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Abstract–In modern computing systems, one of the most 
commonly used algorithms for digital signal processing is digital 
filtering. Digital filters are implemented by various hardware. 
One of the main properties of any hardware structure is its fault 
tolerance. The main way to increase fault tolerance is the 
introduction of redundancy, as a rule, hardware redundancy. In 
existing computational structures, the introduction of 
redundancy is associated with an increase in computation time 
and hardware costs, which in some cases is unacceptable. To 
eliminate the drawbacks of these methods and ensure the 
reliability of the results of calculations, it is proposed to 
investigate the possibility of using multivariate finite field 
arithmetic to ensure the structural and information reliability of 
digital filters. 

I. INTRODUCTION 
One of the most important properties of the residue number 

system (RNS) codes is its natural corrective abilities. The 
redundancy of the corrective RNS codes lies in the fact that 
the number of computing channels of the computing device 
increases while maintaining information reliability and 
structural diversity as opposed to the data processed 
range [1]. 

The detailed studies of the corrective RNS codes, the 
opportunity of their application in the construction of digital 
filters is held in [2], [3]. The using of the natural corrective 
capabilities of the RNS codes allows to detect and correct 
computation errors of any given multiplicity and to build the 
diversified structure of the digital filters (DF).  

The diversified property of the DF structure means that any 
failed computational modular channel (several channels) can 
be replaced with computational channels in the control 
modules. This allows:  

1) To provide the required degree of the diversity DF
structure by reducing the correcting ability without decreasing 
the data range.  

2) To implement all signal processing procedures in the DF
codes without increasing hardware costs, since the imposition 
of the additional computational control channels is necessary 
to detect and correct errors and ensure the structural reliability 
of a non-position filter [4]. 

The interesting approach is described in [1], [5], where the 
possibility of providing structural and informational diversity 
of the DFs structures based on the using of a multivariate 
algebra of a finite field and a generalized polyadic number 
system was shown. As highlighted in [5-8], a generalized 
polyadic system can be used in constructing algorithms for 
searching and correcting errors in the RNS codes, which 
ensures the diversity of the DF structures. 

II. GENERALIZED POLYADIC SYSTEM

The generalized polyadic system (GPS) is a mixed number 
system, which is often used for performing the inverse 
transformation from the RNS code to the position code [1], 
[5], [9], [10]. Mutually simple bases 1 2,  ,  ...,  kp p p  are 
selected in this system, by means of which an arbitrary number 
A is presented in the form:  

1 2 1 1 1 2 2 3 1 2 2 1 1( ... ) ( ... ) ... ( )k k k kA b p p p b p p p b p p b p b   (1) 

where ib  is the coefficients of the GPS;  1,  2,  ...,i k .  

Consider a redundant modular code, which contains two 
control bases. Then the set of bases is determined 
by 1 2  1   2,  ,  ...,  ,  ,  k k kp p p p p . In addition, the control 
base implementation leads to expansion of the range to a 
value: 

2

1 2
1

k

total i work k k
i

p p p (2) 

Then the A  number can be represented as: 

1 2 1 1 2 1

1 1 2 1 2 1 2 1

1 2 1 1 2 1 1 2 1

... ( ... )

( ... ) ( ... )

... ( ... ) .

k k

k k k k k

k k k work k work k

A b b p b p p p

b p p p p b p p p

b b p b p p p b b p

(3) 

The number is represented as a set of coefficients 
1 2 1 2,  , , ,  ,  k k kb b b b b  in redundant GPS code. The 

analysis of the (3) expression shows that only the two highest 
coefficients of GPS 1kb  and 2kb  are multiplied by the value 
of the working range when representing the number A .  
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If the condition such that the A  number belongs to the 
working range, i.e. when workA P , the expression (3) takes 
the form  

  

 

1 2 1 1 2 1

1 1 2 1 2 1 2 1

1 2 1 1 2 1 1

... ( ... )

( ... ) ( ... )

... ( ... ) 0 0 .

k k

k k k k k

k k work work k

A b b p b p p p

b p p p p b p p p

b b p b p p p p
  (4) 

 
In accordance with the expression (4) it is got 

1 2  ,  ,  ...,  ,  0,  0kA b b b . Thus, it is obvious that if the 
highest coefficients of the generalized polyadic system are 
equal to zero, then the corresponding number belongs to the 
working range. If the range of numbers that can be represented 
in the RNS code and generalized system polyadic match, then 
the equality 
 
 1 2 1 2 1 2 1 2( , ,..., , , ) ( , ,..., , , )k k k k k kb b b b b  (5) 
 
In this, the values of GPS coefficients satisfy the condition  
 0 1i ib p  , (6) 
 
where   1,  2, , 2i k .  
 

Thus, the coefficients of the GPS vary in the field (ring) on 
the corresponding module pi. Consider the algorithms that 
allow to calculate the GPS coefficients. 

III. CALCULATION THE GPS COEFFICIENTS 
An iterative algorithm is presented for calculating GPS 

coefficients in [5]. Analysis of the expression (3) shows that it 
is possible to use the following algorithm for obtaining the 
coefficients of the GPS: 
 

1) The initial value of the number A is divided by the first 

base p1. The resulting residue 1
1

Ab rest
p

 is the first GPS 

coefficient. 

2) The quotient 1
1

AA
p

 is divided by the second 

base 2p . The resulting residue 1
2

2

A
b rest

p
 is the second 

GPS coefficient. 

3) The quotient 1
2

2

A is divided by the third base 3p . 

The resulting residue 2
3

3

b rest is the third coefficient of 

the GPS. 

4) The quotient from the previous step 2
1

1

k
k

k

A
A

p
is the 

kb  GPS coefficient. 

Consider an example explaining the considered algorithm 
of calculating GPS coefficients. As working bases it is chosen 

1 2 3 47,   17,    23,   31p p p p . 

An arbitrary number   14237A  is chosen, which 
belongs to the working range  84847workP  . Then the code 
of the GPS number has the form 1 2 3 4  ,  ,  ,  A b b b b . 

To calculate the first GPS coefficient it is 

determined 1
1

14237 6
7

Ab rest rest
p

. In this quotient 

is 1
1

14237 2033
7

AA
p

. 

To calculate the second GPS coefficient it is determined 

1
2

2

2033 10
17

A
b rest rest

p
. In this quotient is 

1
2

2

2033 119
17

A
A

p
. 

To calculate the third GPS coefficient it is determined 

2
3

3

119 4
23

A
b rest rest

p
. 

The value of the fourth GPS coefficient is 

2
4

3

119 5
23

A
b

p
. 

Thus, the number A , represented in the generalized 
polyadic system, has the form   6,  10,  4,  5A . Checking 
the correctness of the number A  representation in the GPS: 

1 2 1 3 1 2 4 1 2 3

6 10 7 4 119 5 2737 14237
b b p b p p b p p p  

The result shows the correctness of the number A  
representation in the GPS. However, in a number of 
applications, the transition to the coefficients of the 
generalized polyadic system must be made from the RNS 
code. 

IV. CALCULATION THE GPS COEFFICIENTS FROM THE RNS 
CODE 

An algorithm is presented that makes it possible to 
calculate the GPS coefficients from the RNS code in [1], [5]. 
To determine the coefficients of the generalized polyadic 
system, the following expressions are used:  
 modk k kb rest A p   (7) 
where kA  is determined by the recurrence formula: 
 1 1 1( )j j j jA A w   (8) 

where 1 ; s
j jA A w p  is the formal inverse of the thj  base 

on the ths  base (  s k ); *
1j is a set of residues for all 

modules which numbers are higher than the number 1j ; 
 1,  2,  ...,  j k . 
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In doing so, all operations for calculating the GPS 
coefficients are performed in the finite field arithmetic. 

Using this algorithm for calculating GPS coefficients, 
consider an example. It is chosen 

1 2 3 4 7,   17,   23,   31p p p p  as working bases. Choose 
an arbitrary number A = 14237, which belongs to the working 
range  84847workP  . Then it’s got the code RNS number 

  6,  8,  0,  8A  . The inverse values of jw  , which are used 
in this algorithm, are calculated and presented in Table I. 

TABLE I. FORMAL INVERSE VALUE 

 
According to equality (7), it was found the first coefficient 

of the GPS 1 1 1mod 6b p .  

It is possible to determine a second coefficient GPS, using 
expression (8). In this case, the calculations occur on the basis 
of the code RNS. Then: 

2 1 1 1( ) ((6, 8, 0, 8) (6, 8, 0, 8))(0, 5, 10, 9)
(0, 2, 17, 2)(0, 5, 10, 9) ( , 10, 9, 18).

A A b w
 

As a result, 2 2 10b . 

Hence, one can determine the third GPS ratio using the 
expression (8). Then  

3 2 2 2( ) ((_, 10, 9, 18) ( , 10, 10, 10))( , 0, 19, 11)
( , 0, 22, 8)(_, 0, 19, 11) (_, _, 4, 26).

A A b w

 
As a result, 3 3 4b . 

 One can determine the fourth GPS coefficient, using the 
expression (8). Then  

4 3 3 3( ) ((_, _, 4, 26) (_, _, 4, 4))(_, _, 0, 27)
(_, _, 0, 22)(_, _, 0, 27) (_, _, _, 5).

A A b w
 

As a result, 3 3 4b . 

One can determine the fourth GPS coefficient, using the 
expression (8). Then  

4 3 3 3( ) ((_, _, 4, 26) (_, _, 4, 4))(_, _, 0, 27)
(_, _, 0, 22)(_, _, 0, 27) (_, _, _, 5).

A A b w
 

As a result, 4 4 5b  

Therefore, the number was transferred from the RNS code 
A = (6, 8, 0, 8) to the GPS code A = (6, 10, 4, 5). 

There are other algorithms for converting from modular 
code to GPS code. An iterative algorithm is presented for 
converting to a generalized polyadic system in [5]. To 

implement this algorithm, expression (1) is converted  
to:  
 1 1 2 2 3 2 1 1( ( ... ( )...))n n n nA a p a p a p a p a   (9) 

Then to calculate the coefficients of the GPS are used 
 

 

1 1 1 1 1

1 1

2 1 1 2 2 1 2 2

2 1 2

1 1 1

1

;

;

;n n n n n n n n

n n n

a A A p p A A p

A

a A A p p A A p

A

a A A p p A A p

A

  (10) 

 
It is obvious, the presented algorithm for recalculating the 

code of RNS into the coefficients of the GPS can be 
implemented using modular operations. Analysis of expression 
(10) shows that to perform this algorithm, one needs to 
perform 2 1n  modular operations, where n  is the number 
of bases of the RNS. 

Define a constant in the form of 
 

 11 mod modkj k j k jp p p p    (11) 
 

In this case, the GPS coefficients are calculated as follows  
1 1

2 2 1 12 2

3 3 1 13 2 23 3

1 1 2 2 3 3 1 ( 1)

( ) mod

(( ) ) mod

(( ) ) ) ... ) modn n n n n n n n n

a

a a p

a a a p

a a a a a p

 (12) 

Consider an example of translating the RNS code into a code 
of a generalized polyadic system. As working bases it is 
used 1 2 3 47,   17,   23,   31p p p p . Choose an arbitrary 
number  14237A  , which belongs to the working range 

84847workP  . Then, the RNS code of the number A  is 
represented  6,  8,  0,  8A  . Find constants used in the 
algorithm: 

1
12

1
13

1
14

1
23

1
24

1
34

7 mod17 5

7 mod 23 10

7 mod31 9

17 mod 23 19

17 mod31 11

23 mod 31 27

. 

Based on the presented algorithm, one can obtain the 
following coefficients of the generalized polyadic number  
 
 

 1
  7mod p  

2
  17mod p  

3
  23mod p  

4
 31mod p  

1

1 1
mod iw p p - 5 10 9 

1

2 2
mod iw p p 5 - 19 11 

1

3 3
mod iw p p 4 3 - 27 

1

4 4
mod iw p p 5 11 3 - 
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system:  
1 1 6b ;

2 2 1 12 2 17
( ) mod ((8 6) 5 10.b b p  

3 3 1 13 2 23 3

23

(( ) ) mod

((0 6) 10 10) 19 4

b b b p
. 

4
4 4 1 14 2 24 3 34

31

((( ) ) )

(((8 6) 9 10) 11 4) 27 10

p
b b b b

 

As a result of the conversion, the RNS code of the number 
  6,  8,  0,  8A  is converted into the GPS code of the 

number   6,  10,  4,  10A . This result coincided with the 
result was obtained on the basis of an iterative algorithm. 

However, the considered algorithms are iterative in nature, 
and this fact leads to a decrease in the speed of the non-
modular conversion operation RNS code to GPS code. This 
drawback can be eliminated by the development of the 
algorithm for transform to GPS based on Chinese remainder 
theorem (CRT) [6], [7]. 

V. THE ALGORITHM FOR TRANSFORM TO GPS BASED ON 
CHINESE REMAINDER THEOREM 

According to the CRT, the value of the number is determined 
in the positional numeral systems (PNS).  

 

 1
1

1 mod... k i

k r

i totalr k r
i

A BB PB   (13) 

where iB  is the orthogonal thi  basis value of the modular 
code. 

For implementation the developed algorithm, it is 
necessary to represent the orthogonal bases in the form of GPS 
coefficients. In this case, one can write  

 

1
1 1 1 1

1 2 1 3 1 2 4 1 2 3
1

1
2 2 2 2

2 2 1 3 1 2 4 1 2 3
1

1
3 3 3

3 3 1 2 4 1 2 3
1

1

1

1 ...

0 ...

0 0 ...

0 0 0 0 ... 0

k r

k r i
i
k r

k r i
i

k r

k r i
i

k r
k r

k r k r i
i

B b p b p p b p p p b p

B b p b p p b p p p b p

B b p p b p p p b p

B b p

  (14) 

. 
where j

ib  is the thj  GPS coefficient of the thi  orthogonal 
basis of the RNS code. 

To transfer from RNS code in GPS code, one must first 
multiply the remainder of the modular code by the 
corresponding values of the GPS orthogonal basis coefficients. 
And then add the obtained values module ip  , 

 1,  2,  ...,    i k r , taking into account the number of 
transitions beyond the previous module 1ip . So one  
can get:  

 
1 1

1 2
2 1 2 2 2 2

1 2 3
3 1 3 2 3 3 3 2 3

1 2 3
1 2 3 1

1 ,

( ) mod ,

( ) mod ,
...

( ... ) mod .k r
k r k r k r k r k r k r k r k r

b

b b b p
b b b b p

b b b b b p
  (15) 

where i  – the number of transitions is outside the 

ip ;  1,  2,  ...,    i k r .  
 

It is known that the orthogonal basis can be represented  
as [1], [6] 

total
i i i i

i

P
B m P m

p
. 

To reduce the number of exceedances beyond the base 
limit of the RNS code, a modification of this algorithm allows 
for the calculation of the GPS coefficients. Then  
 

 

1 2

1 2 3

1 2

1 1

1 2
2 1 1 2 2 2 2 2

1 2 3 *
3 1 1 3 2 2 3 3 3 3 2 3

1 2
1 1 2 2

3 *
1

1 ,

( ) mod ,

( ) mod ,

...

( ...

) mod .
k r

p p

p p p

k r k r k rp p

k r k r k r k r k rp

b

b m P m P p

b m P m P m P p

b m P m P

m P p

 (16) 

where j
iP  – thj  GPS coefficient of thi  value of the constant 

iP  RNS code; *
i  – the number of transitions beyond the 

module ip ;  1,  2,  ...,    i k r  . 

In this case, one can use the following representation of the 
constants RNS in the form of GPS  

 

1
1 1 1 1

1 2 1 3 1 2 4 1 2 3
1

1
2 2 2 2

2 2 1 3 1 2 4 1 2 3
1

1
3 3 3

3 3 1 2 4 1 2 3
1

1

1

1 ...

0 ...

0 0 ...

0 0 0 0 ... 0

k r

k r i
i
k r

k r i
i

k r

k r i
i

k r
k r

k r k r i
i

p p p p p p p

p p p p p p p

p p p p p p

p

 (17) 

 
In order to increase the speed of calculating the GPS 

coefficients based on the formulated algorithm, it is possible to 
use CAS-adders [9]. The block diagram calculation of the GPS 
coefficients is represented on the Fig. 1. This block is intended 
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to translate a code combination consisting of six residues into 
a code of a generalized polyadic system. Consider an example 
using the proposed modified algorithm for calculating GPS 
coefficients. Let the mathematical model of Haar’s Discrete 
Wavelet Transform be set, implemented in the RNS. 

 

Fig. 1. Structure of the device for calculating the GPS coefficients 

As the working bases was selected 
1 2 3 4 7,   17,   23,   31p p p p . In implementing two 

reference bases of the algorithm are used 5 41p and 

6 47p . Then the full range is:  163500169totalP . Choose a 
number   14237A  which belongs to the working range 
equal to  84847workP . 

The values of orthogonal bases are calculated and 
represented them in the generalized polyadic number system 
as: 

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

23357167 1, 12, 19, 8, 29, 6 ;

19235314 0, 5, 20, 21, 21, 5 ;

7108703 0, 0, 6, 24, 1, 2 ;

105483980 0, 0, 0, 7, 13, 30 ;

119634270 0, 0, 0, 0, 16, 34 ;

52180905 0, 0, 0, 0, 0, 15 ;

m P

m P

m P

m P

m P

m P

; 

One can use the developed algorithm and perform the 
calculation of the GPS coefficients for the code 
combination   14237  6,  8,  0,  8,  10.43A . This 
combination is fed to the registers RG (Fig. 1). From the last 
output, the remnants of the RNS combination are fed to the 
inputs of the corresponding LUT-tables, which are ROM. The 
data of LUT-tables stores the results of multiplication of the 

residue by constants j
ib  , which are the thj  coefficient of the 

GPS thi  orthogonal basis of the RNS code. 

Consider the calculation of the first remainder of the GPS 
code. The first remainder of the RNS code is immediately fed 
to the output of the GPS coefficient calculation unit. In this 
case, it’s got 1 1b  . When calculating the second GPS 
coefficient, the transformation is performed 

1 2
2 1 2 2 2 2 17

( ) mod 6 12 8 5 10b b b p  
In this case, the number of transitions i  beyond the 2p  

module limits is calculated, which is taken into account when 
calculating the third GPS coefficient.  

In this example, the number of transitions beyond the 
modulus 2 17p  on the first remainder is:  

1
1 1 2
2

2

6 12 4
17

b
p

. 

This indicator for the second remainder is:  
2

2 2 2
2

2

8 5 2
17

b
p

. 

Then the correction value, which must be taken into 
account when calculating the coefficient 3b , is equal to 2 6 . 
For calculating the third GPS coefficient, one can use the 
expression (15). Then 

 
1 2 3

3 1 3 2 3 3 3 2 3

23

23

( ) mod

(6 19 4) (8 20 2) 0 6

3 1 0 4.

b b b b p

 

In this case, the number of transitions i  beyond the 3p  
module limits is calculated, which is taken into account when 
calculating the fourth GPS coefficient. 

In this example, the number of transitions beyond the 
modulus 3 23p  in the first remainder is:  

1 1
1 1 3 2
3

3

6 19 4 5
23

b
p

. 

This indicator for the second remainder is: 

 
2 2

2 2 3 2
3

3

8 20 2 7
23

b
p

. 

 
At the same time, the indicator for the third remainder is 

equal 3
3 0 .  

Since the sum  
1 1 2 2 3

1 3 2 2 3 2 3 3 3(( ) ( ) ) mod 4b b b p , 

then in implementing this operation, there were no transitions 
beyond the 3p  module. Then it’s got 3 0 . Then the 
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correction value, which must be taken into account when 
calculating the coefficient 4b , is equal to 

1 2 3
3 3 3 3 3 12 .  

The remaining GPS coefficients are calculated in a similar 
way. The results of this procedure are represented in Table II.  

TABLE II. TRANSLATION FROM MODULAR CODE TO GPS CODE 

RNS b1 1 b2 2 b3 3 b4 4 b5 5 b6 

6 6 0 4 4 3 5 22 1 11 4 40 
8 0 0 6 2 1 7 20 5 9 4 44 
0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 25 1 23 2 7 
10 0 0 0 0 0 0 0 0 37 3 14 
43 0 0 0 0 0 0 0 0 0 0 34 

sum 6 0 10 0 4 0 67 2 80 2 139 
b(i) 6 0 10 6 4 12 5 9 0 15 0 

 

As a result of the transfer from the code of RNS to the GPS 
code 

  14237  6,  8,  0,  8,  10.43

 6,  10,  4,  5,  0,  0 .
RNS

GPS

A
  

Analysis of Table 2 shows, this code combination does not 
contain errors. This is determined by the fact that the highest 
GPS coefficients, that is, 5  0b  and 6  0b  . 

VI. ERROR CORRECTION  
Consider the case of an error occurring. Let the error in this 

code combination occur in the third base and its depth is equal 
3 1. Then the forbidden combination has the form 

 *   6,  8,  1,  8,  10.43A . One can calculate the coefficients 
of the GPS. 

 Obviously, the first remainder of the RNS code is 
immediately fed to the output of the GPS coefficient 
calculation unit, then 1 1b . When calculating the second 
GPS coefficient, the transformation is performed  

 
1 2

2 1 2 2 2 2 17
( ) mod 6 12 8 5 10b b b p . 

In this case, the number of transitions i  beyond the 2p  
module limits is calculated, which is taken into account when 
calculating the third GPS coefficient. 

In this example, the number of transitions beyond the 
modulus 2  17p  on the first remainder is: 

1
1 1 2
2

2

6 12 4
17

b
p

 

 
The indicator for the second remainder is:  

2
2 2 2
2

2

8 5 2
17

b
p

Then the correction value, which must be taken into 
account when calculating the coefficient 3b , is equal to 

2 6 . 

Perform the calculation of the third GPS coefficient. For 
this one can use the expression (15). Then: 

1 2 3
3 1 3 2 3 3 3 2 3

23

23

( ) mod

(6 19 4) (8 20 2) (1 6)

3 1 6 10.

b b b b p

In this case, the number of transitions i  beyond the 3p  
module limits is calculated, which is taken into account when 
calculating the fourth GPS coefficient.  

In this example, the number of transitions beyond the 
modulus 3 23p  in the first remainder is: 

 
1 1

1 1 3 2
3

3

6 19 4 5
23

b
p

 

The indicator for the second remainder is: 
2 2

2 2 3 2
3

3

8 20 2 7
23

b
p

 

At the same time, the indicator for the third remainder is 
equal 3

3 0 . Since the sum 

1 1 2 2 3
1 3 2 2 3 2 3 3 3(( ) ( ) ) mod 4b b b p , 

 
then in implementing this operation, there were no transitions 
beyond the p3 module. Then it’s got 3 0 . Then the 
correction value, which must be taken into account when 
calculating the coefficient 4b , is equal to 
 

1 2 3
3 3 3 3 3 12 . 

 
The remaining GPS coefficients are calculated in a similar 

way. The results of this procedure are represented in Table III.  

TABLE III. TRANSLATION FROM MODULAR CODE TO GPS CODE 

 
As a result of the transfer from the code of RNS to the GPS 

code 

RNS b1 1 b2 2 b3 3 b4 4 b5 5 b6 

6 6 0 4 4 3 5 22 1 11 4 40 
8 0 0 6 2 1 7 20 5 9 4 44 
1 0 0 0 0 6 0 24 0 1 0 2 
8 0 0 0 0 0 0 25 1 23 2 7 
10 0 0 0 0 0 0 0 0 37 3 14 
43 0 0 0 0 0 0 0 0 0 0 34 

sum 6 0 10 0 10 0 91 2 81 2 141 
b(i) 6 0 10 6 10 12 29 9 1 15 2 

______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 484 ----------------------------------------------------------------------------



*  6,  8,  1,  8,  10, 43
 6,  10,  10,  29,  1,  2

( )RNS

GPS

 

The analysis of Table 3 shows that this code combination 
contains errors. This is determined by the fact that the highest 
GPS coefficients are nonzero, that is, 5  1b and 6 2b  . 
Since the two control bases are used, such a redundant RNS 
code can fix 100% of one-time errors. 

In this, the values 5  1b   and 6  2b  are fed to the input 
of the memory block, in which the values of the error vectors 
are stored. The error vector   0,  0,  1,  0,  0,  0e  is stored 
at this address. To correct the error, it is necessary to subtract 
the error vector from the error code combination of the RNS 
code. According to the following expression  

*    6,  8,  1,  8,  10, 43  0,  0,  1,  0,  0,  0

 6,  8,  0,  8,  10,  43 .

( )
 

Thus, one can conclude that the proposed algorithm for 
converting numbers from the code of RNS to the code of GPS 
is effective in terms of quick response. It is possible to 
unequivocally determine the fact of the error and carry out its 
correction. 

VII. CONCLUSION 
If errors of greater multiplicity occur (for the considered 

example, the multiplicity of errors is 1), it is possible to ensure 
the diversity of the DF structure by redistributing the working 
and control bases of the RNS code. When one control base is 
outputted to the operational, the diversity of the DF structure is 
ensured and one control base will ensure that all one-time 
errors are detected while preserving the DF function without 
reducing the range of processed data. 

The researches have been shown the feasibility of applying 
a multivariate finite field arithmetic to provide the required 
degree of structural and informational diversity of digital filter 
structures [11], [12]. 
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