negative (TN). On the other hand,

patients with advanced stage and a high survival expectation
are considered the false positive (FP), while patients with an
early stage and a low survival expectation as the false negative
(FN).

Statistical analysis was performed using Matlab c© (Math-
Works, Natick, MA, USA).

III. RESULTS

Feature-pairs derived from BF maps resulted characterised
by the greatest discriminatory power in distinguish patients
with different survival expectations. More specifically, first-
order entropy (E) and inverse difference moment (IDM) de-
rived from BF maps resulted highly effective in separat-
ing patients with different survival expectations (SE=86%,
SP=75%, PPV=68%, NPV=90%, ACC=79%). This feature-
pair resulted also the best pair correlating with the OS pa-
rameter among those derived from unenhanced CT images
(SE=67%, SP=71%, PPV=80%, NPV=56%, ACC=68%). In
addition, among the feature-pairs derived from BF maps,
comparable performance can be obtained also with first-
order entropy and second-order uniformity (ASM) (SE=86%,
SP=75%, PPV=68%, NPV=90%, ACC=79%).

E and IDM as well as E and ASM computed on BF maps
are able to group patients with the lowest (OS < μOS) and
highest (OS ≥ μOS) survival expectation. Fig. 4 graphically
shows the distribution of the features values extracted from BF
maps, for low and high survival expectation. As one can see,
high E and low IDM or low ASM enclose the patients with the
worst prognosis (OS < μOS), while low E and high IDM or
high ASM characterise the patients with the best prognosis in
this study. Also for E and IDM derived from unenhanced CT
images, relative box plots for low (OS < μOS) and high survival
expectation (OS ≥ μOS) are reported (Fig. 5). As one can see,
analogously to the most promising BF-based features, high E
and low IDM enclose the patients with the worst prognosis
(OS < μOS), while low E and high IDM those with the best
prognosis.

The outcome of MANOVA proves that both BF-based E
and IDM as well as E and ASM differ significantly for the two
groups of patients, with p-values of 6.4 · 10−5 and 1.5 · 10−4,
respectively. Also CT-based E and IDM differ significantly for
the two groups of patients, with p-values of 9.8 · 10−6.

TNM staging (SE=92%, SP=14%, PPV=65%, NPV=50%,
ACC=63%) performed worse as survival predictor.

IV. CONCLUSION

Although only essential parameters are routinely quantified
in the clinical practice, this study shows that statistical and
textural features, considered to capture the intra-tumoral het-
erogeneity, could work as a prognostic image-based biomarker
for NSCLC. In particular, two feature-pairs derived from
denoised BF map resulted strongly associated with the OS
parameter. As expected, these features being derived from
BF maps carry a great functional information content, which
mainly reflects the presence of hypoxic regions and vascular
abnormalities. Therefore, this finding represents a promising
approach for the utilization of CTp in the clinical practice.
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Fig. 4. Box plots showing first-order entropy (a), inverse difference moment (b) and second-order uniformity derived from BF maps for OS < μOS (left) and (OS

≥ μOS) (right). The median is indicated as a red line in the boxes, while the vertical box size gives the interquartile range

Despite being less promising than the BF-based features,
it is worth noting that a feature-pair, derived from unenhanced
CT images, resulted more specific than the TNM staging in
discriminating patients with different survival expectation. It
is also noticeable that this feature-pair is the same resulting
promising for BF maps, this highlighting that the intra-tumoral
heterogeneity for NSCLC, the phenomenon we investigated, is
detectable independently from the modality adopted. This is
an encouraging outcome since these features may be easily
derived from conventional CT examinations that, contrarily
to CTp examinations, are routinely acquired in the clinical
practice.

The results of this study coherently showed that a greater
intra-tumoral heterogeneity is associated to more aggressive
tumours and strongly reflects on the OS parameter. It is worth
noting that global entropy (E) resulted promising both if
derived from BF maps and unenhanced CT images. This is
not really surprising being E a meaningful feature representing
values irregularity, better known as the measure of the informa-
tion content. High entropy is associated to a worse prognosis.
Analogously, great local homogeneity and uniformity correlate

with a better prognosis.

The encouraging outcomes achieved in this work should
push for further studies, involving larger patients’ cohorts
as well as repeatability and reproducibility analyses. The
results obtained also encourage the deepening of the un-
known relationship between imaging findings and biologic
features. This would permit to comprehensively understand
the specific cancer biology of individual patient and infer
phenotypic signatures containing predictive or prognostic val-
ues. Unlike biopsies, quantitative imaging could permit a
longitudinal monitoring of the intra-tumour heterogeneity and,
consequently, of the “specific” cell habitats and their changing
over time, since clinical examinations can be easily repeated
during the therapy [40].

In conclusion, the analysis of the tumour heterogeneity,
able to detect valuable in vivo characteristics, should be further
explored to achieve a personalisation of medicine. Indeed,
having the potential to identify the patients who would benefit
most from consideration of alternative therapies and treatment
intensification, it could lead to a customisation of the therapy.
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Fig. 5. Box plots showing first-order entropy (a) and inverse difference moment (b) derived from unenhanced CT images for OS < μOS (left) and (OS ≥ μOS)
(right). The median is indicated as a red line in the boxes, while the vertical box size gives the interquartile range
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