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Abstract—An algebraic approach to the synthesis of optimal 
real Weyl-Heisenberg frames with the best frequency-time 
localization oriented to the processing of discrete signals is 
developed. The chosen optimality criterion ensures the 
construction of a tight signal frame with the lowest standard 
deviation of frame functions from the desired standard. In 
addition, a special algebraic structure of the synthesis algorithm 
in the form of a product of sparse matrices allows for efficient 
computational implementation and flexible adjustment of the 
frequency-time resolution of the signal functions of the frame. 
The results of the experiment confirming the effective 
computational implementation of the algorithm and a desired 
time-frequency localization of frame functions are presented. 

I. INTRODUCTION 
One of the most important tasks of modern intelligent 

information processing systems is the development of effective 
methods and algorithms for spectral-time analysis of the 
processes observed at the output of various recording devices. 
Such devices, for example, can be biomedical sensors, echo 
signal receivers for radar (or sonar) various purpose systems, 
seismic sensors, earth's surface monitoring systems devices, 
etc.  All the information obtained in these cases is usually 
digitized, so it can be processed either in real time or stored and 
processed later using specialized algorithms.  

An important specific of most of the observed signals is that 
they are not the stationary processes, which greatly complicates 
or limits the use of classical algorithms for digital spectral 
analysis. In addition, the useful information that you want to 
extract from the received signal is usually multifactorial by 
nature and to identify all its features flexible multi-level 
algorithms of frequency-time analysis required, able to quickly 
adapt to specific tasks. Signals transmitted through 
telecommunications communication systems of 4-5G 
generations have the same features, but in this case there are 
problems not only of their optimal reception, but also the 
development of the most suitable signal design with dense 
time-frequency multiplexing and at the same time a good 
separation of signal constellation points. 

For these purposes the paper proposes to use tight discrete 
Weyl-Heisenberg frames (WH-frames), defined on a finite time 
interval and focused on batch processing of discrete signals. 
This is in good agreement with the presentation of observed 
processes at the output of most digital recording devices and 
broadband signals that can be used in future 5G 
telecommunication systems. The general theory of WH-frames 
(including discrete) and the related theory of extensions of 
Gabor are described in [1-8]. 

Discrete functions included in the WH-frame are obtained 
by uniform shifts in time and frequency of the same forming 
pulse with desired frequency-time localization.   

The shape of this pulse determines the frequency-time 
resolution of the WH-frame, and the number of shifts in time 
and frequency – its frequency-time range. In this case, 
nonstationarity of the observed process will appear as different 
behavior of the frame decomposition coefficients in the time-
shifted "Windows" of the forming pulse. Therefore, the 
observed signal can be well approximated by a finite linear 
combination of frame functions, choosing a suitable forming 
pulse, the number and structure of time/frequency shifts (factor 
parameters of the WH-frame). This means that the WH-
decomposition of the signal can be considered as a discrete 
multifactorial time-frequency model of the observed 
nonstationary process, and the adjustment of these factors to 
obtain the best approximation can be considered as a procedure 
for identification of the WH-frame.  

Thus, the possibility of fast optimal adjustment of the WH-
frame for a specific observed process is practically important 
for the approximation and time-frequency analysis of signals. 
The paper proposes an algebraic approach to the synthesis of 
the WH-frame identification algorithm based on its optimal 
adjustment to the desired reference system. As such a reference 
system we choose a real system of pulses uniformly shifted in 
time and frequency with the desired symmetry properties, 
frequency-time resolution and range. Following the 
terminology [1-8], the reference system with the specified shift 
structure represents a certain system of Gabor functions 
forming a WH-frame. Note that the desired Gabor system is 
usually not a tight frame, so an attempt to decompose the signal 
into a linear combination of standard functions is a complex 
problem that does not always have a stable solution and does 
not necessarily lead to a good approximation.  

The paper deals with the problem of synthesis of a tight 
signal WH-frame, which has the desired properties, while the 
deviation of the frame system from the reference system is 
minimized by the standard deviation criterion. In this sense, the 
resulting tight WH frame is optimal. It is shown that the 
optimal adjustment algorithm is a linear matrix operator that is 
factorized into the product of sparse matrices. This allows us to 
provide a fast computational implementation of the algorithm 
of WH-frame identification and flexible configuration of the 
time-frequency resolution characteristics by changing the 
corresponding parameters of the desired reference system.  

 Note, the obtained results can be considered as a 
generalization and further development of the results on 
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optimization of complex WH-bases described in [9-12] for the 
case of tight real frames. In particular, for the oversampling 
coefficient equal to two after a structural adjustment of the 
optimal WH-frame real matrix, we obtain a complex 
orthogonal WH-basis. However, the advantage of the proposed 
WH-frames versus basis is that, increasing the oversampling 
coefficient of the samples, it is possible to achieve much better 
frequency-temporal localization of frame function and, as a 
result, to improve/increase the time-frequency 
diversity/multiplexing in the signal structures of 5G 
telecommunication systems. In addition, discrete real WH-
frames and a fast matrix-vector algorithm for their 
identification are of separate scientific and practical interest, 
since most of the above observed processes are real, non-
stationary and supposed to be digitally processed at different 
intervals of observation.  

The results of the experiment confirming the effective 
computational implementation of this algorithm and a desired 
time-frequency localization of frame functions are presented. 

II. MATHEMATICAL FORMALIZATION OF THE PROBLEM AND 
ITS RESOLUTION 

Let the continuous forming pulse ( ),g t t R  of the desired 
frame system be an even function, with effective duration T  
and bandwidth 1/F T , the number of basic time and 
frequency shifts are L  and M , respectively. Then the product 
N M L M  determines the total number of basic elements 
of time-frequency resolution, the overlapping frequency range 
is [0, ]f W ,W M T , and the time range [0, ]t T , 
T LT . In this article, we assume that the analyzed signals 
are bandpass, localized in the low frequency band. This is not a 
significant limitation, and, if necessary, will allow the transfer 
of the observed signal spectrum to the low-frequency band at 
the stage of its sampling. For such bandpass signals, the 
minimum sampling rate is equal df W , and the total number 
of discrete time samples within the range t  is equal 

dN T f ML .  

With this in mind, after sampling at the interval t , the 
forming pulse will be  

[ ] ( / )dg n g n f , {0,1,..., 1}Nn J N . 

For an adequate definition of time shifts and parity 
properties at the finite discrete interval, we perform an 
additional cyclic reduction  

[ ] [ ][ ] ( [( ) ] [( ) ] ) / 2ep n ng n g n g n Nn J

where [ ]( ) (mod )Nn n N ,  Nn J . As a result, [ ]epg n  will 
satisfy the condition of N-periodicity and N-symmetry with 
respect to point 0  

[ ] [ ]ep epg n g qN n [ ] [ ]ep epg n g n ,Nn J q Z

Let the oversampling coefficient 2P  to be an even 
natural number,  a multiple of P , /oL M P , K LP , 

/ 2oK K , then, the desired reference system  of discrete real 

Gabor functions at a finite discrete time interval 
{0,1,..., 1}NJ N  is described by expressions: 
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0

0

0
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2 / ,

[ ]
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[ ]
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, , , ,
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m l
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M K N

g n lL m n

g n lL m n

g n l L m n

g n l L m n

M

n

n

m J l J n J N ML

where ( , )o oG i jG , 2 ,o N o PNi J j J  is a real rectangular 
matrix of dimension 2N PN , in which the vectors-columns  

( ) ( ) ( )[ (0), , (2 1)]o o oj j j TG G NG   
at constant {0, 1}Mm J M  and even values 2l  are 
vector-functions , ,{ ],[ }m l m l Nn n J , and at odd values 
(2 1)l  – are vector-functions , ,{ ],[ }m l m l Nn n J  with 
dimension 2N . 

From (4), (2) we can find out that the functions ,m l  and 

,m l  are pairwise orthogonal and consist of quadrature 
components cyclically shifted in time by a value oL . Indexes 

Mm J  determine the basic frequency shifts, and the indexes 
2 , (2 1),

oKll l J determines odd and even frame shifts in 
time, taking into account the oversampling coefficient P . 
Their total number is equal K LP L , i.e. P times exceeds 
the number of basic time shifts L . The dimension of the signal 
space “stretched” on the system of reference functions 

, ,, , ,
om l m l M Km J l JG  is equal to 2oN N . 

The total number of frame functions is equal to 
o oM PN N . The phase parameter R  is used for 

additional adjustment of the reference system. From(3)-(4) it 
follows that the elements indexes ( , )o oi j  of the matrix 
structure ( , )o oG i jG  are associated with frame variables 
( , , )m l n  by expressions:  

  
2 ,

2 1 ,
o

o
o

n i even
i

n i odd
,  

2( ),
2( ) 1 ,

o o
o

o o

l mK j even
j

l mK j odd
 

{0, 1}
oo N oi J N , {0, 1}

oo M oj J M , 

 , ,
oM K Nm J l J n J . 

For a better understanding of the problem, the terminology 
and notations used, we recall a number of definitions from the 
frame theory applied to discrete real finite-dimensional spaces.  

We denote ,m nM  by the set of all real size m n  matrices . 
If m n  so, the abbreviated nM  will be used. According to 
[2-8], a system of discrete functions  
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( 1)(0)
,, , o

o o

M
N MG GG M   

with the structure of the frequency-time shifts described above 
is called a WH-frame if an inequality  

2 2 2|| || || || || ||TA Bs G s s  

 is satisfied for any signal vector ( [0], , [ 1])T
os s Ns , 

where 0 A B  are called bounds of the frame || ||  - is 
Euclidean norm. If A B , then the frame is called tight, if 

1A B  and ( )|| || 1,G , then G  is an orthonormal 
signal WH-basis. The rectangular matrix ,o o

T
M NG M  

describes the frame operator, which application to the signal  
oNs R  leads to the vector  

oMTG s R ,  

that in the engineering interpretation describes a frame-based 
time-frequency spectrum.  

For most practical applications, frame functions 
( ) ,o

o

N
MJG R  must have a suitable time-frequency 

localization to allow the corresponding frame spectrum to 
distinguish its specific features in the signal. These additional 
WH frame requirements we will define as desired or reference 
requirements. 

Note that in the algebraic interpretation the signal oNs R  
reconstruction procedure by its frame spectrum is described by 
the expression  

Ts Gx GG s   

and such reconstruction to be possible if the square symmetric 
matrix o oN NTB GG C  is an identity. This means that for 
accurate restoration, the rectangular matrix of the reference 
system G  should consist of orthonormal rows and form a tight 
frame with borders 1A B , which, however, taking into 
account the above construction (3-4) is not guaranteed. 
Therefore, all further construction will be carried  to finding a 
tight WH-frame with singular boundaries, which best 
approximates the desired reference system G  . In this case, we 
assume that the matrix TB GG  is positively determined, 
which in practice is always  the case. 

Let’s define a set of real rectangular matrices with 
orthonormal rows  

, , : ,
o o o o o

T
N M N M N o oM NU U U IA M   

and a set of real square matrices  

:
o o o

T
N N NU U U IA M .  

Then the problem of synthesis of an optimal tight WH-frame 
matrix ,o oopt N MU A  according to a given model (3-4) can be 
carried out to solving a two-stage extremum problem:  

,

2min( min ),:  
N Mo o

opt EU
U G U

R A

where, first, for an arbitrary phase parameter R , we look 
among all matrices ,o oN MU A  a matrix 

,

2: min
N Mo o

EU
U G U

A

closed to the reference system G  in the matrix norm 
2 tr( )T
EA AA , then corrects extremum problem. 

                               2: minopt E
G U

R
                           (7) 

minimizing deviation from the reference system by parameter 
R  . The solution of the first problem (6) is formulated in 

the form of theorem 1, the proof of which, valid for an arbitrary 
rectangular matrix, is based on the methodology described in 
[10,11]. 

Theorem 1. The optimal matrix which ensure the minimum 
in the extremum problem (6) is defined by the expression 

TU S W

where ,,
o o oN N MS WA A  – matrices, included in the 

singular value decomposition of the matrix  

 TG S W ,  ,o oN MG M   

with a diagonal matrix 1 2diag{ , , , }
oN  

consisting of the oN singular numbers 0i  of the matrix 
G . The value of the achieved minimum in the problem (6) is 
equal to 

2 2
1
( 1) Tr ( )o

o

N
n NE n

G U I

where Tr ( )  is the matrix trace operator  

It follows from (9) that the smaller the standard deviation of 
singular numbers  n from 1, the better the approximation of 
the reference system G  will be.  

The solution of an additional extremum problem (7) 
performed by the method described in [13] leads to the result, 
which we formulate in the form of the following theorem. 

Theorem 2. The optimal value opt  which delivers the 
minimum to extremum problem (7) and the corresponding 
optimal solution ,o oopt N MU A  for a tight WH-frame in the 
extremum problem (5) is described by the expressions 

/ ,opt kM P k Z

opt opt opt

T
optU U S W

Note that the specific choice of value and sign of opt can 
be important in the filter implementation of the WH-frame in 
the form of a filter Bank. Usually in this case it is enough to 
choose /opt M P . 

The resulting matrix  
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 0 1 ,( ( , )) , ,
o o oopt opt o o M N MU i jU u u A   

with vector-functions 

 [ (0, ), , ( 1, ) ]
o

T
j opt o opt o oU j U N ju   

describes the desired tight WH-frame with singular boundaries, 
which best approximates the desired reference system (3)-(4). 
Therefore, the frame time-frequency spectrum  

* ( [0], , [ 1])T
os s Ms   

of the signal ( [0], , [ 1])T
os s Ns and its spectral 

decomposition by WH-frame functions are described, 
respectively, by expressions  

* 0 1 1( , , , , , )
o

T T
opt Ms U s u s u s u s , 

1

0
[ ]o

oo

M
opt o jj

s js U s u , 

where ,  is the function of the scalar product of vectors. The 
last expression actually represents the approximation of the 
signal by the frame WH-model.  

We further show that matrices ,,
opt o opt o oN N MS WA A  

can be found explicitly without the use of a singular value 
decomposition procedure, and the algorithm for finding them 
admits an efficient computational implementation. Let us first 
consider the construction of the matrix 

opt
S . 

According to theorem 1, a matrix 
oNS A consists of 

eigenvectors of a symmetric positive-definite matrix , i.e. true 
an equality T BS S  should be valid, where –

2
1 2diag{ , , , }

oN  is diagonal matrix of 

positive eigenvalues 2
i i  of the matrix B . Moreover, the 

matrices S  and  are determined uniquely up to the 
permutation of columns and diagonal elements, respectively.  

Using (3)-(4), we present the matrix B  explicitly through 
the matrix elements G  

          

1

0,

( ) ( )
,,

( )

, ( )

cos[ ( / 2)] sin[ ( / 2)]

sin[ ( / 2)] cos[ ( / 2)]

( , ) ,

( , ) , ( , ) ,

( , ) 0
, , ,

0 ( , )

,

N

N

M
mmi j J

m m m m
m i i j ji j J

i j N

m
m

i

i i

i i

i j

i j i j

a i j
i j J

a i j

B B B

B B B V A V

A

V

    (12) 

                       
1( ) ( ) ( )
0
1( ) ( ) ( )
0

( , ) ( ) ( ),

( , ) ( ) ( ),

L
l ll

L
l ll

a i j G i G j

a i j G i G j
                (13)  

0
( ) 2( ) [ ],l epg n l LG i  0

( ) (2 1)( ) [ ]l epg n l LG j , 

where B ,
om NB M  block matrices consisting of two-

dimensional blocks, ( , )i jB , ( )
2( , )m i jB M , respectively. 

Taking into account (12), we transform B  to a more simple 
form  

1 ( )
0, ,

1

,
0

1 1( ) ( )
1 30 0

1 1( ) ( )
3 20 0

1 3

3 2

( , ) ( , ) ,

( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )
,

( , ) ( , )

N N

M m
mi j J i j J

M
m m

i i j j
m

M Mm m
m m
M Mm m
m m

i j i j

i j

b i j b i j

b i j b i j

b i j b i j
b i j b i j

B B B

B V A V

where elements of the last matrix are described by expressions: 

1
1 0

1

0
1

2 0
1

0
1

3 0
1

0

( , ) ( , ) cos[ ( )]

( , ) cos[ ( )] ,

( , ) ( , ) cos[ ( )]

( , ) cos[ ( )],

( , ) ( , ) sin[ ( )]

( , ) sin[ ( )] ,

M

m
M

m
M

m
M

m
M

m
M

m

b i j i j m i j

i j m i j

b i j i j m i j

i j m i j

b i j i j m i j

i j m i j

             
( ) ( )

( ) ( )

( , ) [ ( , ) ( , )] / 2 ,
( , ) [ ( , ) ( , )] / 2
i j a i j a i j
i j a i j a i j

         (16) 

Using (13), it is easy to verify the validity of the following 
equations 

1

0
1 1

0 0

( , ) cos[ ( )] 0,

sin[ ( )] 0, sin[ ( )] 0

M
optm

M M

m m

i j m i j

m i j m i j

Therefore, after substitution (17) in (15), the expression 
(14) for the matrix 

opt
B   is significantly simplified and takes 

the following canonical form 

                      2 , ,
opt o o cB B I B U                     (18) 

    1
, 0 ,

( ( , )) , cos[ ( )]
N

N

M
i j J c m i j J

i j i jU ,  (19) 

where ,  – are operators of direct and element product of 
matrices, respectively, , c NU M  – are symmetric 
matrices. Note that when  

  opt , 1

0
( , ) cos[ ( )] 0M

m
i j m i j ,  

the expression for the matrix B  is significantly complicated, 
and all subsequent arguments associated with its 
transformations and the calculation of eigenvalues are unfair. 

______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 505 ----------------------------------------------------------------------------



For this reason , we further consider only the case, opt , 
keeping the corresponding matrices index opt . 

Let’s define a block-diagonal singular matrix of dimension 
( )o oN N   
       1/2

2 ,, exp( 2 / )
o KL o o p q JK j pq KF I F F ,   (20) 

in which there are diagonally unitary Fourier matrices oF  of 
dimension ( )K K , where K PL , and a symmetric 
orthogonal matrix similar in structure   

2 , Re( ) Im( )
oL o o o oQ I Q Q F F

Let’s define an orthogonal permutation matrix 
oNP A : 

 
,

[ ] [ ]

( , ) ,

1, 2 ( ) 2 / /
( , )

0,

o o No
o o i j J

o o o K o N o
o o

P i j

j L i i K i N
P i j

else

P

 (22) 

where [ ] (mod )na a n  – is the value of number a  modulo n , 

 – is the operator of taking integer part of the number with 
rounding down, and using (20)-(21) we define two 
multiplicative compositions of matrices  

                            TS P F ,       TS P Q  ,                   (23) 

here S  – a complex singular and S  – real orthogonal 
matrices. Then, if you perform the similarity transformation 
over matrix 

opt
B   

                                  ,
opt opt

TB P B P                               (24) 

                         
* ,

opt opt opt

opt opt opt

T T

F B F S B S

Q B Q S B S
,                (25) 

(where ( ) – operator of Hermitian conjugation of matrices) 
then, using the found canonical representation (18), it is 
possible to prove the following two theorems. 

Theorem 3. The matrix
opt oNB M  has a block-diagonal 

circulant structure 

 
2, ,

,
, , [ ] ,

,

, [( ) ] ,

opt Lo

K

p q p q J

p p
p q p p p K p q J

p q
b p q

p q

B B

B
B B

0

  (26) 

where K K0 M  – zero matrix, ,p pB – located on diagonal 

circulant matrix blocks with forming elements [ ],p Kb i i J : 

1

[ ] [ ]
0

[ ]

[ ] [( ) ], 0
2[ ]
0 , 0

K

ep o ep K o P
lp

P

M g l L p g i l L p i
b i

i
(27) 

Moreover, the forming vector  

( [0], , [ 1] )T K
p p pb b K b R   

of circulant matrix , 2,
op p Lp JB consists of /K P L

nonzero elements, i.e. is a P multiple decimated vector.  

Theorem 4. Similarity transformations (25) with matrices 
(23) are diagonalizing and lead to identical real matrices 

diag ( )
opt opt oNM in which the eigenvalues 

1 2[ , , , ]
o

T
N  of the matrix 

opt
B are on the diagonal . 

Moreover, all eigenvalues 0
oi

 are positive, have 
multiplicity not less then 2P  and can be obtained from the 
composite forming vector 0 2 1( , , ) o

o

NT T T
Lb b b R  by 

means of orthogonal transformations (20-21) by any of the 
following formulas 

*K F b TK Q b

Thus, we found an explicit form of the real orthogonal 
transformation  

opt

TS S P Q

of the optimal solution (11), which diagonalizes the matrix 
opt oNB M . To find the orthogonal transformation 

opt
W , we 

use the statement proved in [10], according to which 
1/2

opt opt opt opt

TGW S

Substituting (29),(30) into (11), we obtain the WH-frame 
matrix optU after the transformations 

1/ 2,
opt opt opt opt opt opt

T
opt GU H H S S

where 
opt

H  determines the desired matrix operator of the 
optimal adjustment (identification of the WH-frame) to the 
desired reference (reference system) system of functions 

opt
G , 

which was mentioned in the problem description  part of the 
article. Moreover, taking into account (31), (29) the matrix 

opt
H is factorized into the product of sparse matrices.  

1/2
opt opt

T TH P Q Q P

We further will show that finding the diagonal matrix 
opt

, and hence the adjusting procedure (31), can be greatly 
simplified by using the canonical representation of the matrix 
(24). 

Theorem 5. Matrix 
opt opt o

T
NB P B P M  admits the 

following canonical representation  

2 ,
opt opt opt

T
o o oB I B B P B P

where o NB M  – is matrix from (18), NP A  –  the 
orthogonal matrix of the permutation 

   [ ]
,

1, /
( , ) , ( , )

0,N

o K
i j J

j L i i K
P i j P i j

else
P   (34) 

opto NB M  –  is a block-diagonal circulant matrix 
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, ,

,
, , [ ] ,

,

, [( ) ] ,

opt Lo

K

o p q p q J

p p
p q p p p K p q J

p q
b p q

p q

B B

B
B B

0

  (35) 

In which forming elements ( [0], , [ 1] )T K
p p pb b K b R  

of the circulant blocks ,p p KB M are described by the 
expression (27). 

Thus, the structure of the matrix (35) is similar to the 
structure (26), but its dimension is two times smaller. By 
analogy with (20), (21), (23) we will determine the orthogonal 
dimension matrix  ( )N N   

                      , ,
o oL o L oF I F Q I Q                        (36) 

                        TS P F ,       TS P Q ,                           (37) 

The following Theorem will be valid. 

Theorem 6. Similarity transformations with matrices (37) 
are diagonalizing for the symmetric matrix (35): 

                              
* * ,

opt opt

opt opt

o o o

T T
o o o

F B F S B S

Q B Q S B S
             (38) 

and lead to the same real diagonal matrices 

opt opto o NM  in which the diagonals are the 

eigenvalues 1 2[ , , , ]T
N  of the matrix oB . All 

eigenvalues a 0i are positive, have multiplicity not less 
than P and can be obtained from the composite forming vector 

0 1( , , )
o

T T T N
Lb b b R  by orthogonal transformations (36) 

using any of the following formulas 
*K F b TK Q b

From Theorems 4-6 it follows that  

( , )T T Tb b b ( , )T T T

2opt optoI diag ( )
opto

It twice simplifies the process of calculating diagonal 
matrix 

opt
, which is part of the operator of the optimal 

adjustment 
opt

H  (32). 

III. EXPERIMENTAL RESULT 

Fig. 1 shows the results of a computational experiment in 
which the matrices P , Q , 

opt
H  included in (32) were 

calculated for the selected parameters 4, 3, 8,P L M  
48oN  and the forming pulse (1) of the desired reference 

system 
opt

G .  

The structure of these matrices is displayed as points 
characterizing non-zero elements, and at the bottom of each 

image of the matrix the total number of its non-zero elements is 
indicated (the indices of the matrices in the figure are omitted).  

The analysis of the structure shows that not only each of the 
cofactors P , Q , 

opt
 in (32) is a sparse matrix, but their 

product – matrix 
opt

H  is also strongly sparse. This fact is of 
separate special interest, since in general the product of sparse 
matrices does not have to be a sparse matrix.  

All this allows for fast computational implementation of the 
WH-frame identification algorithm, and therefore flexible 
adjustment of the frequency-time resolution in the process of 
adjusting the parameters of the reference system 

opt
G . 

 

Fig. 1. . Results of computational experiment 
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Note that the matrices P , Q included in the right part of 
the equation (32) do not depend of the forming pulse (1), and 
their structure is determined only by the number of basic shifts 
in time L , frequency M  and oversampling coefficient P . The 
diagonal matrix 

opt oNM  from (32) in the selected structure 
, ,L M P  depends only on the shape of the pulse (1),  

 
Fig. 2.  Pulses of the optimal WH-frame 

 
Fig. 3. . Spectra pulses of the optimal WH-frame 

Figures 2-3 show the results of the computational 
experiment of the optimal WH-frame (31) for the values 

8, 16, 8L M P , which allow to estimate the time-
frequency localization of the three adjacent in time and 
frequency functions included in the matrix optU , as well as to 
compare them with one of the pulses of the reference system 

opt
G and a rectangular pulse having a similar effective 
duration.  

At Fig. 2 the pulses of the optimal WH-frame for any of its 
columns ( )o

opt

jU are constructed as an envelopes of quadrature 
components formed from even and odd samples of this column. 
Similarly, the pulses corresponding to any column ( )ojG of the 
reference model are constructed. Spectra pulses of the optimal 
WH-frame optU  and reference system 

opt
G  are defined as 

discrete Fourier transform from these pulses, and their image in 
Fig. 3 represents the module of these spectra.   

The analysis of the presented graphs shows that the optimal 
WH-frame pulses are very close in shape to the desired pulses 
of the system 

opt
G  and are well localized in time and 

frequency, allowing to provide the required characteristics of 
the frequency-time resolution.  

IV.  CONCLUSION 
1) The problem of synthesis of the optimal WH-frame with 

the desired properties is solved. The selected quality criterion 
minimizes the value of its deviation from the desired standard 
by the standard criterion and greatly simplifies the structure of 
subsequent decisions. 

2) On the basis of the algebraic approach, the WH-frame 
identification algorithm is synthesized, based on its optimal 
adjustment to the desired reference model, in the form of a real 
system of pulses uniformly shifted in time and frequency with 
the desired symmetry property, frequency-time resolution and 
range. 

3) It is shown that the developed vector-matrix WH-frame 
identification algorithm is represented as a product of sparse 
matrices, which allows for its fast computational 
implementation in object-oriented programming using the 
sparse matrices algebra approach. 

4) The analysis of the presented graphs shows that the 
optimal W-frame pulses are very close in shape to the desired 
pulses of the standard and are well localized in time and 
frequency, allowing to provide the required characteristics of 
the frequency-time resolution. 
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