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Abstract—In paper develops and studies a mathematical 
model of an industrial robot with five degrees of freedom. The 
kinematic scheme of the robot is determined and the development 
of a mathematical model is performed using the matrix method 
and the Lagrange matrix dynamic equations. The study of the 
model is performed using the method of polynomial 
transformations. As a result of the analysis of the mathematical 
model, generalized coordinates, velocities and accelerations for 
the links of the robot are obtained. The spatial trajectory of the 
robot's gripper relative to the fixed base of the stand in the initial 
coordinate system is presented. The developed mathematical 
model of the robot allows you to determine the main dynamic 
characteristics of the robot, as well as the necessary generalized 
forces created by the drive links to move the robot's gripper to 
the selected point. This model allows the development of 
automated robotic systems and can be used in robot control 
systems with five degrees of freedom. 

I. INTRODUCTION 
Currently, the urgent task is the development and study of 

models of robotic systems for industrial automation. A large 
number of scientific literatures devoted to the problems of 
simulation of robots. 

In paper [1] considers the problem of kinematic and 
dynamic trajectory tracking control for a mobile robot. The 
article performs modeling and experiment to verify and 
confirm the proposed control strategy. 

In paper [2], a modeling method is presented for moving 
and manipulating a robot. The article presents a new method 
for generating contacts, which considers geometry as the 
presence of a thin virtual boundary layer around the underlying 
grids. The simulator is tested on various examples of robot 
movements, and the results are consistent with theoretical 
predictions and experimental data. 

In paper [3], the task of controlling a robot tracker with 
machine vision capabilities is considered. The article proposes 
an optimal control scheme based on a genetic algorithm. A 
genetic algorithm is used to obtain optimal values of control 
constants based on a suitable cost function. As a result of the 
experiments, the effectiveness of a visual robot was 
determined, including an optimal controller for tracking target 
trajectories and confirming the stability of the control 
system. 

The book [4] deals with the problem of simulating robots, 
modeling the dynamics of robots, and controlling robots. 

Simulators are based on CAD and graphical visualization tools. 
The simulation allows you to design and test robots in various 
environments for a small time and cost to create real 
systems. 

In paper [5] discusses a platform for autonomous 
programming based on CAD (OLP), which allows you to 
generate a robot path from a CAD model and visualize the 
simulation graphically. Based on the platform, a simulation of 
an industrial manipulator with 6 degrees of freedom is 
performed. 

In paper [6] performs the development and analysis of the 
structure, which allows representing the physical effects of the 
manipulation action of robots. A qualitative method of 
reasoning is considered, which argues on actions and their 
consequences based on projection-based modeling. The method 
allows the robot to determine what can happen if it performs 
the task in a certain way. Using this method, robots can 
perform manipulation tasks more efficiently, reliably, and 
flexibly. 

In paper [7] proposes adaptive fractional order PID sliding 
mode controller for Caterpillar robot manipulator. Sliding 
mode controller is one of the control methods which provide 
high robustness and low tracking error. The new combined 
control law is proposed for chattering reduction by means of 
fractional order PID controller and trajectory tracking through 
using sliding mode controller. 

In paper [8]  robust nonlinear back stepping technique with 
Lagrange’s extrapolation and PI compensator is proposed for 
high accuracy trajectory tracking of robot manipulators with 
uncertain dynamics and unexpected disturbances. The proposed 
control technique shows better performances via experimental 
results on a 7-DOF robot arm in comparison with the classical 
back stepping and sliding mode control. 

In paper [9] develops a new kinematic scheme for a robotic 
lift. The dynamic equations of the lift motion are derived and 
analyzed by the analytical method. 

In our work, we are developing and exploring a dynamic 
model of an industrial robot with five degrees of freedom to 
obtain the dynamic characteristics of the robot. 

The resulting basic dynamic characteristics of the robot, 
such as coordinates, speeds and accelerations, allow the 
development of an automated robot control system. 
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II. MATHEMATICAL MODEL OF AN INDUSTRIAL ROBOT WITH
FIVE DEGREES OF FREEDOM

Consider an industrial robot with five degrees of freedom, 
which includes the main links: the base, stand, arm, actuator - 
gripper and drives for extension and turns.  

For the robot circuit under consideration, the links are 
represented by rods connected by cylindrical hinges and 
sliding joints. We assume that the friction in the joints is small 
and is not taken into account when deriving the robot model. 

The kinematic scheme of the robot is shown in Fig. 1 and 
consists of four rotational kinematic pairs and one translational 
pair. The robot model is applicable to MP industrial 
manipulators, the kinematic diagram of which is shown in Fig. 
1. 

When developing the dynamic equations of a robot, we 
apply the matrix method and Lagrange matrix dynamic 
equations. In the matrix method, extended transition matrices 
from one coordinate system of the robot links to another 
coordinate system are used. Following [10], a special choice of 
coordinate systems for robot links is applicable. As a result, 
the transition from one coordinate system to one is determined 
not by six, but by four parameters. To move from one 
coordinate system to the next coordinate system, need a turn 
around the axis, two shifts (translations along the axes) and 
another turn. 

Define the coordinate system of the links of the robot in 
points 1 2 3 4 5, , , ,O O O O O . The initial coordinate system is 
associated with the fixed base of the rack at the point 0O . 

Fig. 1. Kinematic scheme of the robot 

Let us take as a generalized iq  coordinates of a robot with 
five degrees of freedom: the angle of rotation around the rack, 
the angle of the rack, the length of the extension of the arm, 
the angle of rotation of the arm, the angle of rotation of the 
gripper. Here we measure angles in radians, lengths in 
centimeters. 

To move from the 0O  coordinate system to the 1O
coordinate system, the following is required: rotation around 
the z axis by the angle 1q , shift along the z axis by the value 
of 1a , and rotation around the x axis by the angle –  / 2. 

To move from the 1O  coordinate system to the 2O
coordinate system, the following is needed: rotation around the 
z axis by an angle of -  / 2, a shift along the z axis by an 
amount of 2a , and rotation around the x axis of an angle 2q . 

To move from the 2O  coordinate system to the 3O
coordinate system, the following is required: a shift along the 
x axis by the 3q . 

To move from the 3O  coordinate system to the 4O
coordinate system, the following is needed: a shift along the x 
axis by an 4a  value and a turn around the x axis by an angle of 

4q . 

To move from the 4O  coordinate system to the 5O
coordinate system, the following is required: rotation around 
the z axis by an angle of -  / 2, a shift along the z axis by an 
amount of 5a , and rotation around the x axis by an angle of 

5q . 

We introduce an extended radius – vector of points ,iO , in 
the i–th coordinate system: 

1 T
i i i iR x y z  . 

The transition matrix 1,i iA  connects the radius – vector in 
the coordinate systems i – 1 and i: 1 1,i i i iR A R

Denote the functions: , i i i iS Sin q C Cos q  .

The transition matrices in the following coordinate system 
are defined: 

1 1

1 1
01

1

0 0
0 0

0 1 0
0 0 0 1

C S
S C

A
a

, 

2 2

12
2 2 2

0 0
1 0 0 0

,
0
0 0 0 1

C S

A
S C a

 

3

23

1 0 0
0 1 0 0

,
0 0 1 0
0 0 0 1

q

A

______________________________________________________PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 140 ----------------------------------------------------------------------------



4

4 4
34

4 4

1 0 0
0 0

,
0 0
0 0 0 1

a
C S

A
S C

 

5 5

45
5 5 5

0 0
1 0 0 0

0
0 0 0 1

C S

A
S C a

. 

The transition matrices from the fixed 0O  coordinate 
system to the iO  coordinate system are defined as the product 
of the transition matrices: 0 01 12 1  i i iA A A A  

1 2 1 2 2 1 1 2 2 1

2 1 1 2 1 2 1 2 2 1
02

1

0
0
1 0 0
0 0 0 1

C C S S C S C S a S
C S C S C C S S a C

A
a

, 

1 2 1 2 2 1 1 2 2 1

2 1 1 2 1 2 1 2 2 1
03

1 3

0
0
1 0 0
0 0 0 1

C C S S C S C S a S
C S C S C C S S a C

A
a q

, 

4 1 2 1 2 2 1 1 2 4

4 2 1 1 2 1 2 1 2 4
04

0
0
1 0
0 0

C C C S S C S C S S
C C S C S C C S S S

A  , 

4 2 1 1 2 1 2 1 2 4 2 1

4 1 2 1 2 2 1 1 2 4 2 1

1 4 30
0 1

C C S C S C C S S S a S
C C C S S C S C S S a C

a a q
, 

4 1 2 1 2 2 1 1 2 4

4 2 1 1 2 1 2 1 2 4
05 0

0

C C C S S C S C S S
C C S C S C C S S S

A  , 

4 2 1 1 2 1 2 1 2 4 5

4 1 2 1 2 2 1 1 2 4 5

5

0

C C S C S C C S S S S

C C C S S C S C S S S

C
 , 

5 4 2 1 1 2 1 2 1 2 4

5 4 1 2 1 2 2 1 1 2 4

5

0

C C C S C S C C S S S

C C C C S S C S C S S

S
 , 

5 4 2 1 1 2 1 2 1 2 4 2 1

2 1 5 4 1 2 1 2 2 1 1 2 4

1 4 3

1

a C C S C S C C S S S a S

a C a C C C S S C S C S S

a a q
 . 

Denote the coordinates of the fingers of the gripper in the 
coordinate system 5O  for 5 5 5, ,x y z , then in the fixed system

0O  the coordinates of the gripper have the form: 

05 1 2

4 2 1 1 2

5

1 2 1 2 4

x Sin q a

Cos q Cos q Sin q Cos q Sin q
a

Cos q Cos q Sin q Sin q Sin q

4 1 2 1 2

5

2 1 1 2 4

Cos q Cos q Cos q Sin q Sin q
x

Cos q Sin q Cos q Sin q Sin q
 

4 2 1 1 2

5 5

1 2 1 2 4

Cos q Cos q Sin q Cos q Sin q
Sin q y

Cos q Cos q Sin q Sin q Sin q

4 2 1 1 2

5 5

1 2 1 2 4

Cos q Cos q Sin q Cos q Sin q
Cos q z

Cos q Cos q Sin q Sin q Sin q
, 

05 1 2

4 1 2 1 2

5

2 1 1 2 4

y Cos q a

Cos q Cos q Cos q Sin q Sin q
a

Cos q Sin q Cos q Sin q Sin q

4 2 1 1 2

5

1 2 1 2 4

Cos q Cos q Sin q Cos q Sin q
x

Cos q Cos q Sin q Sin q Sin q

4 1 2 1 2

5 5

2 1 1 2 4

Cos q Cos q Cos q Sin q Sin q
Sin q y

Cos q Sin q Cos q Sin q Sin q

4 1 2 1 2

5 5

2 1 1 2 4

Cos q Cos q Cos q Sin q Sin q
Cos q z

Cos q Sin q Cos q Sin q Sin q
, 

05 1 4 3 5 5 5 5z a a q Cos q y Sin q z .

We define the kinetic energy of all the links of the robot 
using the transition matrices using the formulas: 

0 0
1
2

T
i i i iT tr A H A ,  (1) 

Here iH  is the inertia matrix of the link. 
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ixx ixy ixz i i

iyx iyy iyz i i
i

izx izy izz i i

i i i i i i i

J J J m x
J J J m y

H
J J J m z
m x m y m z m

, 

where im  is the mass of the link, 

   ,  ,ixx iyy izzJ J J  – components of the inertia tensor of a link 
with respect to its own axes. 

The coordinates of the centers of gravity of the link in the 
local coordinate system are indicated , ,i i ix y z .  

Moments of inertia of the link relative to the axes are 
indicated , ,xi yi ziJ J J . 

Determine the kinetic energy of the links by the matrix 
formula (1) taking into account the equalities: 

    ,  ,  iyy izz xi ixx izz yi ixx iyy ziJ J J J J J J J J . 

22 '
1 1 1 10.25T i m q , 

2'
2 2 2 2 1

2 2 2 22 ' '
2 1 2

0.5

0.25 0.25

a a Cos q z q
T m

i q q
, 

2 22 ' '
2 1 2 2 3 1

3 3 2 2 22 ' ' '
3 1 2 3

0.5

0.25 0.25 0.5

a q Cos q a z q
T m

i q q q
, 

2 2 22 ' ' '
2 1 2 4 2 4 1 3

4 4 2 2 22 ' ' '
4 1 2 4

2.
0.5

0.5 0.5 0.5

a q Cos q q a z q q
T m

i q q q
, 

2 22 ' '
5 5 2 1 2 4 2 5 5 5 1

2 2 2 2' 2 ' ' '
3 5 1 2 4

(0.5

0.5 (0.5 0.5 0.5

T m a q Cos q q a a Cos q z q

q a q q q
2 2 2' ' '

5 5 5 1 2 4

2 2 2 22 ' ' ' '
5 1 2 4 50.25 0.25 0.25 0.25 )

Cos q a z q q q

i q q q q
, 

We write the total kinetic energy: 
2 22 ' '

1 1 1 2 2 2 2 3 3 1

22 '
2 2 3 4 5 1

0.25

0.5 0.5 0.5 0.5

T i m q Cos q a m z m z q

a m m m m q

2'
2 4 2 5 5 4 4 5 5 5 1

2 22 2 ' '
2 2 3 3 1 20.25 0.25

Cos q q a a m m z Cos q m z q

i m i m q q

2'
3 4 5 3

2 2 22 ' ' '
4 4 1 2 4

2 2 22 ' ' '
5 5 1 2 4

0.5 0.5 0.5

0.25 0.25 0.25

0.5 0.5 0.5

m m m q

i m q q q

a m q q q

2 2 2' ' '
5 5 5 5 1 2 4

2 2 2 22 ' ' ' '
5 5 1 2 4 50.25 0.25 0.25 0.25

Cos q a m z q q q

i m q q q q

Determine the potential energy of the links by the matrix 
formula: 

T
i i i iP m G A R ,  (2) 

where  1 T
i i i iR x y z – matrix column coordinates

of the center of gravity link, 

0 0 0T
iG g – matrix line of gravitational

acceleration. 

The total potential energy is: 

1 1 2 3 4 5

3 3 4 5 4 3 5 5 5

a m m m m m
P g

m q m m a q Sin q m z

Create a system of dynamic equations of motion of an 
industrial robot using the Lagrange equation in matrix form: 

0
' i
i i i

d T T P Q
dt q q q

 ,   (3) 

where  iQ  – generalized forces generated by the electric 
drive link. 

Substituting the kinetic, potential energy and generalized 
forces into the matrix Lagrange equations, we obtain the 
system of equations of motion of an industrial robot with five 
degrees of freedom. 

' ' ' ''
1 2 4 2 5 5 2 4 1 1

2
2 2 3 4 ''

1 12 2
2 5 2 4 2 5 5

2 0.005

0.005
,

0.005 2

q Sin q q a a m q q m q

a m m m
q Q

a a Cos q q a a m

2 '' '2
5 5 2 2 4 2 5 5 1

''
2 3 4 5 2 20.005 ,

a m q Sin q q a a m q

m m m m q Q

''
3 4 5 3 3 ,m m m g q Q  

'' '2 2 ''
4 4 5 2 4 2 5 1 5 4 40.005 0.005 ,m q m Sin q q a a q a q Q

 ''
5 5 50.005 ,m q Q  (4) 

Integrating the third and fifth equation of the system: 
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2 3
3

3 4 5

1 ;
2

Qq t t g
m m m

 
2

5
5

5

100 ;t Qq t
m

To solve the remaining three differential equations of 
system (4), we apply the method of polynomial 
transformations [8, 9] with the following parameters: 

1 2 3 4200 , 60 , 30 , 20 ,m kg m kg m kg m kg   

1 2 3 4 56000, 1000, 700, 900, 0.01,Q Q Q Q Q   

5 1 220 , 30 , 20 ,m kg a cm a cm

4 530 , 20 a cm a cm .  

In the calculations, the values for the masses and lengths of 
the robot links are obtained from the technical characteristics 
for industrial manipulators. 

The transformation method allows us to obtain a solution 
to a system of differential equations using special polynomial 
transformations. A large number of papers [11, 12] are 
devoted to the method of polynomial transformations. The 
analytical method of transformations allows you to convert the 
system of differential equations understudy to an autonomous 
form. The method of transformations allows you to build a 
solution with all the nonlinear components of the source 
system. The solution of the system of three differential 
equations (4) was obtained by the method of transformations: 

1 0.254272 0.175   0.180296 1.128   

1.48213 0.175   0.0133503 1.128 

q t Cos t Cos t

Sin t Sin t
 , 

2 0.247989 0.223   0.0348912 1.83   

1.28984 0.223   0.090897 1.83 

q t Cos t Cos t

Sin t Sin t
 , 

4 0.207264 0.196   0.0341508 1.833   

1.27545 0.196   0.0722937 1.833 

q t Cos t Cos t

Sin t Sin t

2
3 0.095q t t , 2

5 0.05 q t t . 

The correctness of the presented mathematical model of 
the robot is confirmed by the use of the universally recognized 
matrix method in the kinematics of robots, using the 
traditional Lagrange matrix equations in the dynamics of 
robots and verification of calculations in computer 
mathematical packages. 

Fig. 2 shows the calculation of the generalized coordinate 
1q t  for the robot. 

Fig. 3 shows the calculation of the generalized coordinate 
2q t  for the robot. 

Fig. 4 shows the calculation of the generalized coordinate 
3q t  for the robot. 

Fig. 2. Generalized coordinate 1q t  of the link of the robot 

Fig. 3. Generalized coordinate 2q t  of the link of the robot 

Fig. 4. Generalized coordinate 3q t  of the link of the robot 

Fig. 5 shows the calculation of the generalized coordinate 
4q t  for the robot. 
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Fig. 5. Generalized coordinate 4q t  of the link of the robot 

Fig. 6 shows the calculation of the generalized coordinate 
5q t  for the robot. 

Fig. 6. Generalized coordinate 5q t  of the link of the robot 

Fig. 7 and 8 show the calculation of the generalized 
velocity 'q  and acceleration ''q  for link 1q  of the robot. 

Fig. 7. Generalized speed 1q t  of robot link 

1 2 3 4 5 6
time

0.10

0.12

0.14

0.16

0.18

q1''

Fig. 8. Generalized acceleration 1q t  of robot link 

Fig. 9 and 10 show the calculation of the generalized 
velocity 'q  and acceleration ''q  for link 2q  of the robot. 

Fig. 9. Generalized speed 2q t  of robot link 

1 2 3 4 5 6 time

0.20

0.15

0.10

0.05

0.05

0.10

q2''

Fig. 10. Generalized acceleration 2q t  of robot link 

Fig. 11, 12 and 13 show the spatial trajectory of the gripper 
of the robot in the coordinate systems xy, xz and yz. 
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y

Fig. 11. Trajectory of the gripper in the coordinate system xy 

30 25 20 15 10 5 0 x
62.5

z

Fig. 12. Trajectory of the gripper in the coordinate system xz  

10 0 10 20 30 40 y
z

Fig. 13. Trajectory of the gripper in the coordinate system yz 

Figure 14 shows the spatial trajectory of the gripper of the 
robot relative to the fixed base of the rack in the initial 
coordinate system 0O . 

20
10

0x

0

20

40
y

60
61
62z

Fig. 14. Moving the gripper relative to the fixed base of the rack 

As a result of the calculations of the robot model, we 
obtain a spatial trajectory of the gripper of the robot, which 
coincides with the actual path for industrial robotic 
manipulators MP. This confirms the reliability of the 
calculations and the results of the analysis of the robot model. 

III. CONCLUSION

The mathematical model of an industrial robot with five 
degrees of freedom has been obtained and studied. The 

kinematic scheme of the robot has been determined and the 
development of a mathematical model has been carried out 
using the matrix method and the Lagrange matrix dynamic 
equations. The study of the model was performed using the 
method of polynomial transformations. As a result of the 
analysis of the mathematical model, generalized coordinates, 
velocities and accelerations were obtained for the links of the 
robot. The spatial trajectory of the movement of the robot's 
gripper relative to the fixed base of the stand in the initial 
coordinate system was presented. The developed mathematical 
model of the robot allows you to determine the main dynamic 
characteristics of the robot, as well as the necessary 
generalized forces created by the drive links to move the 
robot's gripper to the selected point. Also, the novelty of the 
work lies in the fact that when calculating the robot model, a 
computer program developed and registered by the authors 
was used. To control the correctness of the results obtained, 
the authors conducted a simulation in computer engineering 
packages, which showed the consistency of the results with 
theoretical predictions and experimental data. This model 
allows the development of automated robotic systems and can 
be used in robot control systems with five degrees of freedom. 
Based on the presented approach, the authors plan to further 
develop and investigate models of robots with six degrees of 
freedom. 
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