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Abstract—Ring artifacts are inevitable in microtomographic 
images. In a Digital Rock workflow, such defects might affect the 
subsequent segmentation and flow simulation. We propose a 
correction of ring artifacts in reconstructed microtomographic 
images by inpainting. Our blind inpainting method uses a 3D 
convolutional network U-net. For the creation of training and 
validation datasets, we suggest an algorithm for transferring real 
ring artifacts to an arbitrary place in the undistorted slices of 8 
big images of sandstones and sand. The parameters of the deep 
neural network and loss functions are analyzed. A loss function 
based on the multi-scale structural similarity index (MS-SSIM) 
allows to achieve the best performance. The developed solution 
corrects ring artifacts perfectly from a point of view of visual 
assessment and outperforms existing inpainting methods 
according to quality metrics based on MS-SSIM and mean 
absolute error (MAE).   

I. INTRODUCTION 
X-ray computed microtomography (microCT) [1] is widely 

used for the creation of a digital twin of various solid and 
granular materials [2], [3] in a Digital Rock (DR) physics. This 
technology is applied for the estimation of reservoir 
characteristics in the oil and gas industry [4]. Adequacy and 
accuracy of such digital model depend on microCT image 
quality. There are numerous artifacts in reconstructed 3D 
microCT images [5]. Ring (circular) artifacts are very 
troublesome in flat-panel spiral microCT since those defects 
not only degrade visual quality but might effect on subsequent 
image segmentation and flow simulation.  

Miscalibrated or defective detector elements create visible 
rings centered on the center of slices of a 3D image. Several 
techniques for mitigation of ring artifacts were developed by 
manufacturers of microCT systems, for example, random 
movement between acquisitions of adjacent shadow 
projections; filtering of shadow projections or sinograms before 
reconstructions; modification of reconstruction procedure by 
adding a regularization. A combination of these approaches 
allows to suppress the majority of considered artifacts.   

Nevertheless, part of ring artifacts remains anyway and 
deteriorates a reconstructed image. Such artifacts look like 
bright and/or dark scratch-like segments of rings centered on 
the center of some slices. The leftmost image in Fig. 1 
demonstrates examples of ring artifacts. The biggest number of 
the remaining rings is located in a single slice, but others 
deteriorate several adjacent slices. In general, an exterior of 

ring artifacts for images acquired by different microCT systems 
is similar, but it can have small specificity. 

There are several algorithms for reduction of ring artifacts 
on a reconstructed image [6], [7], [8], [9]. However, all those 
approaches have shortcomings and limitations [10]. The 
effectiveness of those methods greatly depends on their 
parameters, to achieve acceptable results adjusting the 
parameters from image to image is required. Since each of 
these algorithms assumes that ring artifacts are located on 
circles with a center located in the center of the slice, they have 
no way to eliminate artifacts on the arbitrary image fragment. 
The filtering modifies the entire image, not just areas damaged 
by ring artifacts. As a rule, existing approaches process each 
slice of a 3D image separately without the use of data from 
adjacent slices. So, local correction of ring artifacts on arbitrary 
3D fragments of reconstructed microCT images remains an 
unsolved and topical problem.   

 
Fig. 1. Processing of images affected by ring artifacts in DR model 

construction workflow 

We propose to include correction of ring artifacts to DR 
model construction workflow (see Fig. 1). It makes sense to do 
the correction of such local artifacts by inpainting [11]. Image 
inpainting is a process of restoring missing or damaged areas of 
an image. Deep learning allows to achieve breakthrough results 
in the many tasks of computer vision including inpainting. In 
this paper, we propose a solution for the inpainting of ring 
artifacts by a 3D convolutional neural network (CNN). Our aim 
is to develop end-to-end network for inpainting, that is without 
intermediate segmentation of regions damaged by rings. The 
biggest obstacle to train an efficient machine-learning-based 
model for that problem is the absence of ground truth data. To 
create the training and validation datasets, we suggest the 
method of transferring of ring artifacts from one slice to 
another one and between different images. In addition, our  
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approach for forming of validation dataset allows to assess the 
performance of inpainting methods by comparison of the 
corrected image with its undistorted reference. 

This paper is organized as follows: existing deep-learning-
based inpainting solutions are analyzed in Section II; in Section 
III we describe the creation of our training and validation 
datasets; the description of neural networks architecture, 
parameters and training strategy can be found in Section IV; in 
Section V we describe performance metrics and demonstrate 
results; and Section VI contains conclusions. 

II. RELATED WORK 
The research in inpainting has been very active over the 

recent two decades and has many applications: restoring images 
from scratches or text overlays, loss concealment in a context of 
impaired image transmission, object removal in the context of 
editing, or in image-based rendering [12]. Image inpainting 
methods can be divided into two categories: non-blind 
techniques and blind ones. In the first category, the regions that 
need to be restored are provided to the algorithm, whereas in the 
second no information about the locations of the corrupted areas 
is given and the algorithm automatically identifies the regions 
for inpainting [13].  

Nowadays, deep-learning-based approaches achieve state-
of-the-art results in inpainting. There are plenty of image 
inpainting methods by means of CNN [14], [15], [16], [17], 
[18], [19], [20], [21], [22]. The majority of analyzed 
publications describes generative adversarial networks (GAN) 
[14], [15] or various modifications of 2D U-net [23]. Neural 
networks in papers [14], [15], [16], [17], [18] and [19] are 
intended for non-blind inpainting of large regions in natural 
photos. For training, photos from ImageNet were used.  

We don’t have prior information about ring artifacts 
locations, so, in the first turn, we are interested in blind 
inpainting methods. Papers [20], [21], [22] describe blind 
inpainting methods for problems that are closer to our one. For 
training conventional U-net [23] neural network all these 
methods created the training sets by adding synthetic scratch-
like artifacts and noises to the following types of images: 
fingerprints [20], coronary angiograms [21], and lunar surface 
images [22]. For the network training, these approaches apply 
the following loss functions: mean squared error [21], [22]; the 
sum of mean absolute error and multi-scale structural similarity 
index [20]. 

The recent publication [24] devotes almost the same 
problem as ours namely the reduction of ring artifacts on 
medical images of computed tomography (CT). That paper 
describes the hybrid method based on a fusion of two 
reconstructed images, where one image was reconstructed from 
sinograms processed by wavelet-Fourier filtering [25] and 
another image is the output of CNN, which employs as the 
input two images, which are reconstructed from the affected by 
rings sinograms and the filtered [25] ones accordingly. For 
dataset creation 10 full-dose clinical CT images of the patient 
cases from “the 2016 Low-dose CT Grand Challenge” [26] 
were used. The reference artifact-free sinograms and sinograms 
with simulated rings were obtained by forward projection. The 

2D CNN has 5 convolution layers and processes 64×64 patches 
from a slice of 3D CT image. It is more reasonable to use a 3D 
CNN for correction because adjacent slices of slice damaged 
by ring artifact contain valuable information for correction. 

III. DATASETS CREATION 
Creation of big enough and the representative dataset is key 

for the success of techniques based on supervised learning. For 
training end-to-end neural network aimed for inpainting, we 
need corresponding to each other pairs of fragments of images: 
undistorted and damaged by rings. Majority of existing methods 
for blind inpainting of local defects by neural network generated 
dataset by adding pure synthetic artifacts to undistorted images. 
However, the appearance of ring artifacts has a big diversity. It 
is not just black or white scratches. We propose to transfer real 
artifacts from one slice to another and across images. 

A. Considered MicroCT images 
For processing, we got 8 reconstructed 3D images of 

sandstones and sand. The samples belong to 5 types: Buff Berea 
sandstone (BB), Bentheimer sandstone (BHI), Fontainebleau 
sandstone (FB), Gravelite sandstone (GRV), and Unifrac sand 
(UFS). We scanned the samples using Bruker SkyScan 1172 
microCT system. A detailed description of the samples and 
enumeration of image acquisition parameters can be found 
in [3]. Fig. 2 shows 1 mm2 fragments of slices from images 
under analysis: BB (Fig. 2a), BHI (Fig. 2b), FB (Fig. 2c), GRV 
(Fig. 2d) and UFS (Fig. 2e). Each 3D image has size 
3968×3968×1840 voxels with bit depth 8 bits per voxel.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 2. 1 mm2 fragments of microCT slices: (a) BB; (b) BHI; (c) FB; 
(d) GRV; (e) UFS 

We made segmentation of ring artifacts regions on 14700 
slices of these 8 microCT images by means of the algorithm 
developed earlier [27]. Briefly, the algorithm works as follows. 
The segmentation method transforms a slice to polar 
coordinates, where rings are vertical line segments. A matched 
filter emphasizes such vertical lines. The thresholding of the 
outcome of the filter marks pixels of rings. Morphological 
dilation with vertically-oriented structure element merges 
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neighboring regions. Finally, small-sized connected regions 
are suppressed. In general, this segmentation algorithm works 
well, however, the method is inapplicable for an arbitrary 
fragment of microCT image and it requires thorough manual 
selection of the following parameters for each individual 
image: a kernel of the matched filter, threshold, structure 
element of a morphological operator, and length of the least 
region considered as a ring.  

The total number of connected regions containing ring 
artifacts on all these slices is about 1500. Theoretically, we are 
able to re-reconstruct microCT images from shadow projection 
with other parameters to obtain corresponding undistorted 
fragments, but in any case, 1500 pairs are not enough for the 
training of a deep network. For curiosity, we trained 
conventional 2D U-net for segmentation of ring artifacts, 
however, results were unacceptable.  

B. Ring artifacts transferring algorithm 
The rectangular regions containing real artifacts and 

corresponding masks in polar coordinates form the so-called 
artifacts set. Fig. 3 shows examples of ring artifacts and 
corresponding masks from this set. Masks are used in the 
validation procedure. We propose to make multifold random 
fusions of these rectangles with real artifacts and undistorted 
slices of available 8 microCT images. Our approach allows to 
create a big dataset with artifacts, that look visually very 
similar to real ones. 

      
Fig. 3. Examples of artifacts and corresponding masks from the ring artifacts 

dataset 

A ring artifact can deteriorate not only a single slice. 
Orthogonally to a slice plane, we computed the ring artifacts 
thickness for each microCT image. The distribution of 
thickness is presented in Fig. 4. One can see, majority of 
artifacts deteriorate single slice, but artifacts with thickness 
from 2 to 7 slices also exist. We estimated this thickness 
distribution as half-normal with standard deviation  = 2.3. 
We transfer rings from the artifacts set to several adjacent 
slices, where the number of slices is randomly chosen from 
this distribution. 

For transferring the artifact from the set to the undistorted 
slice of an image we propose the following approach. On slice 
in polar coordinates Ip, we add region with artifact Ia with the 

starting point (ra, ca): 
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where (r, c) – the coordinates of slice pixel; r = 0… N-1, 
c = 0 … M-1; N, Na – the rows number of slice and rectangular 
region with artifact accordingly; M, Ma – the columns number 
of slice and rectangular region with artifact accordingly; 
(ra, ca) – the coordinates for placing of the artifact; a – the 
image with size Na×Ma, where each row is difference between 
averaged along columns kr rows of Ia and the median value of 
this averaged row: 

, , , ,
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where r = 0… Na-1, c = 0 … Ma-1; E[•] – mean value 
operator; medianc[•] – the median in averaged row. Also, we 
clip pixels values of p

ringedI  to [0, 255] range. 

The artifact for addition is selected randomly from the set. 
On each initially undistorted slice we add 100 artifacts with ra 
chosen randomly from the range [0, N-Na] and ca from the 
range [200, M]. Because each ring can occupy several slices, 
we transfer an artifact with identical (ra, ca) on several adjacent 
slices. The number of slices is chosen randomly from the half-
normal distribution with . After the addition of the artifacts to 
slices in polar coordinates, the image is converted back to the 
cartesian coordinate system. Placing a rectangle containing 
artifact to arbitrary place in polar coordinates automatically 
leads to the scaling size of the artifact in a slice in the cartesian 
coordinate system. Fig. 5 shows the fragment with transferred 
ring artifacts. 

 

Fig. 4. Histogram of the thickness of rings 
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(a) 

 
(b) 

Fig. 5. Example of ring artifacts transferring: (a) fragment of slice; (b) the 
fragment with transferred artifacts 

C. Forming of training and validation datasets 
The artifacts set was divided into two non-overlapping parts: 

intended for training and validation. For training, we use 85% of 
artifacts from the set and for validation other 15%. The artifacts 
intended for training we place on initially undistorted slices of 7 
images of sandstones (BB, BHI, FB, and GRV types). The total 
number of regions with artifacts in the training set is about half 
a million.  

To estimate generalization capability, for validation we 
selected image of sand (UFS type), because it strongly differs 
from images of sandstones in training set. We add artifacts 
intended for validation to UFS image. The total number of 
regions with artifacts in the validation set is about 70000. So, 
there are no intersections in both images and samples of artifacts 
for training and validation. 

IV. OUR CONVOLUTIONAL NEURAL NETWORK  
Based on literature analysis and our preliminary experiments 

we decided to use 3D U-net [28] with patches in a 

parallelepiped shape. We don’t use cubic patches since one real 
ring artifact, as we estimated, usually occupy only from 1 to 7 
consecutive slices, and because larger patches require too 
much GPU memory. Since rock samples do not occupy the 
entire image volume, we find a region of interest (ROI) that 
belongs to the sample. The algorithm for automatic ROI 
selection can be found in [27]. Fig. 6 shows an example of ROI 
for a slice of the UFS sample. For training and for validation we 
use non-overlapping 512×512×9 patches, that locate inside 
ROI more than 80%. Fig. 7 presents the scheme of our neural 
network. 

 

Fig. 6. Example of slice with highlighted ROI 

The selection of adequate loss function is crucial for obtaining 
a proper model. We analyze an application of conventional 
mean-squared-error (MSE) loss LMSE, loss function based on 
multi-scale structural similarity index normalized to a range 
from 0 to 1 (MS-SSIM) (3) [29], and the weighted sum of this 
loss and mean absolute error (MAE) (4). According to the review 
in [30], two last loss functions provide the best results in image 
restoration by deep neural networks. 

- 1 - ,MS SSIML MS SSIM  (3)

 

 

Fig. 7. The scheme of our 3D U-net 
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We train our network with these three losses between patches 
with transferred rings and corresponded patches from reference 
images without rings. Usually, MS-SSIM is computed over 5 
scales. We compute MS-SSIM over 3 scales with 3×3×3 
window because of our patch size. For LMS-SSIM,MAE loss we 
empirically estimated the value  = 0.8.  

As an optimization algorithm, Adam [31] is applied with an 
initial learning rate 10-3. Batch size equals 1. Every 100 iterations 
we evaluate MS-SSIM of random 50 patches from validation 
image and when the difference between previous and current 
evaluations becomes smaller 10-4 we stop training.  

V. RESULTS 

A. Performance metrics 
The comprehensive review of full-reference image quality 

metrics [32] demonstrates metrics based on structural similarity 
index have the highest correlation with assessments by a human. 
That is why our main performance measure is based on 
MS-SSIM. We compute the mean value of MS-SSIM for non-
overlapping 512×512×9 patches. Identically to the calculation 
of loss function, MS-SSIM is computed for 3 scales. The best 
inpainting algorithm provides the highest MS-SSIM.  

In addition, we calculate normalized mean absolute error 
separately for regions without artifact (MAEwr) and with ring 
artifacts (MAEr). In the ideal case, MAEwr should be zero. 
However, it is hard to achieve for blind inpainting.  

The best inpainting method has both the lowest MAEwr and 
MAEr. Table I contains baseline metrics for the image from the 
validation dataset. Developed inpainting technique should 
improve those figures.  

B. Analysis of different loss functions 
Table II contains the results for networks trained with 

different loss functions. It should not surprise anyone those 
metrics differ only in the second or third decimal place. It is 
explained by the small area of regions corrupted by ring 
artifacts relative to the area of the whole image. One can see, 
network trained with MSE loss performs worse than others. 
The network trained with LMS-SSIM loss achieves the best result. 
By visual comparison of patches processed by evaluated 
networks (see the outlined regions in Fig. 8), we can see that 
some artifacts remain on the results of networks trained with 
LMSE and LMS-SSIM,MAE losses. According to visual assessment, 
the network trained with LMSE blurs some details of the image. 
It is not perfect that MAEwr for network trained with LMS-SSIM 
differs from zero, however visually we do not see any 
unwanted alterations outside of ring artifacts regions.  

C. Comparison with existing inpainting algorithms 
We evaluated the performance of the following non-blind 

inpainting algorithms, that able to process 2D slices: classical 
Telea’s technique based on the fast marching method [11]; 
Liu’s. inpainting based on U-net with partial convolutions 
[17]. As the methods are non-blind, we pass masks of artifacts 
to their inputs.  

   

   

   
Fig. 8. Comparison of processed patches fragments: originals (first column); with transferred atrifacts (second column); processed by CNN trained with LMSE 

(third column); processed by CNN trained with LMS-SSIM (fourth column); processed by CNN trained with LMS-SSIM,MAE (fifth column) 
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TABLE I.  PERFORMANCE METRICS BETWEEN REFERENCE IMAGE AND 
IMAGE WITH TRANSFERRED ARTIFACTS  

MS-SSIM MAEwr MAEr 
0.9954 0 0.053 

TABLE II.  PERFORMANCE METRICS OF OUR CNNS TRAINED WITH 
DIFFERENT LOSS FUNCTIONS 

Loss function MS-SSIM MAEwr MAEr 
LMSE 0.9913 0.013 0.025 

LMS-SSIM 0.9991 0.004 0.010 
LMS-SSIM,MAE 0.9977 0.005 0.018 

TABLE III.  PERFORMANCE METRICS OF NON-BLIND ALGORITHMS 

Algorithm MS-SSIM MAEwr MAEr 
Telea [11] 0.9974 0 0.155 

Ready-for-use CNN 
Liu et al. [17] 

0.9820 0.006 0.133 

Re-trained CNN 
Liu et al. [17] 

0.9980 0.003 0.023 

 

Table III contains the results for three non-blind methods: 
Telea’s technique, Liu’s model preliminary trained on 
ImageNet dataset, Liu’s model re-trained on microCT images. 
Telea’s technique has better MS-SSIM than our network 
trained with LMSE and comparable MS-SSIM with the result of 
CNN trained with LMS-SSIM,MAE. However, its MAEr is much 
worse and retouching is noticeable. Our network trained with 
LMS-SSIM loss outperforms Telea’s algorithm and our solution 
doesn’t require masks of artifacts.  

Not surprising, that the neural network preliminary trained 
on ImageNet dataset containing natural photos (we 
downloaded the ready-for-use model from 
https://github.com/MathiasGruber/PConv-Keras) shows the 
worst result, because photos from the training set are too far 
from microCT images of rock samples. Moreover, this 
network visually deteriorates images. Though this is the non-
blind algorithm, its MAEwr is not zero, because it changes a 
small number of pixels around the mask. 

Transfer learning provides an opportunity to improve 
outcomes in a new task by knowledge transferring from a 
related task that has already been learned [33]. So, we freeze 
parameters of the first half of U-net pretrained on ImageNet 
and make training second half with the proposed loss [17]. On 
input we pass 512×512 patches of slices from the training 
dataset, corresponded masks, and ground truth patches. We 
perform training with suggested initial learning rate 2·10-4 of 
Adam optimizer [17]. We used identical stopping criterion as 
for our blind CNNs. It took one day for training. As we 
expected, the re-trained network shows better results than the 
ready-for-use model. It outperforms Telea’s technique, our 
network trained with LMSE and comparable with CNN trained 
with LMS-SSIM,MAE. Nevertheless, our neural network trained 
with LMS-SSIM remains the best according to performance 
metrics, except MAEwr, since it is a blind algorithm. 

Examples of inpainting for the fragment from the first row 
of Fig. 8 by means of these algorithms are presented in Fig. 9. 

 
(a) 

 
(b) 

 
(c) 

Fig. 9. Example of ring artifacts inpainting via non-blind methods: 
(a) Telea’s technique; (b) ready-for-use and (c) re-trained CNNs based 
on Liu et al. partial convolutions 

D. Testing on real ring artifacts 
Obviously, we have no ground truth for areas damaged by 

real ring artifacts. We are unable to calculate numerical 
performance metrics for the inpainting of slices damaged by 
real rings. However, the quality of correction can be done by 
visual assessment. We claim methods under consideration 
achieve similar performance for real artifacts as for transferred 
ones. We obtained the best result by means of CNN trained 
with LMS-SSIM loss function. The non-blind algorithms perform 
worse than this CNN and comparable with networks trained 
with LMSE and LMS-SSIM,MAE losses.  

E. Processing time 
All experiments were performed on a system with two 

GeForce GTX 1080 Ti GPUs. GPU provides 3584 stream cores, 
11 GB of memory, and 11.3 Tflops of peak single precision 
performance. CNN was implemented via PyTorch 1.3.0 [34]. 
Training time for every model was about 24 hours. Inference 
takes about 9 s for one 2500×2500×9 fragment of image and 
about 200 s for the entire 3D microCT image. Such fast 
processing speed is more than acceptable.  

VI. CONCLUSION 
We proposed the algorithm for blind inpainting of ring 

artifacts on microCT images of various solid and granular 
materials. Our solution uses end-to-end 3D U-net with patches 
in parallelepiped shape and loss function based on MS-SSIM. 
The trained network provides good numerical and qualitative 
results. The inference stage is fast enough. Our model has high 
generalization capability because was validated on images and 
artifacts, that were not used in training. The key success factor 
was the preparation of big and representative dataset by means 
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of random placement of real ring artifacts from affected slices 
to undistorted ones across 3D microCT images. Procedure for 
artifacts and slices fusion takes into account the measured 
distribution of thickness of real rings.  

There is room for improvement, for example, the 
procedure of transfer of rings to undistorted slices can be done 
in a true 3D manner. In the current implementation, we store 
2D rectangular regions containing a ring artifact. These 2D 
fragments are transferred to several adjacent slices according 
to thickness distribution. It makes sense to store 3D regions 
containing rings and to do modification of statement (2) for 
taking account intensities from adjacent slices not just single 
slice. Because ring artifacts acquired by other microCT 
systems look slightly different, re-training of our 3D U-net 
might be required. The proposed procedure of dataset creation 
can help to create a general solution across the microCT 
systems of any manufacturer. Also, potentially, using different 
network architecture, for example, M-net [35] for more 
attention to fine details can provide better performance. 
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