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Abstract—When analyzing and synthesizing digital filters 
with different structures, their representation in the state space is 
most often used. But this is not the only way to describe the filter. 
A digital filter with an arbitrary structure is most adequately 
described by a topological matrix, the elements of which are 
transfer coefficients between nodes of a block diagram. This 
paper allows us to expand the capabilities of the mathematical 
model of a digital filter in the form of a topological matrix. 

I. INTRODUCTION 
The most important problem in the synthesis of IIR digital 

filters is considering the effects associated with the finite word 
length (FWL). Many publications used the representation of 
IIR digital filters in the state space to solve these problems.  

In [1], roundoff noise is studied using a state variable 
formulation. An expression for the variance of the rounding 
noise at the filter output was obtained. A set of filter invariants 
are defined. These invariants called second-order modes.  

In [2], expressions for the roundoff noise and the dynamic-
range constraint equation have been established for the digital 
filters described by the state equations. The roundoff noise 
minimization problem was considered. This task was solved 
subject to the l2-norm dynamic-range constraint. A lower 
bound and the global minimum of the noise generated under 
the assumption that each state equation contains exactly one 
noise source is obtained. 

In [3] two expressions of the output error variance are 
proposed based on deterministic and statistical approaches for 
fixed-point state-space digital filters in the time domain. The 
statistical coefficient sensitivity introduced. 

In [4] various possibilities for the individual realization of 
different structures, depending on coefficient format, state 
variable format, overflow characteristics are studied. 

The results presented in [5] are dedicated to minimizing the 
upper bound of the rounding noise l2-norm. Robustness against 
practical uncertainties is imposed. Finite word length 
implementation, roundoff errors, and numerical precision 
included in uncertainty. Convex programming techniques 
applied to state-space based filter optimization. 

Based on the state space representation, a special implicit 
system description is entered in [6]. Two suitable coefficient 
sensitivity measures are used.  

In [7] the state-space realization utilized to minimize the 
roundoff noise gain. A genetic algorithm is proposed to 
implement the optimal structure. 

The problem of synthesis the optimal structure of a state-
estimate feedback controller with minimum l2-sensitivity and 
no overflow is described in [8]. 

A new measure used for the implementation of filters in 
state-space form presented in [9]. The classical L2-sensitivity 
measure is extended with precise consideration on their fixed-
point representation in order to make a more valid measure. 

In [10] joint optimization of error feedforward, high-order 
error feedback and state-space realization for minimizing filter 
output roundoff noise subject to 2-scaling constraints for state 
space digital filters is proposed.  

A new measure for evaluating roundoff noise and pole 
sensitivity is proposed in [11]. This is used to minimize 
weighted roundoff noise and pole sensitivity subject to 2-
scaling constraints for state-space digital filters. 

The algorithm determining the fixed-point formats of all the 
involved variables (states and outputs) for filters in state-space 
representation is proposed in [12]. Several quantization modes 
for coefficients (rounding and truncation) for two’s-
complement-based fixed-point arithmetic considered. 

In [13] a measure for pole and zero sensitivity is proposed. 
This measure is used to minimize weighted pole and zero 
sensitivity subject to 2-scaling constraints for state-space 
digital filters. 

Evaluation of a sufficient condition for the absence of limit 
cycles of state-space second-order digital filters with minimum 
l2-sensitivity subject to l2-scaling constraints is described in 
[14]. 

Thus, the approach described in the reviewed papers allows 
us to obtain valuable results in analyzing and minimizing the 
sensitivity of the filter characteristics to their parameters, 
analyzing and minimizing the noise level of rounding off the 
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results of arithmetic operations, taking into account parasitic 
oscillations of the limit cycle. 

However, despite all the achievements, the problem of the 
synthesis of IIR digital filters with hard spectral constraints and 
finite word length remains far from a satisfactory solution. 

Traditionally, the implementation of digital signal 
processing algorithms uses the following approach. First, all 
calculations are performed in floating point format, and then 
automatic conversion to fixed point format is performed. 
Applied to the synthesis of digital filters, it looks like this [15]. 

At the stage of functional synthesis, the transfer function of 
the filter or its zeros and poles is computed. All these 
calculations are in floating point format. Then, at the stage of 
structural synthesis, the structure of the filter is selected, and 
the coefficients of the block diagram are calculated in a 
floating-point format. And only now we are moving to a fixed-
point format with a finite word length. However, quantization 
of the coefficients leads to an unacceptable distortion of the 
results of functional synthesis. Attempts to correct distortions 
can lead to either an unacceptable increase in the length of the 
word or the need to change the structure or return to the stage 
of functional synthesis. 

The authors of this work in the cycle of their publications 
develop an alternative approach to the synthesis of IIR filters 
with a FWL [16], [17].  

Already at the stage of functional synthesis with a new 
approach, we get a solution based on the finite word length. 
The possibility of such a solution is based on the results 
obtained by the authors of the study of the z-plane 
discretization process due to quantization of the coefficients. 
These studies have shown that not any z-plane point can be a 
zero or a pole of a FWL filter. Such zeros and poles are 
elements of the coefficients fractional part length-dependent 
subset of the set of corresponding degree algebraic numbers. 
The results of functional synthesis in this case satisfy the 
requirements of the filter and are final, that is, they are not 
distorted at the stage of structural synthesis. 

At the stage of structural synthesis, a structural scheme is 
selected from the set of generated structures taking into account 
the degree of algebraic numbers, which are zeros and poles, the 
length of the fractional part of the coefficients of equivalent 
canonical structure, the level of rounding noise of arithmetic 
operations [18], [19]. 

The mathematical model of the specific structure of a 
digital filter with this approach is the square matrix of transfer 
coefficients between the nodes of the structure, described in 
[20] and called by the authors the topological matrix. The 
topological matrix uniquely determines the structure of the 
filter, whereas there is no one-to-one correspondence between a 
specific structure and its state-space representation. The 
topological matrix provides the possibility of generating all 
possible structures with a given number of nodes. The authors 
studied the algebraic properties of topological matrices that 
determine the degree of algebraic numbers (zeros and poles), 
structural accuracy and complexity of block diagrams. 
Therefore, it is advisable to express these results in terms of a 
model based on a topological matrix. 

In [21], the authors have already used these results to 
analyze rounding noise. This paper is devoted to a more 

detailed study of the correspondence between the descriptions 
of the structure of the filter topological matrix and 
representation in the state space. 

The remainder of this paper is divided into six sections. 
Section II describes the use of state space to represent recursive 
digital filters. The technique based on the application for 
describing the structure of a digital filter of topological 
matrices is described in detail in Section III. The ability to 
generate digital filter structures represented by topological 
matrices is described in Section IV. This section also shows 
that the fine structure of the topological matrix can be used for 
naming the digital filter structure. Section V deals with the 
process of generating filter structures. For the particular case of 
structures with four nodes, six possible templates are generated, 
for which a block diagram and topological matrices are shown. 
For generated templates, Section VI shows how, based on the 
topological matrix, all parameters of the state space matrices 
can be calculated. Conclusions on the article are in Section VII. 

II. REPRESENTATION OF DIGITAL FILTER STRUCTURE IN STATE
SPACE 

The state space representation of a filter based on its 
description by an equation [15], [22]: 

1k k

k ky d x
s sA b

c , (1) 

where n nA R  is the state matrix, 1nb R  is the input 
matrix, 1 nc R  is the output matrix, d R  is the 
feedforward matrix, kx R  are the input samples, ky R
are the output samples, 1n

ks R  are the state vectors, 
0,1, 2,...k  . Typically, states of the system believe samples 

at the outputs of n  delay units. The elements of the state 
matrix A are the transfer coefficients from the outputs of the 
delay blocks to their inputs. The elements of the input matrix b 
are the transfer coefficients from the input of the filter to the 
inputs of the delay units. The elements of the output matrix c 
are the transfer coefficients from the outputs of the delay units 
to the output of the filter. The scalar d is the transfer 
coefficient between input and output of filter. 

The block diagram shown in Fig. 1 corresponds to equation 
(1) 

b 1
n zE

kx
1ks

ks
c

A

d

ky

Fig. 1. A state-space representation of any digital filter 

III. DESCRIPTION OF DIGITAL FILTERS BY TOPOLOGICAL 
MATRIX 

Any structure of digital filter with N nodes can be described 
by a topological matrix  
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ijz tT ,   (2) 

which dimension is equal to N N and where ijt  is the branch 
transmittance from a node with number j  to a node with 
number i .  

As an example, consider the description of the canonical 
form of a second-order IIR filter (Fig. 2) with a transfer function  

2
0 1 2

2
1 2

H b z b z bz
z a z a

.  (3) 

The topological matrix of this structure is equal to 

1

1

21 11

21 11 43

0 0 0
0 0 0

0 0
0

z
z

z
a a

b b b

T .  (4) 

If the filter structure is physically realizable (computable), 
then the nodes can be renumbered with natural numbers in such 
a way that all elements of the topological matrix that are not 
equal to 0 or 3 will be below the main diagonal. 

z-1 z-1

b1b0

b
2

X(z) 3 2 1

4

Y(z)

-a1 -a2

 

Fig. 2. Canonical form IIR digital filter of second order 

Any structure can be described by the equation (20) 

Xz z z z zy T y x ,  (5) 

where  

1 2Y Y ... Y
t

Nz z z zy , (6) 

is a vector of z-transforms of sequences of samples, computed 
in nodes of structure, t  is a symbol for the transpose operation, 

1 ... ... t
i Nz x x xx ,  (7) 

1, if ,
0, if ,i

i inpx i inp    (8) 

inp is the input node number, X(z) is the z-transform of input 
sequence. For the filter shown in Fig. 1. 

1
1 1

1
2 2

3 321 11

21 11 434 4

Y Y0 0 0 0
Y Y 00 0 0 X ,1Y Y0 0

00Y Y

z zz
z zzz zz za a

b b bz z

y

 (9) 

or 
1

1 2
1

2 3

3 2 1 1 2

4 2 1 1 2 0 3

Y Y ,
Y Y ,
Y X Y Y ,
Y Y Y Y .

z z z
z z z
z z a z a z
z b z b z b z

 (10) 

From (5) it is easy to get the equations 

XN z z z zE T y x ,  (11) 

where EN is identity matrix of size N, and 
1

/ X Nz z z zy E T x . (12) 

From equation (12) it follows that the elements of the matrix 
1

Hoi Nz z zH E T  (13) 

are the transfer functions of digital filters described by the 
matrix T(z), the node i which is the input, and the node o is the 
output. 

IV. GENERATION AND ENUMERATION OF IIR FILTERS 
STRUCTURES 

The structure of the filter StrN can be divided into two 
interconnected parts C and Z (Fig. 3). Part C is obtained from 
the filter structure by removing all delay blocks from it. Part Z 
consists of delay blocks only. 

    

1

2

N

z-1

z-1

    

1zi

1zo

zni

zno

TmpN

StrN

C Z
 

Fig. 3. Decomposition of filter structure 

Topology matrix can be represented as 
1

C Zz zT T T ,    (14) 

where the matrix TC is obtained by replacing in the matrix T(z-1) 
elements equal to z-1 by zero, the matrix TZ is obtained by 
replacing in the matrix T(z-1) elements not equal to z-1 by zero  
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and replacing elements equal to z-1 by 1. The matrix T  is the 
topological matrix of part C. The matrix z-1TZ is the topological 
matrix of part Z. 

The matrix T  of any scheme with N nodes is obtained from 
the generalized matrix 

21

31 32

C

1 2 3

1 2 3

0 0 0 ... 0 ... 0
0 0 ... 0 ... 0

0 ... 0 ... 0
... ... ... ... ... ... ...

... 0 ... 0
... ... ... ... ... ... ...

... ... 0

i i i

N N N Ni

c
c c

c c c

c c c c

T . (15) 

The scheme corresponding to the matrix T  can be 
considered as a template TmpN from which all possible 
concrete schemes with N nodes can be obtained. Obviously, 
there is a recursion between templates TmpN and TmpN+1 (Fig. 
4). 

The template Tmp4 is described by the matrix 

21
C

31 32

41 42 43

0 0 0 0
0 0 0

0 0
0

c
c c
c c c

T (16) 

and has the form shown in Fig. 5. 

TmpN

cN+1,1

cN+1,2

cN+1,N

N+1

1

2

N
TmpN+1

Fig. 4. Recursion at creation of templates 

c41

2

3

4

c31

1
c21

c32

c43

c42

Fig. 5. Template Tmp4 for a block diagram with 4N  nodes 

In Fig. 6, template Tmp5 is presented. It is described by the 
matrix 

21

C 31 32

41 42 43

51 52 53 54

0 0 0 0 0
0 0 0 0

0 0 0
0 0

0

c
c c
c c c
c c c c

T . (17) 

1 2

3

4

5

c21

c31

c41

c51
c32

c42

c52

c43

c53

c54

Fig. 6. Template Tmp5 for a block diagram with 5N  nodes 

The matrix TZ specifies a subset of structures among 
structures with the same number of nodes. We confine ourselves 
to structures in which the number of delay blocks is equal to the 
order of the filter. In this case, in the Tz and T(z) matrices, the 
elements z-1 are located above the main diagonal. Moreover, in 
each row and in each column of these matrices there cannot be 
more than one element z-1. 

The position of the elements in the topological matrix allows 
naming such structures. The authors proposed a set of structures 
with a given number of nodes and with a given TK matrix to put 
the name in correspondence as 

N{N}z{n}p{p1}d{d1}…p{pn}d{dn}. 

This name describes many structures without specifying the 
numbers of the input and output nodes. In case of specifying the 
numbers of the input and output nodes, the name is 

N{N}z{n}p{p1}d{d1}…p{pn}d{dn}i{inp}o{out}. 

In the names of specific structures instead of curly brackets 
put specific numeric values: N is the number of nodes in the 
structure, n is the number of delay blocks, inp is the input node 
number, out is the output node number, pi is the number of the 
line in which the ith element z-1 is located,  

di = si – pi +1, (18) 

where si is the column number in which the ith element z-1 is 
located. 

V. GENERATING OF STRUCTURES 

The generation of structures with a given number of nodes N 
consists in the selection of the corresponding matrix TC and the 
generation of sets of elements z-1 that satisfy the above 
limitations. Below, as an example, we describe the generation of 
structures with N=4 and n=2. In this case, the matrix TC is 
described as (16). 
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A. N4z2p1d2p2d2 
The matrix T(z) for this structure has the form 

1

1
21

31 32

41 42 43

0 0 0
0 0

0 0
0

z
c z

z
c c
c c c

T

 

(19)

and the pattern is shown in Fig. 7. 

c41

2

3

4

c31

1

c21

c 3
2

c43

c42

z-1

z-1

1

2

in
p=

1

out=4

inp=2

inp=3

inp=4

 

Fig. 7. Pattern of structures N4z2p1d2p2d2i*o4 

For this pattern, any node can be input. Since there is no 
direction from the node number 4 to other nodes, only it can 
be the output node.  

The transfer functions for structure N4z2p2d2p3d3i3o4 is 

2
41 42 21 43 43

43 2
21 32 31

H
c z c c c z c

z
z c c z c

.   

When c21=0, a canonical structure with a transfer function 
(3) is formed from the pattern. In this case, c41=b0, c42=b1, 
c43=b2, c32=-a1, c31=-a2 (Fig. 2). 

B. N4z2p2d2p3d2 
The corresponding pattern is shown in Fig. 8. In this case, 

the topological matrix is expressed as 

1
21

1
31 32

41 42 43

0 0 0 0
0 0

0
0

c z
z

c c z
c c c

T

 

(20)

c41

2

3

4

c31

1 c21

c 3
2

c43

c42

z-1

z-1

xk

in
p=

1

out=4

out=1

ou
t=

2

out=3
1

2

 

Fig. 8. Pattern of structures N4z2p2d2p3d2i1o* 

In this pattern, any node can be an output, and only the 
node with the number 1 can be an input, since there is no 
transmission in it. The transfer functions for structure 
N4z2p2d2p3d3i1o2 is 

2
41 31 21 43 21

21 2
43 32 42

H
c z c c c z c

z
z c c z c

.   

When c43=0, a transposed canonical structure with a 
transfer function (3) is formed from the pattern. In this case, 
c41=b0, c31=b1, c21=b2, c32=-a1, c42=-a2. 

C. N4z2p1d2p2d3i*o* 
The topological matrix is equal to 

1

1
21

31 32

41 42 43

0 0 0
0 0

0 0
0

z
c z

z
c c
c c c

T

 

(21)

The pattern of the pattern is shown in Fig. 9. 

c41

2

3

4

c31

1

c21

c 3
2

c43

c 4
2

z-1

z-1
1

2
inp=1

inp=3

inp=4

ou
t=

1

out=3

out=4

 

Fig. 9. Pattern of structures N4z2p1d2p2d3i*o* 

Any node can be both input and output. 
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D. N4z2p1d3p3d2i*o* 
The block diagram is shown in Fig. 10. 

c41
2

3

4

c 3
1

1

c21
c 3

2
c 4

3

c42

z-1

z-1

1

2inp=1

out=1

inp=2

out=2

inp=3

out=3

inp=4 out=4

 

Fig. 10. Pattern of structures N4z2p1d3p3d2i*o* 

This scheme corresponds to the topological matrix 

1

21
1

31 32

41 42 43

0 0 0
0 0 0

0
0

z
c

z
c c z
c c c

T

 

(22)

The input and output for this pattern can be in any  
node.  

E. N4z2p1d3p2d3i*o* 
The structures are shown in Fig. 11. 

c41
2

3

4

c 3
1

1

c21

c 3
2

c 4
3

c42

z-1

z-1

1

2
inp=1

out=1

inp=2

out=2

inp=3

out=3

inp=4 out=4

 

Fig. 11. Pattern of structures N4z2p1d3p2d3i*o* 

This scheme is described by a topological matrix 

1

1
21

31 32

41 42 43

0 0 0
0 0

0 0
0

z
c z

z
c c
c c c

T

 

(23)

Any node can be both input and output.  

F. N4z2p1d4p2d2i*o* 
The matrix T(z) for this structure has the form 

1

21
1

31 32

41 42 43

0 0 0
0 0 0

0
0

z
c

z
c c z
c c c

T

 

(24)

and the pattern is shown in Fig. 12. 

c41

2

3

4

c31

1
c21

c32

c43
c42

z-1

z-1
1

2

inp=1

inp=3

inp=4ou
t=

1

ou
t=

2

out=3

out=4

 

Fig. 12. Pattern of structures N4z2p1d4p2d2i*o* 

Any node can be both input and output.  

VI. TRANSITION FROM TOPOLOGICAL MATRICES TO THE  
STATE SPACE 

The matrix of transfer functions between nodes linear 
system C is equal to 

1
C CNH E T .  (25) 

All elements of the matrices A, b, c, d describing the state 
space are elements of the matrix HC [21]. Instead of solving a 
difficult task of symbolic inversion of the matrix, we get 
analytical expressions for matrix elements. 

When N=3 

C 21

21 32 31 32

1 0 0
1 0

1
c

c c c c
H . (26) 

 

______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 225 ----------------------------------------------------------------------------



At N=4 

21
C

21 32 31 32

41 21 42 31 43 21 32 43 32 43 42 43

1 0 0 0
1 0 0

1 0
1

c
c c c c

c c c c c c c c c c c c
H .

 (27) 

Considering the peculiarities of the inversion of triangular 
matrices we write recurrent expressions for calculating the 
elements H ,ij of the matrix H : 

C,

C, , ,
1

0, ,
1, ,

, .
ij

i j

i m j i j m
m

i j
H i j

H c i j

(28) 

For the convenience of calculating the elements of the state 
space matrices for N=4 and n=2, TABLE 1 lists the numbers 
of input and output nodes of the delay blocks. 

TABLE I.  INPUT AND OUTPUT NODES OF DELAY UNITS 

Delay unit 1 Delay unit 2

input output input output

1 N4z2p1d2p2d2i*o4 2 1 3 2 

2 N4z2p2d2p3d2i1o* 3 2 4 3 

3 N4z2p1d2p2d3i*o* 2 1 4 2 

4 N4z2p1d3p3d2i*o* 3 1 4 3 

5 N4z2p1d3p2d3i*o* 3 1 4 2 

6 N4z2p1d4p2d2i*o* 3 2 4 1 

The position of the elements of the state matrices A for the 
six considered patterns is shown in Fig. 13. 

A(1)

A(2)

A(3)

A(4)

21
C

31 21 32 32

41 21 42 31 43 21 32 43 42 32 43 43

1 0 0 0
1 0 0

1 0
1

c
c c c c

c c c c c c c c c c c c

H
A(5)

(6)A

Fig. 13. Elements of matri es A(*) in matrix HC 

For the first five patterns for the first delay block, the 
numbers of both the input and the output nodes are less than for 
the second delay block. For the sixth pattern for the first delay 
block, the number of the input node is less than for the second, 
and the number of the output node is greater. Therefore, in Fig. 
13 shows the position of the elements of the matrix 

0 16 6 1 0A A .  (29) 

The position of the elements of the matrices A does not 
depend on the numbers of the input and output nodes of the 
filter. 

In fig. 14 shows the arrangement of matrix elements b for the 
first pattern for different numbers of the input filter node. Also 
the state matrix A(1) is shown. 

A(1)

21
C

31 21 32 32

41 21 42 31 43 21 32 43 42 32 43 43

1 0 0 0
1 0 0

1 0
1

c
c c c c

c c c c c c c c c c c c

H
i1

i2

i3

i4

Fig. 14. Elements of b in matrix HC for the first pattern 

For the second, fourth, fifth and sixth patterns, the numbers 
of the input nodes of the delay blocks are the same, so the 
matrices b have the same arrangement for these patterns (Fig. 
15). 

21

31 21 32 32

41 21 42 31 43 21 32 43 42 32 43 43

1 0 0 0
1 0 0

1 0
1

c

c
c c c c

c c c c c c c c c c c c

H
i1

i2 i3

i4

Fig. 15. Elements of b in matrix HC for the patterns 2, 4, 5, and 6 

In Fig. 16 positions of matrices b for third pattern is 
shown. 

21

31 21 32 32

41 21 42 31 43 21 32 43 42 32 43 43

1 0 0 0
1 0 0

1 0
1

c

c
c c c c

c c c c c c c c c c c c

H

A(3)

i1
i2

i3 i4
Fig. 16. Elements of b in matrix HC for the third pattern 

In Fig. 17 positions of matrices c for the patterns 1, 3, and 
5 for different numbers of output nodes is shown. 

21
C

31 21 32 32

41 21 42 31 43 21 32 43 42 32 43 43

1 0 0 0
1 0 0

1 0
1

c
c c c c

c c c c c c c c c c c c

H

o4

o1

o2o3

Fig. 17. Elements of c in matrix HC for the first, third and fifth patterns 

Fig. 18 and Fig. 19 depict the position of the matrices c for 
the second and fourth patterns, respectively. 

A(2)
21

31 21 32 32

41 21 42 31 43 21 32 43 42 32 43 43

1 0 0 0
1 0 0

1 0
1

c

c
c c c c

c c c c c c c c c c c c

H

o1

o2

o3

o4

Fig. 18. Elements of c in matrix HC for the second pattern 
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21

31 21 32 32

41 21 42 31 43 21 32 43 42 32 43 43

1 0 0 0
1 0 0

1 0
1

c

c
c c c c

c c c c c c c c c c c c

H A
(4

)
o1

o2

o3
o4

Fig. 19. Elements of c in matrix HC for the fourth pattern 

For the scalar d, the ratio 

,C oid H (30) 

is true, where o and i are the output and input nodes, 
respectively. 

VII. CONCLUSION

The results described in this paper are supposed to be used 
as follows. At the stage of functional synthesis, the values of 
zeros and poles that are unchanged at subsequent stages are 
calculated. Further, taking into account the characteristics of 
structural accuracy and structural complexity, the degree of 
algebraic numbers, which are zeros and poles, the appropriate 
filter structures are generated, which are described by 
topological matrices. To select the generated structures, the 
noise level due to quantization coefficients at the filter output, 
sensitivity measures, the possibility of parasitic oscillations of 
the limiting cycle are analyzed. The results obtained for the 
state-space digital filters are used for this. The results 
described here are used to calculate the state-space.  
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