
Mapping the NGSI-LD ontext odel on op of
a SPARQL Event Processing Architecture:

mplementation uidelines

Fabio Viola∗†�, Francesco Antoniazzi†, Cristiano Aguzzi†, Carlos Kamienski‡ Luca Roffia†
∗Centro Nazionale per la Ricerca e Sviluppo nelle Tecnologie Informatiche e Telematiche

Istituto Nazionale di Fisica Nucleare (INFN-CNAF), Bologna, Italy

fabio.viola@cnaf.infn.it
† University of Bologna, Bologna, Italy

{name.surname}@unibo.it
‡ Federal University of ABC (UFABC), Santo Andrè, Brazil

cak@ufabc.edu.br

Abstract—NGSI-LD is an open specification released by ETSI
which proposes an information model and an API for an easy to
use and standard management of context information. The NGSI-
LD information model is framed within an ontology and adopts
JSON-LD as serialization format for context information. This
paper presents an approach to the implementation of the NGSI-
LD specification over a SPARQL Event Processing Architecture.
This work is being developed within the European-Brasilian
H2020 SWAMP project focused on implementing an Internet of
Things platform providing services for smart water management
in agriculture.

I. INTRODUCTION

SWAMP (Smart WAter Management Platform, http://

swamp-project.org) is a EU funded research project exploiting

Internet of Things (IoT) [1] technologies to solve issues related

to water management. More specifically, SWAMP is aimed

at reducing water wastage caused by leakages in distribution

and irrigation systems or by inefficiencies of the irrigation

methods. In fact, surface irrigation (the most common tech-

nique) wastes water by irrigating areas where no plants live.

Localized irrigation is instead more efficient; nonetheless,

farmers usually tend to use more water than needed to avoid

under-irrigation. The SWAMP project investigates on how to

employ technology to estimate the amount of water needed by

the plants to efficiently use water. This project currently counts

on the participation of industrial and academic partners from

Italy, Finland, Spain and Brazil.

Among the technologies adopted in SWAMP there are

FIWARE [2] and SEPA [3].

FIWARE (https://www.fiware.org/) is a EU-funded initiative

born in the context of the FI-PPP programs (Future Internet

Public Private Partnership) to support the growth of EU

global competitiveness through an innovative infrastructure for

cost-effective creation and delivery of services [4]. FIWARE

provides a platform with a set of Generic Enablers for the

development of smart applications [5]. FIWARE is currently

being used in many real life application, among which we

mention SmartPort [6] where it is employed to manage and

monitor the seaport of Las Palmas de Gran Canaria. For what
concerns the management of context information, FIWARE
relies on the NGSI-LD open specification [7] r eleased by
ETSI. NGSI-LD defines the context information model and the
API to produce, consume and subscribe to context information.

SEPA (short for SPARQL Event Processing Architec-

ture) [3], is an architecture supporting the development of

dynamic linked data applications and services. It provides a

publish/subscribe layer on top of standard SPARQL endpoints,

granting the ability to subscribe to changes of a given context

over a Linked Data network.

Both NGSI-LD and SEPA APIs aim at fulfilling t he re-
quirements of Tim Berners-Lee’s 5-star model [8]; according
to this model, in fact, data should be visible, structured and
described according to standards and its meaning is clarified by
a common definition (i.e., an ontology). If on the one hand the
NGSI-LD specification a ims a t s implifying t he management
of context information (e.g., by limiting the query language
to simple property-value matching), on the other hand SEPA
provides full support to the SPARQL language for updating,
retrieving and subscribing to context information. This paper
proposes a merge of the two approaches to exploit the benefits
of both. This is achieved through a set of guidelines for
implementing an NGSI-LD interface over SEPA.

After an overview of the related works in Section II, the
background knowledge needed to read the paper is presented
(Section III). Section IV proposes an in-depth analysis of
the design guidelines for the implementation of the NGSI-

LD HTTP binding on top of a SEPA broker. Eventually, in
Section V, conclusions are drawn.

II. RELATED WORK

The Internet of Things is profundly changing a wide range

of research areas, among which agriculture. IoT applications

are usually considered as three-layered architectures composed

by a sensing (or perception) layer, a networking layer and

an application (or service) layer [9]. The new generation of

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

agricultural applications based on the IoT paradigm must face

several challenges involving all of these layers. An example

is given by security that involves the sensing layer (i.e., the

hardware and its acquisition methods), the networking layer

(and the way information is transferred) and the application

layer that must ensure read/write access only to the users with

the right permission. A big challenge of the networking layer

is represented by the quality of the transmission. Wireless

communication helps to reduce the costs of wiring large plots

of land. Nevertheless, communication may be affected by the

environmental conditions (e.g., humidity, temperature) as well

as obstacles between transmitters and receivers. A second

challenge that cannot be neglected is that of interoperability,

due to the proliferation of devices and protocols caused by the

IoT [10], [11]. All of these challenges are well surveyed by

Tzounis et al. [12].

Many IoT platforms are currently available and employed

in agricultural applications. OpenIoT [13], for example, is the

platform supporting Phenonet, an Australian wireless sensor

network collecting information over a field of experimental

crops with the aim to provide scientists and farmers with

a platform for high resolution crop analysis in real world

growing conditions [14]. Karim et al. in [15] proposed an

application prototype for precision farming based on the IoT

platform Ubidots. ThingSpeak has been used by Mondal and

Rehena in [16], where an intelligent field monitoring system is

proposed. Soil humidity and temperature are measured by their

platform in order to automate irrigation. As regards the adop-

tion of semantic technologies in the IoT for agriculture, the

work by Yuan et al. [17] (in collaboration with ChinaMobile)

deserves a mention. In their paper, a semantic framework to

improve farmers’ ability of decision making is proposed (e.g.,

when to fertilize).

III. BACKGROUND

This Section introduces the two main technologies behind

this Research work: FIWARE, and its specification for the

information model (i.e., NGSI-LD) are detailed in Subsec-

tion III-A; SEPA and the underlying technologies borrowed

from the Semantic Web are presented in Subsection III-B

A. FIWARE and NGSI-LD

FIWARE was born to create an open source platform that

can be assembled together with other third-party components

to speed up the development of IoT-Cloud solutions. The

platform consists of a set of software agents called Generic

Enablers (GE) that must be defined by GE Open Specifica-

tions. They serve as a public royalty-free blueprint that GE

implementations (GEi) must follow to be considered as part

of the platform. Furthermore, for every specification, FIWARE

provides at least one open source reference implementation

aiming at fostering the adoption of the related solution within

the community.

FIWARE has been already employed in practical IoT ap-

plications. For example in [4] where the authors describe the

process of building a remote e-health monitoring platform for

caregivers providing practical software architecture insights.

Moreover [18] reports the advantages of using FIWARE in

the development of an IoT precision agriculture application in

respect to another cloud solution.

The advantage of using FIWARE is that software archi-

tects can exploit a consolidated set of open-source solutions

aimed at handling specific IoT problems. In fact, several

GEs have been developed to address different needs (https:

//catalogue-server.fiware.org/), like storing time series, manag-

ing sensor networks, messaging, big data analysis etc. Among

these, one of the most relevant is the Orion Context Broker.

Orion is aimed at addressing data interoperability issues

among different IoT silos. This is achieved through a publish-

subscribe mechanism decoupling data producers and con-

sumers, and an information model based on linked data. The

latter follows the NGSI-LD specification, now published as a

recommendation in [19].

NGSI-LD defines three levels of data abstraction: the core

meta-model, cross domain model and the domain specific

model.

The core meta-model defines the atomic minimal infor-

mation that can be published in Orion: entities, properties

and relationships. In particular the semantic of these abstract

components is very close to the Entity-Relationship model of

relational databases. Everything in Orion is an entity that may

have zero or more properties and may be linked to others with

zero or more relationships. Properties and relationships may

have, in turn, properties (e.g. the property WaterQuality may

have a property Accuracy).
To contextualize data and to be compliant with the Linked

Data world, every entity should specify a context binding the

data representation to a vocabulary. Moreover, vocabularies

can be published trough Orion and linked through URLs to

entity instances.

On the other hand the cross domain model is more focused

on concepts like time and space. Among others it contains the

concept of geolocation, creation time and time intervals.

Finally the domain specific model should be more tighten to

the actual application. For example, Fig. 1 reports a possible

data model for a parking utility application.

B. SEPA and SPARQL 1.1 Subscribe Protocol

The idea of Semantic Web was born within the vision out-

lined in [20] and [21]. Various new concepts were introduced

to support this Web revolution, intending to transform the

web into something that simultaneously would fit the needs of

human users, but yet would also be machine understandable.

Since then, a lot of research and work has been done. For

instance, it’s worth citing the semantic repositories hosted

into DBpedia (https://wiki.dbpedia.org/) and WikiData (https:

//query.wikidata.org/), which contain millions of triples and

link information on a plethora of topics. Special platforms have

also been developed, like LOV (Linked Open Vocabularies,

https://lov.linkeddata.es/dataset/lov) [22]. LOV contributes to

foster the use of semantic ontologies [23], which are an

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 494 --

Fig. 1 The NGSI-LD information model (Fig. 4.2.3-1 in [19])

essential tool to grant interoperability at information level

between services and systems over the time [24].

Interoperability at information level is the key concept on

which SEPA, and all its predecessors of the Smart-M3 family

[25], [26], [27], [28] pivot. The term “interoperability”, as a

matter of fact, includes a reference to the active and responsive

behaviour of systems [29]: what if, instead of semantically

codify only the internal data of the system, its whole activity

and information flow was semantically defined?

SEPA implements an architecture to give an answer to this

question. In particular, it is made of two sections addressing

on one hand the storage of semantic data, the information flow

on the other.

SEPA stores the semantic data in an underlying RDF

graph contained in a SPARQL endpoint like Blazegraph

(https://www.blazegraph.com/), Fuseki (https://jena.apache.

org/documentation/fuseki2/) and Virtuoso (https://virtuoso.

openlinksw.com/rdf/). At this level, interoperability between

systems is reached by formatting the graph (also known as

Knowledge Base) according to one or more ontologies, so

that one can consistently query and use the data produced

by the other. The graph represents the data-context of the

application, and can be manipulated by the entities running: it

is possible to add new pieces to the graph, and remove them.

Or, even simpler, it is possible to check which are the triples

in it. All those tasks can be performed through the SEPA,

by posting SPARQL Updates and Queries according to the

SPARQL 1.1 Secure Event Protocol (http://mml.arces.unibo.

it/TR/sparql11-se-protocol.html).

The novelty of SEPA, however, is its subscription engine on

top of the RDF endpoint. The setup of such engine enriches

the knowledge base with a semantic publish-subscribe layer

leveraging the graph’s contents. The internal mechanisms of

the subscription engine are out of the scope of this paper,

that instead focuses on how SEPA fosters interactions through

SPARQL 1.1 Subscribes. Subscriptions, in particular, work as

follows:

1) First of all, a subgraph within the knowledge base has to

be defined by writing the corresponding SPARQL pattern,

as it is done for all queries;

2) Secondly, a communication channel is opened from the

client towards the SEPA engine, by which the subscrip-

tion is declared;

3) A first result is received containing the actual result of

the query. The client can, therefore, synchronize its own

view of the current context with the one contained in the

RDF store;

4) Eventually, the publish-subscribe mechanism is started:

from now on, the communication channel will be used

to notify changes that match the chosen pattern in the

knowledge base. This means that the client is going to be

asynchronously warned that new items have been added

and/or some items have been removed from the graph.

Then, the usage of that information is up to the client’s

business logic.

As for February 2019, SEPA has been implemented, main-

tained and released in a Java version available on Github

(https://github.com/arces-wot/SEPA). The development, how-

ever, is still ongoing targeting the study of new Subscription

Evaluation and Triggering algorithms, to enhance its perfor-

mances. This is a great challenge that is located at the core

of the SEPA project, i.e., the detection as fast as possible of

the subscriptions that have to be triggered given the received

update request.

To use SEPA, according to the specifications of the

SPARQL 1.1 SE Protocol previously cited, Java, JavaScript

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 495 --

and Python3 APIs have been developed, while C++ and C (for

constrained and IoT devices like Arduino) are being scheduled

for the future. All those APIs, nevertheless, follow the stan-

dards required by SEPA to communicate: HTTP(S) GETs for

queries, POST for updates; Websocket(S) for subscriptions. A

different SEPA implementation, realized using CoAP protocol,

has also been studied in [30].

Fig. 2 depicts the relationship between SEPA and SEPA-

based applications. Applications read/write information (i.e.,

access the KB) according to the rules expressed by one or

more ontologies. The access is mediated by SEPA, that stands

on top of the knowledge base and provides an interface for

updates and subscriptions. Moreover, whenever a change in

the KB is detected, SEPA generates the proper notifications

for the related subscriptions.

Fig. 2 SEPA and SEPA-based applications

IV. NGSI-LD HTTP BINDING API IMPLEMENTATION

GUIDELINES

This section discusses on the implementation of the

NGSI-LD API [7] over SEPA (see Section III-B). In

particular, the implementation is focused on the HTTP

binding of the NGSI-LD API (see Section 6 in [7]) which

consists in 23 REST calls enumerated in Table I. For

each REST call it is specified the HTTP verb (i.e., POST,

GET, DELETE, PATCH) and the URI of the relative path

(e.g., /entities) to be appended to the main URI (i.e.,

NGSI-LD recommends the following format for the URI:

http(s)://host/apiRoot/apiName/apiVersion).

For example, a new entity can be created by making use

of API 1 which consists in a HTTP POST at an URI like

https://mml.arces.unibo.it/swamp/ngsi-ld/

v1/entities, having as body of the request the JSON-LD

representation of the entity to be created.

The NGSI-LD API allows to manage context informa-

tion and context sources (i.e., represented according to the

NGSI-LD information model described in [7], Section 4.2).

Within the NGSI-LD information model, the context is rep-

resented by entities characterized by properties and linked

together through relationships. Table I summarizes some of

the most relevant APIs (i.e., APIs for the batch creation/up-

date/deletion of entities and attributes, including the temporal

representation of an entity, are not listed) which allow to

provide (APIs 1-6), consume (APIs 7-8) and subscribe (APIs

9-13) to context information. NGSI-LD assumes that context

information is produced by context sources which can register

(APIs 14-16) to a context broker and that can be discovered

(APIs 17-18) by other clients. As for context information, also

for context sources the API provides a notification mechanism

(APIs 19-23).

The first step of the implementation would consist in

mapping each API with the corresponding SEPA primitive

(i.e., SPARQL 1.1 Update [31], SPARQL 1.1 Query [32],

SPARQL 1.1 Subscribe [33]). The envisioned mapping is

shown in Table I. For example, the creation of an entity (API

1) would correspond to a SPARQL 1.1 Update (i.e., a INSERT

DATA primitive), while retrieving a particular entity (API 7)

would be implemented through SPARQL 1.1 Queries (i.e., a

recursive series of CONSTRUCTs primitives). In some cases

an API would be mapped in one or more SPARQL 1.1 queryies

followed by a SPARQL 1.1 Update. For example, deleting an

entity (i.e., API 2) would be implemented by retrieving the

corresponding RDF graph (i.e., query) and deleting all the

triples included in the graph (i.e., update).

The modular architecture of a SEPA broker allows support-

ing new protocols by implementing new gates (see NGSI-

LD gate in Fig. 3). In the case of the NGSI-LD HTTP

Fig. 3 Extension of the SEPA broker to implement the NGSI-LD

protocol

binding, the corresponding SEPA gate is aimed at mapping

NGSI-LD HTTP requests into SPARQL primitives and serial-

ize/deserialize RDF in/from JSON-LD. Thanks to the publish-

subscribe mechanism implemented by a SEPA broker, support-

ing the NGSI-LD subscriptions, both for context information

and context sources, would be straightforward. Considering

for example APIs 9 and 19, these would correspond to a

SPARQL 1.1 Update (i.e., the storage of the subscription

details into the underpinning SPARQL endpoint), followed

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 496 --

TABLE I NGSI-LD HTTP BINDING API

Context Information

Entitites Provisioning Createa POST /entities

Deletea,b DELETE /entities/entityId

Attributes Provisioning

Appenda POST /entities/entityId/attrs
Updatea PATCH /entities/entityId/attrs
Deletea DELETE /entities/entityId/attrs/attrId
Partial updatea PATCH /entities/entityId/attrs/attrId

Entitites Consumption Retrieveb GET /entities/entityId
Queryb GET /entities

Subscription

Createa,c POST /subscriptions

Queryb GET /subscriptions

Retrieveb GET /subscriptions/subscriptionId
Updatea,c PATCH /subscriptions/subscriptionId
Deletea,c DELETE /subscriptions/subscriptionId

Context Source

Registration
Registera POST /csource

Updatea PATCH /csource/registrationId
Deletea DELETE /csource/registrationId

Discovery Queryb GET /csource

Retrieveb GET /csource/registrationId

Subscription

Createa,c POST /csourceSubscriptions

Queryb GET /csourceSubscriptions

Updatea,c PATCH /csourceSubscriptions/subscriptionId
Retrieveb GET /csourceSubscriptions/subscriptionId
Deletea,c DELETE /csourceSubscriptions/subscriptionId

(a) Mapped as SPARQL 1.1 Update (b) Mapped as SPARQL 1.1 Query (c) Mapped as SPARQL 1.1 Subscribe

by a SPARQL 1.1 Subscribe (http://mml.arces.unibo.it/TR/

sparql11-subscribe.html) (i.e., the activation of the new sub-

scription). The subscription mechanism proposed by NGSI-LD

assumes that notifications are sent to an endpoint whose URL

is specified at subscription time. This would require the NGSI-

LD gate to map the notifications directed to the NGSI-LD

interface to be mapped into HTTP POST requests as specified

in [7], Section 6.3.8. Presenting a complete implementation

of the NGSI-LD protocol is out of the scope of this work.

Instead, the following sections focus on two APIs that can

be considered as representative of the overall implementation

process. The first is the creation of a new entity (API 1), while

the second is the retrieval of an entity given its identifier (API

7). The former provides the details on how to perform the

conversion from a JSON-LD representation of an entity into

a set of RDF triples, while the latter focuses on the opposite

way, namely serializing a set of triples into a representation

compliant with NGSI-LD.

The following sections consider as example the entity

description in Listing 1 (inspired by the examples found in

[7], Annex C).

{"@id": "urn:ngsi-ld:Vehicle:V123",

"@type": "Vehicle",

"speed": {

"@type": "Property",

v a l u e ": 23,

"accuracy": {

"@type": "Property",

v a l u e ": 0.7 },

"providedBy": {

"@type": "Relationship",

"object": "urn:ngsi-ld:Person:Bob"}},

"closeTo": {

"@type": "Relationship",

"object": "urn:ngsi-ld:Building:B1234"},

"location": {

"@type": "GeoProperty",

v a l u e ": {

"@type": "Point",

"coordinates": [-8,44]}},

"@context": [

"Property":"http://uri.etsi.org/ngsi-ld/Property",
"Relationship":"http://uri.etsi.org/ngsi-ld/Relationship",

"GeoProperty":"http://uri.etsi.org/ngsi-ld/GeoProperty",

"object":"http://uri.etsi.org/ngsi-ld/hasObject",

"value":"http://uri.etsi.org/ngsi-ld/hasValue",

"location":"http://uri.etsi.org/ngsi-ld/location",

"coordinates":"http://uri.etsi.org/ngsi-ld/coordinates",

"Point":"https://purl.org/geojson/vocab#Point",

"Vehicle":"http://uri.fiware.org/ns/datamodels/Vehicle",

"speed":"http://uri.fiware.org/ns/datamodels/speed",

"accuracy":"http://uri.fiware.org/ns/datamodels/accuracy",

"providedBy":"http://uri.fiware.org/ns/datamodels/

providedBy",

"closeTo":"http://uri.fiware.org/ns/datamodels/closeTo"]}

Listing 1 Example of a JSON-LD representation of an

A. Entity creation: from JSON-LD to RDF

According to the NGSI-LD API specifica-

tion, the entity described in Listing 1 can be

created by making an HTTP POST (e.g., to

https://mml.arces.unibo.it/swamp/ngsi-ld/

v1/entities) having as body the above mentioned

JSON-LD. The corresponding RDF graph is shown in Fig. 4.

The N-TRIPLE [34] serialization can be obtained through

the Java method in Listing 2 which uses the functionali-

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 497 --

Fig. 4 The RDF graph corresponding to the NGSI-LD entity representation in Listing 1 can be obtained through a reification process

ties offered by the Apache Commons RDF libraries (http:

//commons.apache.org/proper/commons-rdf/).

import java.io.IOException;

import java.io.InputStream;

import java.util.concurrent.ExecutionException;

import java.util.concurrent.TimeUnit;

import java.util.concurrent.TimeoutException;

import org.apache.commons.rdf.api.Dataset;

import org.apache.commons.rdf.api.RDFSyntax;

import org.apache.commons.rdf.api.Triple;

import org.apache.commons.rdf.jsonldjava.JsonLdRDF;

import org.apache.commons.rdf.jsonldjava.experimental.

JsonLdParser;

public static String jsonLd2NQuads(InputStream in, String

baseIRI, int timeout) throws IllegalStateException,

IllegalArgumentException, InterruptedException,

ExecutionException, TimeoutException, IOException {

String nquads = "";

// Parse input stream as JSON-LD
JsonLdRDF ld = new JsonLdRDF();

Dataset ldDataset = ld.createDataset();

new JsonLdParser().base(baseIRI).source(in).contentType(

RDFSyntax.JSONLD).target(ldDataset).parse().get(timeout

,TimeUnit.SECONDS);

// Serialize the results as NQUADS (NTRIPLES as default
graph is used)

for (Triple triple : ldDataset.getGraph().iterate()) {

nquads += triple.getSubject().ntriplesString() + " " +

triple.getPredicate().ntriplesString() + " " +

triple.getObject().ntriplesString() + " .\r\n";}

return nquads;

}

Listing 2 Java code to convert a JSON-LD into NTRIPLE

The output produced is shown in Listing 3 and it would

be embedded in the body of a SPARQL 1.1 INSERT DATA

update.

<urn:ngsi-ld:Vehicle:V123> <http://www.w3.org/1999/02/22-

rdf-syntax-ns#type> <http://uri.fiware.org/ns/

datamodels/Vehicle> .

<urn:ngsi-ld:Vehicle:V123> <http://missing/closeTo> _:b0 .

<urn:ngsi-ld:Vehicle:V123> <http://uri.etsi.org/ngsi-ld/

location> _:b1 .

<urn:ngsi-ld:Vehicle:V123> <http://uri.fiware.org/ns/

datamodels/speed> _:b3 .

_:b0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <

http://uri.etsi.org/ngsi-ld/Relationship> .

_:b0 <http://uri.etsi.org/ngsi-ld/hasObject> <urn:ngsi-ld:

Building:B1234> .

_:b1 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <

http://uri.etsi.org/ngsi-ld/GeoProperty> .

_:b1 <http://uri.etsi.org/ngsi-ld/hasValue> _:b2 .

_:b2 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <

https://purl.org/geojson/vocab#Point> .

_:b2 <http://uri.etsi.org/ngsi-ld/coordinates> "-8"ˆˆ<http

://www.w3.org/2001/XMLSchema#integer> .

_:b2 <http://uri.etsi.org/ngsi-ld/coordinates> "44"ˆˆ<http

://www.w3.org/2001/XMLSchema#integer> .

_:b3 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <

http://uri.etsi.org/ngsi-ld/Property> .

_:b3 <http://missing/accuracy> _:b4 .

_:b3 <http://missing/providedBy> _:b5 .

_:b3 <http://uri.etsi.org/ngsi-ld/hasValue> "23"ˆˆ<http://

www.w3.org/2001/XMLSchema#integer> .

_:b4 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <

http://uri.etsi.org/ngsi-ld/Property> .

_:b4 <http://uri.etsi.org/ngsi-ld/hasValue> "7.0E-1"ˆˆ<http

://www.w3.org/2001/XMLSchema#double> .

_:b5 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <

http://uri.etsi.org/ngsi-ld/Relationship> .

_:b5 <http://uri.etsi.org/ngsi-ld/hasObject> <urn:ngsi-ld:

Person:Bob> .

Listing 3 List of triples produced as deserialization of the

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 498 --

B. Entity retrieval: from RDF to JSON-LD

According to the NGSI-LD API (see API 7 in Table I),

the context information related to an entity (e.g., the entity

identified by urn:ngsi-ld:Vehicle:V123) can be re-

trieved by making an HTTP POST at the entity URI (e.g.,

https://mml.arces.unibo.it/swamp/ngsi-ld/

v1/entities/urn:ngsi-ld:Vehicle:V123). As the

NGSI-LD data model assumes that properties and relation-

ships can be themselves characterized by other properties

and relationships (see for example the accuracy property and

the providedBy relationship related to the speed property in

Fig. 4), retrieving the RDF graph related to an entity is a

incremental process which starts from the entity identifier

(e.g., urn:ngsi-ld:Vehicle:V123). A possible solution

is based on extending the SPARQL 1.1 Query template shown

in Listing 4 (i.e., $entityId would be replaced by the

current entity identifier) until the following condition is met:

for each blank node which is object of a triple there must be
at least one triple in which that blank node is subject.

CONSTRUCT {?entity ?p0 ?o0 . ?o0 ?p1 ?o1 ...} WHERE {{

VALUES ?entity {$entityId} ?entity ?p0 ?o0}

UNION {

VALUES ?entity {$entityId} ?entity ?p0 ?o0 . ?o0 ?p1 ?o1}

...

}

Listing 4 SPARQL query to construct the triples

With reference to the entity described in Listing 1, the

corresponding RDF graph (see Fig. 4) can be constructed by

extending the query template two times as shown in Listing 5.

*** First iteration ***

CONSTRUCT {?entity ?p0 ?o0}

WHERE {{

VALUES ?entity {<urn:ngsi-ld:Vehicle:V123>}

?entity ?p0 ?o0}

}

Results (first triples set)

<urn:ngsi-ld:Vehicle:V123> <http://www.w3.org/1999/02/22-

rdf-syntax-ns#type> <http://uri.fiware.org/ns/
datamodels/Vehicle> .

<urn:ngsi-ld:Vehicle:V123> <http://missing/closeTo> _:b0 .

<urn:ngsi-ld:Vehicle:V123> <http://uri.etsi.org/ngsi-ld/

location> _:b1 .

<urn:ngsi-ld:Vehicle:V123> <http://uri.fiware.org/ns/

datamodels/speed> _:b3

*** Second iteration ***

CONSTRUCT {?entity ?p0 ?o0 . ?o0 ?p1 ?o1}

WHERE {{

VALUES ?entity {<urn:ngsi-ld:Vehicle:V123>}

?entity ?p0 ?o0}

UNION {

VALUES ?entity {<urn:ngsi-ld:Vehicle:V123>}

?entity ?p0 ?o0 . ?o0 ?p1 ?o1}

}

--

Results (triples to be added to the triples set)

--

_:b0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <
http://uri.etsi.org/ngsi-ld/Relationship> .

_:b0 <http://uri.etsi.org/ngsi-ld/hasObject> <urn:ngsi-ld:

Building:B1234> .

_:b1 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <
http://uri.etsi.org/ngsi-ld/GeoProperty> .

_:b1 <http://uri.etsi.org/ngsi-ld/hasValue> _:b2 .

_:b3 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <
http://uri.etsi.org/ngsi-ld/Property> .

_:b3 <http://missing/accuracy> _:b4 .

_:b3 <http://missing/providedBy> _:b5 .

_:b3 <http://uri.etsi.org/ngsi-ld/hasValue> "23"ˆˆ<http://

www.w3.org/2001/XMLSchema#integer>

*** Third iteration ***

CONSTRUCT {?entity ?p0 ?o0 . ?o0 ?p1 ?o1 . ?o1 ?p2 ?o2}

WHERE {{

VALUES ?entity {<urn:ngsi-ld:Vehicle:V123>}

?entity ?p0 ?o0}

UNION {

VALUES ?entity {<urn:ngsi-ld:Vehicle:V123>}

?entity ?p0 ?o0 . ?o0 ?p1 ?o1}

UNION {

VALUES ?entity {<urn:ngsi-ld:Vehicle:V123>}

?entity ?p0 ?o0 . ?o0 ?p1 ?o1 . ?o1 ?p2 ?o2}

}

--

Results (triples to be added to the triples set)

--

_:b2 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <
https://purl.org/geojson/vocab#Point> .

_:b2 <http://uri.etsi.org/ngsi-ld/coordinates> "-8"ˆˆ<http

://www.w3.org/2001/XMLSchema#integer> .
_:b2 <http://uri.etsi.org/ngsi-ld/coordinates> "44"ˆˆ<http

://www.w3.org/2001/XMLSchema#integer> .
_:b4 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <

http://uri.etsi.org/ngsi-ld/Property> .
_:b4 <http://uri.etsi.org/ngsi-ld/hasValue> "7.0E-1"ˆˆ<http

://www.w3.org/2001/XMLSchema#double> .
_:b5 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <

http://uri.etsi.org/ngsi-ld/Relationship> .
_:b5 <http://uri.etsi.org/ngsi-ld/hasObject> <urn:ngsi-ld:

Person:Bob>

Listing 5 Building the RDF graph corresponding to an

After the first iteration, three triples have as objects blank

nodes which are not subjects of any triple (i.e., _:b0, _:b1,

_:b3). Because of that, the query has to be extended to

include also the triples which have as subject the previously

mentioned blank nodes. The query is extended by adding

the following triple pattern: ?o0 ?p1 ?o1. Also after the

second iteration there are blank nodes (e.g., _:b2, _:b4,

_:b5) which are present as objects of some triples but not

as subjects of any triple. A third iteration is required (i.e.,

the triple pattern ?o1 ?p2 ?o2 is added). As shown in

Listing 4, after the third iteration all the resulting triples do not

include any blank node. The iterative process can end and the

result is the union of all the triples resulting by each iteration.

This would correspond to the set of triples listed in Listing 3.

The next step consists in representing this set of triples

according to the JSON-LD format used by NGSI-LD (i.e.,

the result should be equal to Listing 1). This can be achieved

thanks to JSON-LD 1.1 Framing [35]. The Java code and the

frame used to obtain the JSON-LD in Listing 1 are respectively

shown in Listing 6 and Listing 7.

import java.io.IOException;

import java.io.InputStream;

import com.github.jsonldjava.core.JsonLdOptions;

import com.github.jsonldjava.core.JsonLdProcessor;

import com.github.jsonldjava.utils.JsonUtils;

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 499 --

public static String nQuads2JsonLd(String nquads,

InputStream frame) throws IOException {

// Options
JsonLdOptions opts = new JsonLdOptions();

opts.setUseNativeTypes(true);
opts.setPruneBlankNodeIdentifiers(true);
opts.setOmitGraph(true);

// Parse NQUADS input string
Object jsonObject = JsonLdProcessor.fromRDF(nquads, opts);

// Parse JSON-LD frame from input stream
final Object frameObj = JsonUtils.fromInputStream(frame);

// Framing algorithm
Object framed = JsonLdProcessor.frame(jsonObject, frameObj,

opts);

return JsonUtils.toPrettyString(framed);

}

Listing 6 Java code to serialize RDF triples into a JSON-LD

{"@type" : "Vehicle",

"@context" : {

"accuracy" : "http://missing/accuracy",

"providedBy" : "http://missing/providedBy",

"closeTo" : "http://missing/closeTo",

"object" : "http://uri.etsi.org/ngsi-ld/hasObject",

"Relationship" : "http://uri.etsi.org/ngsi-ld/Relationship

",

"GeoProperty" : "http://uri.etsi.org/ngsi-ld/GeoProperty",

"value" : "http://uri.etsi.org/ngsi-ld/hasValue",

"Point" : "https://purl.org/geojson/vocab#Point",

"coordinates" : "http://uri.etsi.org/ngsi-ld/coordinates",

"Property" : "http://uri.etsi.org/ngsi-ld/Property",

"Vehicle" : "http://uri.fiware.org/ns/datamodels/Vehicle",

"location" : "http://uri.etsi.org/ngsi-ld/location",

"speed" : "http://uri.fiware.org/ns/datamodels/speed"}}

Listing 7 JSON-LD frame used to serialize RDF triples into

It should be noticed that the frame depends on the

type of entity (e.g., Vehicle) and so it should be

created on the fly, request by request. In particular, the

entity type can be always extracted from the results

of the first iteration of the proposed approach (e.g.,

the triple urn:ngsi-ld:Vehicle:V123 rdf:type

http://uri.fiware.org/ns/datamodels/Vehicle

in Listing 5).

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented the fundamental blocks required

to implement the NGSI-LD API on top of the SPARQL

Event Processing Architecture (SEPA). The motivation of the

presented work comes from the direct experience derived

from the ongoing European-Brazilian H2020 SWAMP project.

SWAMP aims to provide smart services focused on water

saving in agriculture through the development of an Internet

of Things platform. The platform is being built on top of

FIWARE which adopts NGSI-LD for the management of

context information, but also includes SEPA as technology

supporting dynamic Linked Data services and applications.

Implementing NGSI-LD on top of SEPA would enable a SEPA

broker to become a generic enabler of FIWARE, enhancing

the discovery and reasoning capabilities of FIWARE thanks to

the fully support of SPARQL, and creating a bridge between

FIWARE and the Linked Data cloud.

ACKNOWLEDGEMENTS

The work is being developed and experimented within the

H2020-EUB-2017 SWAMP project, n. 777112, funded by

the European Commission under: H2020-EU.2.1.1. - INDUS-

TRIAL LEADERSHIP - Leadership in enabling and industrial

technologies - Information and Communication Technologies

(ICT).

REFERENCES

[1] K. Ashton et al., “That internet of things thing,” RFID journal, vol. 22,
no. 7, pp. 97–114, 2009.

[2] C. Kamienski, J.-P. Soininen, M. Taumberger, R. Dantas, A. Toscano,
T. Salmon Cinotti, R. Filev Maia, and A. Torre Neto, “Smart water
management platform: Iot-based precision irrigation for agriculture,”
Sensors, vol. 19, no. 2, 2019.

[3] L. Roffia, P. Azzoni, C. Aguzzi, F. Viola, F. Antoniazzi, and T. S. Cinotti,
“Dynamic linked data: A sparql event processing architecture,” Future
Internet, vol. 10, p. 36, 2018.

[4] A. Garcı́a Vázquez, P. Soria-Rodriguez, P. Bisson, D. Gidoin, S. Trabelsi,
and G. Serme, “Fi-ware security: Future internet security core,” in
Towards a Service-Based Internet (W. Abramowicz, I. M. Llorente,
M. Surridge, A. Zisman, and J. Vayssière, eds.), (Berlin, Heidelberg),
pp. 144–152, Springer Berlin Heidelberg, 2011.

[5] F. Ramparany, F. G. Marquez, J. Soriano, and T. Elsaleh, “Handling
smart environment devices, data and services at the semantic level
with the fi-ware core platform,” in Big Data (Big Data), 2014 IEEE
International Conference on, pp. 14–20, IEEE, 2014.

[6] P. Fernández, J. M. Santana, S. Ortega, A. Trujillo, J. P. Suárez,
C. Domı́nguez, J. Santana, and A. Sánchez, “Smartport: A platform
for sensor data monitoring in a seaport based on fiware,” in Sensors,
2016.

[7] I. S. G. C. Information, “ETSI GS CIM 009 V1.1.1 (2019-01), Context
Information Management (CIM); NGSI-LD API,” tech. rep., ETSI
Management (ISG-CIM), 2019.

[8] J. Höchtl and P. Reichstädter, “Linked open data - a means for public
sector information management,” in Electronic Government and the
Information Systems Perspective (K. N. Andersen, E. Francesconi,
Å. Grönlund, and T. M. van Engers, eds.), (Berlin, Heidelberg), pp. 330–
343, Springer Berlin Heidelberg, 2011.

[9] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys & Tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[10] M. Zorzi, A. Gluhak, S. Lange, and A. Bassi, “From today’s intranet
of things to a future internet of things: a wireless-and mobility-related
view,” IEEE Wireless communications, vol. 17, no. 6, 2010.

[11] N. Naik, “Choice of effective messaging protocols for iot systems: Mqtt,
coap, amqp and http,” in Systems Engineering Symposium (ISSE), 2017
IEEE International, pp. 1–7, IEEE, 2017.

[12] A. Tzounis, N. Katsoulas, T. Bartzanas, and C. Kittas, “Internet of
things in agriculture, recent advances and future challenges,” Biosystems
Engineering, vol. 164, pp. 31–48, 2017.

[13] J. Soldatos, N. Kefalakis, M. Hauswirth, M. Serrano, J.-P. Calbimonte,
M. Riahi, K. Aberer, P. P. Jayaraman, A. Zaslavsky, I. P. Žarko, et al.,
“Openiot: Open source internet-of-things in the cloud,” in Interoper-
ability and open-source solutions for the internet of things, pp. 13–25,
Springer, 2015.

[14] P. P. Jayaraman, D. Palmer, A. Zaslavsky, A. Salehi, and D. Geor-
gakopoulos, “Addressing information processing needs of digital agri-
culture with openiot platform,” in Interoperability and Open-Source
Solutions for the Internet of Things (I. Podnar Žarko, K. Pripužić,
and M. Serrano, eds.), (Cham), pp. 137–152, Springer International
Publishing, 2015.

[15] F. Karim, F. Karim, and A. Frihida, “Monitoring system using web of
things in precision agriculture,” Procedia Computer Science, vol. 110,
pp. 402–409, 2017.

[16] M. AshifuddinMondal and Z. Rehena, “Iot based intelligent agriculture
field monitoring system,” in 2018 8th International Conference on Cloud
Computing, Data Science & Engineering (Confluence), pp. 625–629,
IEEE, 2018.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 500 --

[17] Y. Yuan, W. Zeng, and Z. Zhang, “A semantic technology supported
precision agriculture system: A case study for citrus fertilizing,” in
Knowledge Science, Engineering and Management (M. Wang, ed.),
(Berlin, Heidelberg), pp. 104–111, Springer Berlin Heidelberg, 2013.

[18] J. Lpez-Riquelme, N. Pavn-Pulido, H. Navarro-Helln, F. Soto-Valles,
and R. Torres-Snchez, “A software architecture based on fiware cloud for
precision agriculture,” Agricultural Water Management, vol. 183, pp. 123
– 135, 2017. Special Issue: Advances on ICTs for Water Management
in Agriculture.

[19] ETSI GS CIM 004 V1.1.1 (2018-04)Context Information Management
(CIM);Application Programming Interface (API).

[20] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scien-
tific american, vol. 284, no. 5, pp. 34–43, 2001.

[21] N. Shadbolt, T. Berners-Lee, and W. Hall, “The semantic web revisited,”
IEEE intelligent systems, vol. 21, no. 3, pp. 96–101, 2006.

[22] P.-Y. Vandenbussche, G. A. Atemezing, M. Poveda-Villalón, and
B. Vatant, “Linked open vocabularies (lov): a gateway to reusable
semantic vocabularies on the web,” Semantic Web, vol. 8, no. 3, pp. 437–
452, 2017.

[23] A. Maedche and S. Staab, “Ontology learning for the semantic web,”
IEEE Intelligent systems, vol. 16, no. 2, pp. 72–79, 2001.

[24] N. F. Noy, “Semantic integration: a survey of ontology-based ap-
proaches,” ACM Sigmod Record, vol. 33, no. 4, pp. 65–70, 2004.

[25] A. D’Elia, F. Viola, L. Roffia, P. Azzoni, and T. S. Cinotti, “Enabling
interoperability in the internet of things: A osgi semantic information
broker implementation,” International Journal on Semantic Web and
Information Systems (IJSWIS), vol. 13, no. 1, pp. 147–167, 2017.

[26] F. Morandi, L. Roffia, A. D’Elia, F. Vergari, and T. S. Cinotti, “Redsib:
a smart-m3 semantic information broker implementation,” in Open

Innovations Association (FRUCT), 2012 12th Conference of, pp. 1–13,
IEEE, 2012.

[27] F. Viola, A. D’Elia, L. Roffia, and T. Salmon Cinotti, “A modu-
lar lightweight implementation of the smart-m3 semantic information
broker,” in Proceedings of the 18th Conference of Open Innovations
Association FRUCT, pp. 370–377, FRUCT Oy, 2016.

[28] I. V. Galov, A. A. Lomov, and D. G. Korzun, “Design of semantic
information broker for localized computing environments in the internet
of things,” in 2015 17th Conference of Open Innovations Association
(FRUCT), pp. 36–43, April 2015.

[29] S. Heiler, “Semantic interoperability,” ACM Computing Surveys (CSUR),
vol. 27, no. 2, pp. 271–273, 1995.

[30] F. Viola, L. Turchet, F. Antoniazzi, and G. Fazekas, “C minor: a semantic
publish/subscribe broker for the internet of musical things,” in 2018 23rd
Conference of Open Innovations Association (FRUCT), pp. 405–415,
IEEE, 2018.

[31] P. Gearon, A. Passant, and A. Polleres, “SPARQL 1.1 Update.”
https://www.w3.org/TR/sparql11-update/, 2013.

[32] S. Harris and A. Seaborne, “Sparql 1.1 query language.”
https://www.w3.org/TR/sparql11-query/, 2013.

[33] C. Aguzzi, F. Antoniazzi, F. Viola, and L. Roffia, “SPARQL 1.1
Subscribe Language, Unofficial Draft,” 2018. [Online; accessed 21-
November-2018].

[34] D. Beckett, “RDF 1.1 N-Triples, A line-based syntax for an RDF graph,
W3C Recommendation.” https://www.w3.org/TR/n-triples/, 2014.

[35] “JSON-LD 1.1 Framing, W3C JSON-LD 1.1 Framing, An Extension to
the Application Programming Interface for the JSON-LD Syntax, W3C
Editor’s Draft,” January 2019. [Online; accessed 14-February-2019].

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 501 --

