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Abstract—We present a novel approach to tackle the problem
of sound event detection (SED) in urban environments using end-
to-end convolutional neural networks (CNN). It consists of a 1D
CNN for extracting the energy on mel–frequency bands from the
audio signal based on a simple filter bank, followed by a 2D
CNN for the classification task. The main goal of this two-stage
architecture is to bring more interpretability to the first layers of
the network and to permit their reutilization in other problems of
same the domain. We present a novel model to calculate the mel–
spectrogam using a neural network that outperforms an existing
work, both in its simplicity and its matching performance. Also,
we implement a recently proposed approach to normalize the
energy of the mel–spectrogram (per channel energy normaliza-
tion, PCEN) as a layer of the neural network. We show how the
parameters of this normalization can be learned by the network
and why this is useful for SED on urban environments. We
study how the training modifies the filter bank as well as the
PCEN normalization parameters. The obtained system achieves
classification results that are comparable to the state–of–the–art,
while decreasing the number of parameters involved.

I. INTRODUCTION

In recent years there has been an increasing interest in
the development of technologies for monitoring and diag-
nosing urban sound environments, which can facilitate the
planning and management of the city in order to control
noise pollution [1], [2]. The proposed systems are usually
based on distributed sensor networks over Internet of Things
(IoT) technologies, that provide sound pressure level estimates
throughout the city in real time [1], [3], [4]. Based on the
application of signal processing and machine learning tech-
niques, some recent works [1], [5], [6], [7] have addressed the
automatic generation of high–level descriptions of the sound
environment, including the detection of sound sources. This
information can help city councils to implement corrective
policies or develop monitoring plans.

Environmental sound classification and detection can be
tackled in different ways [8]. A possible approach, aims at
identifying just the predominant sound source at each time of
the audio signal. A more complex approach, called sound event
detection (SED), is defined as the task of finding individual
sound events, by indicating the onset time, the duration and a
text label describing the type of sound.

Under real conditions, the SED problem in an urban sound
environment can be very challenging. The acoustic features of
each class can have a great diversity, given by the intrinsic
variability of sound sources of the same type (e.g. cars) and
the influence of the acoustic environment (e.g. reverberation,

distance). Besides, the temporal overlapping of the sound
events makes the classification task harder. There are other
issues, such as the influence of the microphone’s response [8].

Most works on SED use the energy on mel bands as
input features, in conjunction with recurrent neural networks
(RNN) [9], [10], [11], [12], convolution networks (CNN) [13],
[14] or convolutional-recurrent networks (CRNN) [15], [16].
Mel–frequency Cepstral coefficients (MFCC) have also been
used as features, with Gaussian mixture models [17], decision
trees [18], [5], [7] and deep neural networks [19], [20], [21],
[22].

Yet, to the best of our knowledge, the SED problem in
urban environments has never been addressed by using end–
to–end neural networks. In end–to–end neural networks the
input is the raw signal (e.g. audio, image) and the output
is a classification vector. They have been applied to speech
recognition [23], [24], [25], speaker recognition [26], auto-
matic music labeling [27], [28], music audio tagging [29], and
automatic notes transcription [30]. But, despite the fact that
end–to–end image processing has brought excellent results to
the image classification task (e.g. AlexNet [31], VGG [32],
and GoogLeNet [33]), the results yielded by end–to–end audio
processing are not better than those of the models whose input
is a time–frequency representation [34].

In end–to–end neural networks feature extraction is usually
done by the first convolutional layers. Generally, these models
are used as a “black box”, with the goal of making the network
learn the acoustic features that better discriminate the classes.
However, it is possible to use domain knowledge to tailor
the feature–extraction layers of the network to a particular
problem. The mel–spectrogram transformation (MST) model
is an example of this approach [34], in which the input is one
second of the audio signal and the target output is the log–
mel–spectrogram. If this model is concatenated with a neural
network whose input is a time–frequency representation, it
forms an end–to–end neural network. The first layers of the
network can still be trained to adapt the feature extraction to
a particular problem, but starting at initial condition that has
proved to be effective for the problem domain. As a result,
the training may also need a smaller amount of data and less
training epochs. On top of this, the first layers of the network
(either with the initial values or after training) could be applied
to other similar tasks in audio processing.

Similarly, an acoustic trainable front–end to normalize the
energy of the frequency bands of the mel–spectrogram, called
per channel energy normalization (PCEN), has recently been
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proposed for improving the far–field speech recognition [35].
The normalization function used is differentiable, hence its
parameters can be learned with gradient based training pro-
cesses. A set of parameter values have been proposed based
on asymptotic analysis that is a good initial condition for
training [36], but no training experiments have been reported.

This work aims to apply the end–to–end approach to the
SED problem using domain knowledge. To achieve this, we
propose a novel scheme, named SMel, to compute the energy
of the mel–spectrogram using a neural network architecture.
We show that the proposed SMel scheme yields better results
than those of the MST model [34]. Then, we concatenate the
SMel model with a state–of–the–art CNN for urban sound
event detection [13], to form the end–to–end architecture.
A similar approach based on end–to–end neural networks
to tackle the SED problem was proposed in [37]. It uses
a learned time–frequency representations as the input of a
convolutional–recurrent network. However, in that work the
feature extraction network is implemented by calculating the
real and the imaginary parts of the discrete Fourier transform.
Besides, the focus of that work is not urban environments.

In this work, we also implement PCEN as a neural network
layer and we study its applicability to the SED task. We show
how the network can learn the PCEN parameter values and
how the mel–frequency filter bank changes after training.

II. CALCULATING THE LOG-MEL-SPECTROGRAM

In this section, we present a novel model to calculate the
log–scaled mel–spectrogram based on a simple mel filter–bank.
In first place we present a recently published work on this
topic and then we explain our proposed model. Finally, we
compare both architectures. The input of both models are one–
second length non–overlapping slices of the audio signal, and
the output is the log–scaled mel–spectrogram.

A. MST model

MST model is a CNN architecture devised to calculate
the log–scaled mel–spectrogram of an audio slice [34]. The
architecture is formed by three convolutional layers of 512,
256 and Nmels filters respectively, where Nmels is the number
of mel bands. Fig. 1a shows the diagram of the MST model
for Nmels = 128, window length of 1024 points, a hop of 512
points, and sampling rate fs = 22050 Hz.

B. Proposed model (SMel)

We propose a simpler approach, namely the SMel model,
which is based on the fact that all the steps to calculate the
mel–band energy are differentiable functions. Therefore, those
steps can be implemented as layers of a neural network. The
input of our network is a matrix whose columns are the frames
of the audio signal multiplied by a Hann window. The first
layer of the network is a time-distributed (TD) convolution
of Nmels filters and it is initialized with a mel filter bank.
Therefore, the output of the first layer is the result of the
filter bank applied to each signal frame. In the next layers, the
energy of each band is calculated by an element-wise square
function; a mean value function; and a logarithmic function to
convert energy values to decibels (see Fig. 1b).

The mel filter bank is formed by Nmels filters with triangu-
lar frequency response centered in the mel–scale frequencies
and overlapped by half of their bandwidth. Therefore, the
frequency response of filter l is:

Hl(f) = Λ

(
f − fl

Δfl

)
for f ≥ 0, (1)

where fl is the central frequency and Δfl = fl+1 − fl is half
bandwidth. Therefore, we design impulse responses for each
filter as follows:

hl(t) = 2Δflsinc2(tΔfl) cos(2πflt)w(t), (2)

where w(t) is a Hann window.

C. Comparing models

To compare both models, we train them with the same
dataset and parameters. The dataset used is the URBAN–SED,
that contains audio files with urban sound events. This dataset
includes 6000 files of 10 seconds for training, and 2000 files
for validation and test [13]. It is devised for polyphonic urban
SED and includes ten classes from mechanical (e.g. air condi-
tioner, engine idling), human (e.g. children playing), musical
(e.g. street music), and natural (e.g. dog bark) categories.

We down–sample the audio files to a sampling rate of
22050 Hz, just to decrease the computational cost, assuming
this provides a sufficient bandwidth for the problem at hand.
We process the audio signal in short–time windows of length
N = 1024 samples and using a hop size of 512 samples.
The target function (ground truth of the mel–spectrogram) is
calculated using librosa [38] with 128 mel bands from 0 Hz
to 11025 Hz.

To train the MST model we use the same strategy proposed
by its authors [34]. To train our model it is especially important
to carefully choose the learning rate because the logarithmic
function has a large gradient close to zero. We use the gradient
descent equation to estimate the learning rate for the worst
case. As the librosa function used to convert power to decibels
saturates on −100 dB (power equal to 10−10), that is our worst
case. So, we estimate the learning rate to have a small relative
change on x = 10−10.

We train both models for 100 epochs using Adam optimizer
and a mean squared loss function. Although theoretically, with
the initialized parameters, SMel extracts the mel–spectrogram
almost exactly, it is interesting to see the variation of the loss
function for each model, as shown in Fig. 2. It is clear that the
approximation of our model is better than MST. Furthermore,
due to the initialization of the filters, the convergence of the
proposed model is faster. Fig. 3 shows the output of each model
for a randomly selected file of the validation set. Note that
the output of MST model is more blurry, particularly at high
frequencies.

III. ENERGY NORMALIZATION

Generally, the mel–spectrogram, E[i, l], is converted to a
decibel scale as follows:

EdB [i, l] = 10 log10 (E[i, l]), (3)

where i is the hop index and l the frequency channel (mel filter
index). This kind of normalization is very common in the SED
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(a) MST model.

(b) SMel model.

Fig. 1. Block diagram of (a) MST model and (b) the proposed model for Nmels = 128, fs = 22050, window length of 1024 points and hop of 512 points.
In convolution layers the parameters showed are the number of filters, the size of the kernels and the stride value in that order. Above the arrows are shown the
signals’ dimensions
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Fig. 2. Variation of the loss function value for SMel and MST in training

problem [13], [15]. A new approach, called per channel energy
normalization (PCEN), was recently proposed to increase the
robustness to loudness variations on speech detection sys-
tems [35]. The static logarithmic function is replaced with
a dynamic range compression (DRC) and an adaptive gain
control (AGC) with temporal integration. This integration is

performed with a low-pass filter φT , in a temporal scale of T ,
as follows:

EPCEN [i, l] =

(
E [i, l]

(ε+M [i, l])
α + δ

)r

− δr, (4)

where M [i, l] = (Et ∗ φT ) [i, l], while α, ε, r and δ are
positive constants [36]. The low-pass filter is implemented as
a first order IIR filter as follows:

M [i, l] = (1− s)M [i− 1, l] + sE [i, l] , (5)

where s is a smoothing coefficient [35].

Fig. 4 shows, for an example audio file from the dataset,
the comparison of the logarithmic scale versus the PCEN using
the parameter values suggested in [35].

Values for the PCEN parameters have been proposed
according to asymptotic studies [36], but it is interesting to
note that the function is differentiable, thus, those parameters
could be learned by neural network models [35].

We implement PCEN with neural network layers. M [i, l] is
calculated using a recurrent layer that implements the IIR filter
that has been proposed in [35]. The rest of the operations are
implemented in a layer that has two inputs E [i, l] and M [i, l].
The parameters of this normalization are frequency dependent
(i.e. α [l]). Fig. 5 shows the diagram of this implementation.
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Fig. 3. The mel–spectrogam ground–truth calculated using librosa imple-
mentation, and the outputs of the MST and SMel models for an example file
from the validation set
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Fig. 4. Comparison of energy normalization with logarithmic function (top)
and using PCEN (bottom). PCEN is calculated using librosa implementation
with parameters α = 0.8, δ = 10, r = 0.25, T = 0.06, ε = 10−6.

In the next section, we show the benefits of using the SMel
model and the PCEN normalization for sound event detection
in urban environments.

IV. EXPERIMENTS AND RESULTS

In order to show how it is possible to use the proposed
model, we concatenate it to a network that uses the mel–
spectrogram as input. We use the CNN described on URBAN–
SED article [13] as the baseline. This network has three 2D

Fig. 5. Diagram of PCEN implementation with neural network

convolutional layers followed by three fully–connected layers.
The final layer is a sigmoid of 10 units that perform the
classification task.

We train three networks: (CNN) the baseline (mel–
spectrogram from librosa as input) [13]; (MST+CNN)
the MST model concatenated to the baseline CNN; and
(SMel+CNN) the proposed model also concatenated to the
CNN. All models are implemented using keras [39] library
with Tensor Flow as backend. This scheme implies that the
temporal resolution of the detected sound events is one second.

A. Training strategy

In order to train the CNN, we use the same strategy as
presented in [13] and the parameter values presented in Section
III. To train the MST+CNN and SMel+CNN networks we
use a strategy inspired by Branch Training for hierarchical
classification [40]. The training process is performed with
two loss functions; mean squared for mel–spectrogram (l0)
and binary cross entropy for classification (l1). The final loss
function (l) is a weighted sum of the two losses:

l = w0l0 + w1l1, (6)

where [w0, w1] is a pair of weights. We set w0 with a small
value, as a way to regularize the mel–spectrogram training,
and w1 = 1− w0.
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Fig. 6. Variation of the F1 value in the validation set for each model
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B. Evaluation metrics

The F–score (F1) and the error rate (ER) are the per-
formance measures usually reported for SED systems [13],
[9], [15], compared with ground-truth annotations on one–
second length segments. For each segment, the False Positive
(FP ), False Negative (FN ) and True Positive (TP ) rates are
calculated; and then the precision and recall are computed as
follows:

P =
TP

TP + FP
, R =

TP

TP + FN
.

F1 is the harmonic mean of P and R:

F1 =
2PR

P +R
. (7)

The ER is calculated in terms of insertions (I), deletions (D)
and substitutions (S). A substitution is defined as the case
when the system detects an event on a segment, but with the
wrong label. This is equivalent to have a FP and a FN in
the same segment. After counting substitutions, the rest of FP
are counted as insertions and the rest of FN as deletions. The
ER measure is calculated as the integration of this values on
the total number of segments K, as follows:

ER =

∑K
k=1 S(k) +

∑K
k=1D(k) +

∑K
k=1 I(k)∑K

k=1N(k)
, (8)

where N(k) is the number of active classes in the ground–truth
at the segment k [17], [41].

C. Classification results

We train the three networks for 100 epochs using the
strategies proposed previously and using Adam optimizer.
Fig. 6 shows the variations of F1 value on the validation set
for the three networks. We save the network’s weights on the
epoch for which the F1 value on the validation set is maximum.
Fig. 7 shows the best attained F1 values per class on the test
set for each model. Table I shows the overall detection results.

TABLE I. RESULTS OF F1 AND ER VALUES ON THE TEST SET (IN
BOLD THE BEST RESULTS).

Network F1(%) ER

CNN 56 0.53
MST+CNN 43 0.61
SMel+CNN 57 0.50

D. Energy normalization

In this section, we present the experiments related to
PCEN. The SMel model whose outputs are normalized with
PCEN is called SMel P. Firstly, the CNN is trained with
the input data also normalized with PCEN using the librosa
implementation and the same parameters used in section III.
This model is called CNN P. Then, the concatenated network
SMel P+CNN P is trained with the same loss function of
equation (6). In this experiment, we study how do the filters
Hl[k] change, thus w0 is set to zero to avoid regularization.
PCEN parameters are initialized with the same values as in
CNN P. Fig. 8 shows the parameter values after the training
process. The only parameter that changed significantly is r
which defines how the DRC works. For high frequencies, the
r value decreases, and the compression increases [36]. Anal-
ogously, the compression is small for low frequencies. This
could be because in this dataset most meaningful information
for classification is in the lower frequencies.

TABLE II. RESULTS OF F1 AND ER ON TEST SET FOR NETWORKS

CNN, CNN P AND SMEL P+CNN P.

Network F1(%) ER

CNN 56 0.53
CNN P 54 0.56

SMel P+CNN P 51 0.60

Table II shows the performance results for CNN, CNN P
and SMel P+CNN P networks. Note that PCEN normalization
does not improve the performance of CNN. Also, training
SMel P in conjunction with CNN P, does not improve the
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results, but it is interesting to see in the Fig. 9 how the Hl[k]
filters change.
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Fig. 9. Hl[k] filters learned by SMel P+CNN P network

For high frequencies, the result seems to be very noisy, in
particular above 4000 Hz. This suggests that the information
in this frequency band does not contribute substantially in the
classification. It is interesting to note that this result is similar
to the one reported in [37]. To corroborate this finding, we
explored re–sampling the dataset at 8000 Hz and calculating
the energy on 64 mel bands in the range from 0 to 4000 Hz.
Notice that effectively the results of ER and F1 do not change
significantly working with a sampling rate of 8000 Hz, while
the number of parameters decreases considerably (see Table
III). This result could have been obtained by other means, for

instance, changing the dataset sampling rate by trial and error.
However, the proposed feature extraction network can learn
task specific filters when faced to other problems.

TABLE III. RESULTS OF F1 AND ER TEST SET AND NUMBER OF

PARAMETERS OF NETWORKS CNN P AND SMEL P+CNN P TRAINED

WITH URBAN-SED DATASET RE-SAMPLED TO 22050 HZ AND 8000 HZ.

fs(Hz) Red F1(%) ER # params (M)

22050
CNN P 54 0.56 ∼ 2.48

SMel P+CNN P 51 0.60 ∼ 2.55
8000

CNN P 52 0.55 ∼ 0.99
SMel P+CNN P 49 0.56 ∼ 1.01

V. CONCLUSION AND FUTURE WORK

This work presents a novel approach for sound event detec-
tion in urban environments using end–to–end neural networks,
that is obtained by concatenating two networks: one for feature
extraction and another one for classification. This two–stage
architecture facilitates the introduction of domain knowledge
and improves the interpretability of what the networks learn.

For the first network, that is devised to extract the mel–
spectrogram, we propose a simple approach based on a
mel–frequency filterbank. We show that the proposed model
achieves better results (smaller loss function value) than those
of the recently proposed MST model. We also show that the
classification results of the concatenated end–to–end network
are similar to those of a state–of–the–art CNN. However, the
proposed model offers a better interpretability regarding the
output of the first layers of the network.

Also, we implement the recently proposed PCEN energy
normalization as a neural network layer and we train its
parameters in conjunction with those of the rest of the network.
We find that the only parameter that significantly changes in
the training is r, that determines the amount of dynamic range
compression of the signal.

We also study how the filters of the first layer change with
the training. The results suggest that for the URBAN–SED
dataset, the most relevant information is below 4000 Hz and
this is confirmed by obtaining similar results for a 8000 Hz
sub-sampled version of the dataset. We conclude that models
with less parameters could be used.

As future work we aim to apply these end–to–end ar-
chitectures to other audio related problems. Also, further
comparisons with state–of–the–art systems will be conducted.
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